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ABSTRACT Proliferation of data sources associated to Internet of Things (IoT) deployment as well as
those bound to Open Data Portals (e.g. European Data Portal, Municipalities Open Data Portals, etc.) and
Social Media platforms is creating an abundance of information that is called to bring benefits for both the
private and public sectors, through the development of added-value services, increasing administrations’
transparency and availability or fostering efficiency of public services. However, pieces of information
without a context are significantly less valuable. Raw data lacks semantics and it is highly heterogeneous
from one data-source to another. This poses a challenge to make it useful. To turn all this data into valuable
information it is necessary to enable its combination so that meaningful context can be created. Moreover,
it is fundamental to define the mechanisms enabling the adoption and orchestration of advanced (typically
AI-enabled) data processing techniques to be applied over the harmonized datasets and data-streams.
This paper presents the Data Enrichment Toolchain (DET) that provides the necessary harmonization and
enrichment to datasets and data-streams coming from heterogeneous sources. The value of the enriched
data lies on the one hand in the transfer of the data into a semantically grounded knowledge graph and,
on the other hand, in the creation of new data through linking, aggregating and reasoning on the data. In
both cases, the benefit of employing linked-data modelling and semantics comes from the extension of the
metadata that is associated to every piece of information. Furthermore, the experimental evaluation of the
DET implementation that we have carried out is also presented in the paper.

INDEX TERMS Data enrichment, semantic annotation, data linking, data processing, heterogenous data,
data interoperability.

I. INTRODUCTION
Nowadays, data is becoming the new fuel for economic
wealth and creation of novel business models. A multitude
of technologies contributes to an abundance of information
sources which are already the baseline for many differ-
ent services. Among them, Internet of Things (IoT), Social
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Networks and Open Data are probably the most representa-
tive ones. However, for an economy of data to flourish there
are still several challenges that have to be overcome.

Current solutions are mainly based on centralized
approaches where all the information is extracted from the
field and forwarded to DataManagement Platforms (DMP) in
the cloud. Typically, such DMPs are associated with service
platforms that allow the development of applications that
employ the gathered information. However, existing DMPs
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mostly consider the provision of vertical solutions that do
not need, and correspondingly are not able, to exploit the
abundance of heterogeneous, but related, data. This scenario
implies two key problems that form barriers for the adoption
of a widely spread economy of data based on level playing
field data spaces.

Firstly, the value of data comes from the fact that it
allows creating situational awareness which can be further
used to take optimized decisions. Moreover, situational
awareness grows richer as more information sources are
used. Thus, there must be solutions in place to guarantee
the interoperability of the plethora of information sources
that can contribute to generate a rich situation awareness
that applications can further exploit into optimized decision-
making. Moreover, new data sources should be used as they
appear. Together, interoperability and dynamic discoverabil-
ity foster competition and innovation as users can seamlessly
‘move’ to a different provider. Such interoperability should
be based on common Application Programming Interfaces
(APIs) and data formats, which settles the soft infrastruc-
ture of data spaces by providing syntactic interoperability
as well as semantic enrichment and linkage among pieces
of information even if they come from different sources.
Moreover, semantic enrichment and linkage should also be
exploited to augment each piece of data with important meta-
data regarding to, among other things, quality, provenance,
value, reputation, or limitations of that data.

Secondly, while we have only been able to scratch a bit
of the real worth of existing available data, data producers
are reluctant to share it. The reason for such situation is that,
currently, big corporations are monopolizing the collection
of data into centralized platforms for which the rest of play-
ers can only accept the terms that these giants fix. Those
that are not comfortable with this situation cannot choose a
de-centralized solution that lets them fix the access rules to
their data, and thus decide to keep the data unavailable, and
also unproductive.

In this paper we are presenting the design, implementation
and deployment of a Data Enrichment Toolchain (DET) that
addresses these challenges and enables harmonization and
enrichment of heterogeneous data. The DET leverages the
principles of linked data through the adoption of information
models and APIs of the Next Generation Service Interfaces
Linked Data (NGSI-LD) standard [1] from the European
Telecommunication Standards Institute (ETSI). Our goal
with the DET is to take existing high value data sources and
create new value through the process of ‘‘Data Enrichment’’.
Data Enrichment can be applied to amultitude of data formats
and convert it to a standardized rich data description thatmake
use of the advanced features of NGSI-LD. This approach
facilitates data harmonization, and semantic annotation, and
the use of Artificial Intelligence (AI) mechanisms to achieve
data enrichment.

The advantages that this solution brings forward are
that the provided raw data and the enriched data will be
more easily accessible to create new services and provide

differentiated values that the simple publication of the
datasets cannot provide. Additionally, the paper describes
the DET implementation that actually enables homogeneous
access to highly heterogeneous data sources (e.g. IoT deploy-
ments, Open Data portals, Web content or Social Media).

Our main contributions include: (1) the specification of a
a modular architecture, based on context management stan-
dards, supporting decentralized operation and adaptation to
heterogeneous data; (2) the implementation of a toolchain
enabling heterogeneous data harmonization and enrichment
by leveraging linked-data and AI technologies; and (3) proof
of work services validating the proposed platform through
actual integration of multiple data sources, and assessing its
performance.

Overall, the key innovations that are put forward through
the DET that we are describing and evaluating in this paper
relates to increasing data value by leveraging semantic anno-
tation to provide some meaning to it, as well as to facilitat-
ing discovery of data (specifically, leveraging the NGSI-LD
information model), and enabling more complex process-
ing flows and event processing thanks to the establishment
of links among pieces of data (existing and/or generated
throughout the enrichment process).

The remaining of the paper is structured as follows.
Section II presents some related work on data interoperability
and semantic enrichment of data. The DET functional archi-
tecture description and the specification of its main building
blocks are presented in Section III. Following, Section IV
presents the details of the DET implementation and deploy-
ment that has been done. It also presents the results from the
evaluation of functional and non-functional Key Performance
Indicators that has been carried out. Finally, Section V con-
cludes the paper.

II. RELATED WORK
In this section we briefly analyze works and initiatives related
to two key concepts of the DET value proposition, namely
data interoperability and semantic enrichment of data.

A. DATA INTEROPERABILITY
The problem of data interoperability has existed since the
early days of information systems. There are several defini-
tions for interoperability in the literature. Among the diverse
definitions for interoperability, we quote the ones related
to our context. The Cambridge Dictionary gives a general
definition for interoperability as ‘‘the ability to work together
with other systems or pieces of equipment’’. This implies
that two interoperable systems can understand one another
and use the functionality of each other. In a broader view,
interoperability is defined by the Institute of Electrical and
Electronics Engineers (IEEE) as ‘‘the ability of two or more
systems or components to exchange information and to use
the information that has been exchanged’’ [2]. According to
this definition, interoperability is realized by devising stan-
dards. Considering the plethora of data sources that currently
exist, in the context of this work, interoperability implies the
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ability to transparently access and share the services of such
interoperable systems [3].

Currently fragmented data ecosystem is jeopardizing the
development of global solutions. The existing multiple par-
allel platforms have to converge towards offering seamless,
global, and linked services to their users. A McKinsey study
[4] estimated that a 40% share of the potential economic
value of the IoT directly depends on interoperability gaps
among IoT platforms. It is necessary to implement solutions
that are able to make the already existing data management
infrastructures to collaborate in providing a common and
portable way of offering their data services. One of the aims
of the platform described in this article is to support the
automation of the deployment of services/applications over
heterogeneous domains.

Interoperability has different facets, embracing architec-
ture, devices, or data. We will focus on the latter one and will
show how the proposed DET complements existing works.

In recent years, multiple architectures, frameworks, and
layers for interoperability, including semantic approaches,
were introduced [5], [6], [7], [8], [9]. They can be cat-
alogued in one of the levels described in the work [10]:
connection (basic connectivity and network connectivity),
communication (data exchange interoperability) or semantic
(understanding in the meaning of the data). Aiming at the
definition of an effective DET, we are mainly focusing on
those solutions addressing semantic interoperability.

In [11] there is a listing of the key aspects underlying
semantic interoperability. More specifically, semantic inter-
operability applied to IoT is analyzed in [12] and [13] through
objects profiling and annotations. A more practical propo-
sition for this kind of interoperability can be found in [14],
where interworking proxies are used to accomplish an inter-
operable behavior between systems based on the NGSI and
the oneM2M standards.

Although the works addressing data interoperability share
some of our goals related to well-defined data and infor-
mation models, they have a different approach. While the
mentioned proposal focuses on analyzing data commonali-
ties, so that different systems can interact, we are proposing
the enforcement of standardized information model and com-
monly agreed data models capable of leveraging semantic
web best practices.

Finally, we have found in the literature some works pro-
viding tools to enable interoperability. For example, [15]
describes a framework to specify data according to adopted
standards. Similarly, a lightweight model-based middleware
to simplify interoperability of IoT services is described in
[16]. Although the scope of these propositions is different
from ours, the formal definition of datamodel standards could
be used by our framework in the future. It is also worth
mentioning the development presented in [17], where authors
proposed a set of mediation services to access resources in a
uniformway in the context of IoT, thus enabling semantic and
syntactic interoperability. In this case, the focus is on IoT only
and considered the integration of the whole IoT platform,

while the DET solution that we are proposing has been
designed to enable interoperability and to add the processing
steps for data enrichment of datasets and data-streams coming
from heterogeneous data sources not limited to IoT platforms.
Moreover, DET is focused on the data so existing platforms
can be transparently integrated through the corresponding
DET injection chain.

B. DATA SEMANTIC ENRICHMENT
The key concept behind the so-called semantic enrichment of
data is to augment the value of the data by increasing its con-
textualized characterization by annotating it with metadata
referring to a specific domain of knowledge. An annotation
is a form of metadata attached to a dataset or to any of the
individual components of it usable to better describe the data
type or its information content.

Data enrichment has been widely used in data analysis
applications in which the collected data contains limited
information and needs to be correlated with existing knowl-
edge to reveal higher-level insights.

In [18], a framework for enriching sensor measurements
with semantic concepts is introduced to generate new fea-
tures. In the Big Active Data project [19], notifications
delivered to users can be enriched with other existing data
to provide actionable notifications that are individualized
per user. Other proposed solutions like [20], focuses on the
annotation of data within a collaborative knowledge graph
environment, so that metadata is incorporated to data items
and annotations remain searchable, and data interconnections
are not lost.

A review of other works dealing with semantic enhance-
ment of data should include other pipeline frameworks like
the one in Open Semantic ETL toolkit [21] or the SAPP
framework [22]. They offer modularized approaches to the
creation of data enrichment toolchains that can be extended
in a plug-and-play manner.

Some recent similar have proposed analogous architec-
tures for data processing. For example, [23] proposes an
IoT data stream processing at edge computing layer, but
focuses on investigating its challenges rather than on describ-
ing a standard-based solution supporting heterogeneous data
(i.e. not only IoT) and dynamically composable enrichment
chaining. Interestingly, in this work the performance of the
solution is also experimentally evaluated, as we are doing
with the DET. While the focus in that work is on the chal-
lenges and opportunities of performing data enrichment at
the edge, they also focus the evaluation on processing time
and comparison of delays as we are doing in Section IV.
In [24], so called- Data Acquisition Plans (DAPs), which
are dataflows organized according to a direct acyclic graph,
are proposed to integrate different information according to
domain ontologies on sensors’ observations.

Furthermore, recent works have proposed data annotation
and enrichment solutions for specific domains, like smart
agriculture [25], smart buildings [26], or smart grids [27].
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However, we have not found any framework that offers
dynamic on-the-fly pipelining, i.e., a set of integrated tools
that can help users to enrich the information content of the
data independently of its application domain. Thus, dynam-
ically configuring the enrichment process has become a
feature on which the DET has specific functionalities.

The goal is providing a platform that users can employ to
access semantically enriched data. The DET is an enabler
performing enrichment operations. The enrichment of data
can be carried out on static data (e.g., existing large data sets)
or on a more dynamic context. The DET, in fact, is built to
operate on dynamic, continuous, event based, or on-demand
data. The enrichment process can be executed on static or run-
time data.

III. DATA ENRICHMENT TOOLCHAIN
In this section the DET is described. First the functional
architecture is introduced, then the steps in the process of
data enrichment are discussed by emphasizing the high-level
functions made available by the DET.

A. HIGH-LEVEL DET SPECIFICATION
The DET’s main aim is to add value to datasets and
data-streams by enriching them through the application of
linked-data, semantics, and AI technologies.

1) KEY REQUIREMENTS
The architecture has been defined considering the following
premises:

• Data sources can be batch, providing data under request
(e.g. RESTful interfaces from an Open Data portal);
or real-time, providing data as soon as it is generated
(e.g. under publish/subscribe based services). The DET
architecture is flexible in order to collect and deal with
data. Two operational modes are envisaged:

◦ ‘‘batch mode’’ accesses already defined data sets
and transform them; or

◦ ‘‘real-time mode’’ collects and process data from
sources while they are produced.

• Data must be provided following the Linked Data
Design Issues [28].

• Data must be curated, limiting the data garbage provided
to applications consuming data from the DET.

• Data can be dynamically linked based on changes in the
data (e.g., a newly created entitymight result in a sameAs
link to an existing entity).

• Data can be enriched with new properties as they are
created where properties can be new data attributes or
new relationships, e.g. to express structural contexts
relationships or dynamic situation descriptions.

2) FUNCTIONAL ARCHITECTURE
FIGURE 1 shows the DET functional architecture and
presents the flow of data through its building blocks. The
DET can be described as the composition of microservices
that results in the progressive transformation, formatting,

and enhancement of the original information to increase its
quality and value. Conceptually, the DET can be understood
as a pipeline with a set of components, each one targeting a
specific step within a data enrichment process. This chain of
transformations is carried out in an iterative manner and some
of these steps (and associated software tools and components)
can be parametrized in a dynamic way.

The objective of the architecture is to support the needs
of different applications that seamlessly consume data col-
lected, stored, prepared, enriched, and managed by the DET.
In order to satisfy a general requirement for the DET, the
following functions have been identified as key enablers of
the architecture: (1) data discovery (i.e., the ability to dis-
cover and request the collection of sets and streams of data);
(2) data formatting (i.e., the transformation of raw data into
well-formed and structured set of data accordingly to data
models described in terms of NGSI-LD); (3) data curation
(i.e., the identification, and potential correction, of data that
do not reflect the expected quality – e.g. outliers, errors in
values and the like); (4) data linkage (i.e., the ability to relate
different data set according to well-established definitions
of relationships); and (5) data enrichment (i.e., the ability
to understand and frame the data structures according to
situations and contexts and the definition of functions that
exploit this contextualization).

The first three of these functions are grouped together in
the so-called Injection Chain. Modules belonging to these
first three functional categories team up to collect, format,
and curate the data that is introduced into the platform.
Afterwards, the architecture builds on the NGSI-LD standard,
more specifically on its federated and de-centralized context
data management API, and enables components from each of
the other main functions to add/query or subscribe to data.

Thus, the core component of the DET architecture is the
NGSI-LD Context Broker. It enables the linking and enrich-
ment process on top of curated NGSI-LD data, providing
access to external applications retrieving and making use
of the data. Considering this component as the core of the
architecture, security procedures (e.g. OAuth2, JSON Web
Tokens, Transport Layer Security, . . .) are implemented to
ensure that the NGSI-LD interfaces exposed by the Context
Broker are safe/secure.

In this sense, it is important to highlight that the deci-
sion of employing the NGSI-LD standard as the core of the
proposed architecture obeys to the need of addressing the
aforementioned key challenges that have to be overcome for
the adoption of a widely spread data spaces populated by
heterogeneous data sources and where enriched data might
be found, namely, in summary, establishing a harmonized
manner of representing contextual information enabling the
creation of dynamically extendable knowledge graphs.

Thus, employing an NGSI-LD Context Broker as the
core component of the DET architecture comes implicit
with this design decision. The NGSI-LD Context Broker
implements the standardized NGSI-LD protocol to repre-
sent and exchange linked data. Through the NGSI-LD API,
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context producers and consumers can interact with each other.
The NGSI-LD Context Broker, by implementing such API,
makes this scenario possible by connecting producers and
consumers through the standardized NGSI-LD format and
protocol.

The NGSI-LD Context Broker uses the NGSI-LD API and
information model to model entities with their properties and
relationships, thus forming a property graph with the entities
as the nodes. It allows finding information by discovering
entities, following relationships and filtering according to
properties, relationships, and related meta-information. For
data not directly represented in NGSI-LD like video streams
or 3D models, links can be added to the model that allows
consumers to directly access this information. In this way,
Scorpio can provide a graph-based index to a data lake.

The NGSI-LD Context Broker provides several interfaces
for querying the stored data so easily analytics can be done on
the stored data, like it can be used to predict the situation of an
ecosystem. In particular, it enables the following interfaces:

• Create, update, append and delete context information:
Providing NGSI-LD Entities for the actual information
sharing.

• Query context information, including filtering, geo-
graphic scoping, and paging.

• Historical tracking of entity data.
• Subscribe to changes in context information and receive
asynchronous notifications.

• Register and discover sources of context informa-
tion, which allows building distributed and federated
deployments.

These interfaces are used in the DET to enable data flow
between its components. For example, the entity enrichment
component might subscribe to changes in terms of available
entities. When a change happens (e.g., a new entity has been
created), the entity enrichment component gets notified and
receives the newly created entity. It can then perform entity
enrichment functions and update the entity with the enriched
information as linked metadata to the corresponding entities.

Finally, NGSI-LD Context Brokers can be deployed in a
federated setup, either to increase scalability or to achieve
some isolation between different organizations. In the DET,
this feature has been mainly leveraged to enable separation
among the various injection chains so that they can be added
or removed from the DET without causing disruption to the
DET operation.

B. DATA DISCOVERY AND COLLECTION
Data discovery and collection, as the first stage in the pro-
posed process supported by the architecture, implies the
discovery and acquisition of raw data from different data
sources. This step is the starting point for the process leading
to the curation, certification and distribution of reliable data.

This functionality is used for discovering different types of
data from heterogeneous data sources based on application
needs. The following is a non-comprehensive list of sources
that can be subject of data collection.

• IoT-based: data from various IoT sensors in different
cities such as traffic, pollution, weather, etc.

• Social media: data from famous platforms such as Twit-
ter, Facebook, YouTube, etc.

• Web-stored: data from commonly known websites
e.g., homepages of companies, businesses or public
administration sites.

• Socioeconomic statistical: data from open government
catalogues to allow for effective public oversight.

• National and International Meteorological: data related
to weather and climate from different agencies.

FIGURE 1. DET functional architecture.

Due to the different nature of data sources and the way they
generate data, the collection process can be classified as data
source dependent. Therefore, different handling mechanisms
are developed. For mainly structured, known IoT data, the
collection process can be achieved through the implemen-
tation of interfaces for asynchronous and synchronous data
collection from IoT sensors. Data available from Open Data
portals also typically have a formal structure both in terms
of data modelling and access interfaces, however, they can
have a wide variety from one portal to another even in cata-
logues referring to the same domains. For social media and
web-stored data, the collection process deals with collecting
information through data crawlers. They connect to different
platforms and collect data by means of official APIs.

The output of this component will be the raw data col-
lected from heterogeneous data sources in different types and
formats.

C. DATA MODELLING AND MAPPING
Injection Chains analyze raw data sources and generate the
correspondingly normalized data elements using NGSI-LD
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information model. By formatting heterogeneous data into
a single, standardized format, the mapping function enables
uniform processing for the following components in the
pipeline.

This component takes the raw data collected in the previous
stage as its input, and provides NGSI-LD compliant data as
its output. The input, due to its heterogeneous nature, can be
represented using several different data formatting standards
such as Comma Separated Values (CSV) or JavaScript Object
Notation (JSON). Moreover, both the names of the properties
and the values can be highly different from one another, as a
result of the heterogeneous data sources and their internal
policies, language, units, and several other factors.

Three approaches, characterized by increased complexity
and offering higher flexibility and scalability, fulfilling this
purpose have been identified: (i) The static mapping lever-
ages a pre-established script that maps a specific kind of input
data to NGSI-LD. This script requires full domain knowledge
of the input data; (ii) The template-based mapping makes
use of a set of templates that are filled with the information
extracted from the different data sources, generating NGSI-
LD compliant output. This approach also requires a priori
domain knowledge of the data source and the need for a
different template for every output data type, but it enables
reusability of the templates and has a more efficient imple-
mentation; and (iii) The AI-based mapping uses Machine
Learning (ML) techniques to implement the mapping in an
automated way. It is split into type identification, template
selection, and transformation. In the first step, a trained AI
model classifies the input data into multiple categories, corre-
sponding to the potential output data models. Once selected,
the corresponding template from the existing pool is used and
the transformation is performed.

For example, in the DET implementation that have been
carried out (cf. Section IV), one of the implemented map-
ping modules, the IoT Data Mapper, combines two of the
aforementioned approaches, the template-based mapping and
AI-based mapping.

It uses a Nearest Neighbor approach to individually map
every field of the input document into its corresponding
NSGI-LD property in the Smart Data Models. This mapping
is based on the words used within that field. Once the NGSI-
LD properties are identified, it uses a JMESpath template in
order to transform the input document to the pertinent Smart
Data Model. These templates work in tandem with a Python
class that includes several custom functions to interact with
the templates, allowing us to modify the output NGSI-LD
document in a more complex manner. For instance, we are
able to do type conversion within the document, change the
date format, or generate unique identifiers.

However, the data received may not always be known.
In order to deal with unknown data, we have implemented
an AI-aided type identification module with the Tensorflow
and Keras packages for Python. Firstly, we train a model
with domain-specific ontologies (in our case, the taxonomy
defined in the SmartSantander project) and then this model

is used to predict the type of the input heterogeneous data.
After the type of input data has been identified, we send it
to the Nearest Neighbor mapper along with the newly identi-
fied type, which then allows us to select the corresponding
JMESpath template as mentioned before. The result is an
automatically mapped NGSI-LD entity compliant with its
corresponding Smart Data Model.

D. DATA CURATION
The aim of the Data Curation module is to guarantee that
the data received, exported by the mappers, is valuable and
adequate to be further processed in theDET. Either by tagging
the data entities with additional extra information (meta-
data) or by directly rejecting them in case non-valid data is
detected, this module guarantees that linkers, enrichers, and,
subsequently, users and applications gathering information
from the DET will have not only high-quality data, but a
better understanding of its meaning.

The curation process can be considered the first step in
the entity enrichment that DET performs. However, it is
important to note that within the DET architecture, the Data
Curation module is located after the NSGI-LD mapper and
just before the data is fully accessible to external applications
and further enrichment/linking processes. It acts on the one
hand as a kind of firewall that guarantees that only good
and coherent data is stored, and on the other ensures that the
information to be stored in the Broker has the highest possible
informative quality.

FIGURE 2. Entity linking internal details.

The internal process followed by the curation module is
based on four key steps as it is depicted in FIGURE 2. First,
it applies completeness verification to detect whether a loss
has occurred between two consecutive data items belonging
to the same timeseries. If it is found that a loss has occurred,
the internal logic of this component will generate a synthetic
measurement (NGSI-LD entity) onwhich the remaining tech-
niques will be performed. Thereafter, outlier detection is
performed. Using AI models for short-term prediction, it is
determined whether the value of the observation at its times-
tamp fits or if it can be considered as an anomaly.

To this end, different techniques can be applied for the
outlier detection. For example, in the DET implementa-
tion carried out, the following algorithms: Isolation Forest
(iForest) and Local Outlier Factor (LOF), were used. In the
evaluation that was presented in [29], some differences can
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be observed between the behavior of the two alternatives.
Mainly, the anomalous points detected with the Isolation
Forest algorithm correspond to global outliers within the
dataset, whereas those detected with the Local Outlier Factor
algorithm respond to local anomalies related to the group of
neighbors chosen for evaluation.

The last step is dedicated to the acquisition of the Data
Quality (DQ) dimensions associated to the incoming data
points. Once the DQ features of the NGSI-LD entity being
assessed are evaluated and obtained, they are linked to
the data entity as a related metadata entity following the
DataQualityAssessment data model [30].

E. DATA ENRICHMENT
This subsection describes the data linking and quality/value
augmentation. Data linking and enrichment is interchange-
ably referred to as entity linking and enrichment as well,
as the focus in the data models is put on the entities.

1) DATA LINKING
Data linker is defined as ‘‘a component that generates NGSI-
LD Relationships between two or more NGSI-LD Entities’’
[31]. The generated Relationship would represent a link
between the Entities. Link generation is not restricted in any
way but common ways are to discover links are: (1) finding
commonalities in the data of the entities or in the data model
of entities; and (2) finding spatial associations. The enrich-
ment toolchain might have different data linkers categorized
as:

• IoT data linker establishes the relation between the
entities and their corresponding device of origin. As
many data in the toolchain is generated by IoT devices
linking data to the devices would enable understanding
the infrastructure’s status.

• Geolocation data linker establishes the relation between
the NGSI-LD entities based on their geolocations. For
instance, two entities that are located in the same given
range or area can be linked to each other.

• Web data linker links the entities to the relevant web data
results (e.g., crawled data) related to those entities.

• Correlation linker establishes the relation between the
entities that are correlated based on their data. For
instance, intense traffic and pollution can be linked to
each other when they are correlated.

• Semantic linker establishes the relation between the enti-
ties based on their semantic mapping. For instance, two
entities that have different names but similar semantic
meanings, can be matched.

The number of entities in the NGSI-LD Context Broker
is expected to be large. As such, entity matching is facing
a scalability problem, as potentially all combinations/pairs
of entities need to be evaluated for sameAs or other rela-
tionships. This complexity is O(N 2), where N is the number
of entities in the NGSI-LD Context Broker. To deal with
this problem, a three-step pipeline, as shown in FIGURE 3,
is leveraged in the DET: (1) A component will filter the

entities based on their Smart Data Model type and the avail-
able properties in the schema. For the remaining entities,
we create all possible combinations; (2) As these might still
be too many combinations to perform entity linking in an
adequate time-frame, we then block out entity combinations
with low likelihood to bematches in a Blocking step; (3) Last,
for the remaining candidate entity combinations, we perform
a more compute intensive matching/linking step and then
push the results back to the NGSI-LD Context Broker.

FIGURE 3. Entity linking internal details.

2) DATA QUALITY AND VALUE AUGMENTATION
The enrichment toolchain also considers other ways of data
value augmentation. The quality and value augmentationmay
include additional correlations with other data. For example,
web crawling of social media to retrieve relevant sets of data
for a specific geo-localized entity can be used to support addi-
tional automated analytics such as sentiment analysis. Among
the data enrichment modules within the DET, we focus
on an example related to the data value augmentation in
smart districts, through the concept of ‘‘City Liveability
Index’’.

City Livability Index can assess the status of a district
and gives users a way to compare the data from different
cities as ‘‘indices’’. The indices are calculated by openly
defined methods and accepted practices such as the practices
of sustainable development. An index can combine multiple
‘‘sub-indices’’, where each sub-index would be calculated by
a metric and the combination would be given by an openly-
defined formula. These formulas can be adjusted based on the
availability of the data. For instance, the livability in a city can
depend on multiple indices such as ‘‘RISK, SUSTAINABIL-
ITY, or MOBILITY’’. Each of these indices can take into var-
ious factors whichwould define the sub-indices. For example,
MOBILITY may include multiple sub-indices such as PUB-
LIC_TRANSPORT_USAGE and BIKE_OWNERSHIP.

FIGURE 4 illustrates the concept based on available
datasets (FIGURE 4-bottom) such as open datasets or data
from European Data Portal (EDP). These datasets can be
linked (FIGURE 4-left) through a method such as seman-
tic linking. Data is accessed by different interfaces such as
City Livability Index Flexible Frontend (CLIFF) Dashboard
or Chatbot (FIGURE 4-top) Similarly, the value-augment
data will be provided by the City Livability Indices that
are described above. Lastly, the quality of the data can be
improved for the districts where the data is limited or suffer
from problems such as low resolution. For those scenarios,
techniques such as transfer learning can be used to provide
accurate predictions (FIGURE 4-right).

VOLUME 11, 2023 103085



L. Sánchez et al.: Data Enrichment Toolchain: A Data Linking and Enrichment Platform for Heterogeneous Data

FIGURE 4. View for the concept of the ‘‘City Livability Index’’.

IV. IMPLEMENTATION AND EVALUATION
A. DET DEPLOYMENT DETAILS
The deployment architecture of the DET is based on a fed-
erated setup as illustrated in FIGURE 5. This setup includes
Scorpio Context Broker Federator that connects the different
‘‘satellites’’ of partners in the data plane. In addition, there is
a control broker that handles the control plane functions of the
DET. Access to the Federator Scorpio Broker and the EMQX
Control Broker is restricted using OAuth 2.0. The technology
used for the Identity and Access Management is Keycloak.

We have deployed the Scorpio NGSI-LD Brokers from
their latest docker images (i.e. scorpiobroker/all-in-one-
runner:java-kafka-latest). On the other hand, we have used
Python 3 as the programming language for the DET compo-
nents. These are deployed as separate Python scripts acting
independently, which enhances their modularity and reusabil-
ity. Communications between components are achieved
though HTTP, with most components implementing their
own lightweight HTTP server with the flask and waitress
Python libraries.

Currently, several Injection Chains are implemented: IoT
Data Injection Chain, Web Data Injection Chain and Social
Media Data Injection Chain. This list can be extended by
application developers by introducing new Injection Chains.
Technical descriptions and deployment details of the listed
injection chains can be found in [31].

B. EVALUATION METHODOLOGY AND KPIS
As part of the deployment that has been carried out for the
validation of the DET, several Injection Chains and Data
Enrichment modules have been implemented and integrated.

In this section we present the evaluation that has been car-
ried out over some of them. We have taken into consideration
two aspects during the execution of several experiments of
the deployed DET: (i) the performance of different steps of

the DET (specifically, data mapping, data curation and data
enrichment); and (ii) the comparison between the distributed
approach followed and an alternative centralized counterpart.
The performance indicators are, respectively, the processing
delay introduced in each DET step, and the relative overhead
in terms of extra communication load.

In contrast with the evaluation performed in other studies
that also were proposing solutions for semantic interoperabil-
ity and/or data enrichment, which focused on the qualitative
functional assessment [32], [33], [34], we have focused on
the quantitative non-functional assessment. In this latter case,
as in [23] or [35], the performance assessment, as we have
done, is focused on processing time and comparison of
delays.

FIGURE 5. Federation setup of DET with satellites.

1) PERFORMANCE EVALUATION OF DET PHASES
The performance indicator analyzed has been, in all cases
(i.e. data mapping, curation and enrichment), the processing
delay (i.e. the amount of time consumed to process a par-
ticular piece of data at each of the DET steps). This delay
only has an impact on real-time data (i.e., it does not have
major implications for static datasets), and it is comprising the
processing time of the single step and the delay to swap data
among the DET modules. Moreover, the experiments were
not meant to be exhaustive and comprehensively evaluate
all the modules that have been implemented. Alternatively,
we have evaluated three modules, one of each class.

The Mapper took the measurements from the SmartSan-
tander IoT platform [36]. The Curator assessed several data
quality dimensions of each of the measurements in that data
stream. Finally, the Linker and the Enricher processed each
incoming measurement and added some metadata to them.

The data used for the evaluation consists on temperature
measurements generated by the IoT sensors deployed within
the SmartSantander framework, in real-time, during several
days. These measurements average 230 bytes in length and
are formatted in JSON. Over 100 sensors were actively pro-
viding measurements every 5 minutes, which, eventually,
resulted in roughly one measurement every 3 seconds in aver-
age. The content of themeasurements comprises the identifier
of the originating sensor, its location, the timestamp, the
actual temperature value and its unit of measurement.
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We have chosen this dataset for several reasons. Firstly, the
SmartSantander IoT platform is well-known to us and we are
familiar with its reliability. It provides a flow of measure-
ments that matches well with the nature of the evaluation
performed. Secondly, temperature measurements are very
suitable for an evaluation of the processing time of DET com-
ponents generally and the data quality metrics specifically.
This is mostly due to the statistical nature of the temper-
ature phenomenon itself and the existence of hundreds of
sensors within the city of Santander. Lastly, SmartSantander
temperature measurements are provided in JSON, which is a
well-known format that is widely adopted nowadays in many
kinds of data sources.

The experimental set-up consisted on the processing of a
large number of measurements (50,000 for the Mapper and
the Curator, and 20,000 for the Linker and the Enricher) on an
Ubuntu 20.04.5 LTS machine (2 CPU cores, 2.40 GHz clock,
16 GB RAM). The set-up in these cases emulated the deploy-
ment of these modules at the same Cloud where the Federator
ScorpioNGSI-LDBroker were deployed. As the evaluation is
focused on the processing delay, this set-up is meant to avoid
introducing further communication delays.

2) CENTRALIZED VS DE-CENTRALIZED DATA STORAGE
As it has been described in the previous section, the deploy-
ment carried out follows a distributed approach in which the
different Injection Chains are connected to a local instance
of the federated NGSI-LD Context Broker. The so-called
‘‘Satellite Brokers’’. Among the reasons for adopting such
a deployment architecture, the de-centralization of data stor-
age, and the associated upholding of control over their data
for the data providers connected to each Injection Chain,
as well as the avoidance of large data lakes, and the enable-
ment of edge-based Injection Chains (especially advanta-
geous for IoT data providers), are the key aspects behind this
deployment decision.

However, this de-centralization implies an overhead whose
assessment has been the focus of the evaluation carried out.
Both synchronous (i.e. request-response) and asynchronous
(i.e. subscription-notification) queries have been analyzed.

We have focused on the case of IoT sources as they are
the ones that are intrinsically decentralized. Thus, there can
be actual distribution of both providers and consumers. For
the analysis, we have assumed that in a centralized deploy-
ment the DET is completely deployed at a general-purpose
cloud globally accessible. On contrary, in the decentralized
deployment, only the Federator is deployed at a global cloud
while the Satellites and their associated Injection Chains are
co-located at local Cloudlets close to the IoT infrastructures.

In the centralized case, every time a new observation is
generated at its IoT infrastructure, it is sent to the cen-
tral cloud, while in the decentralized case, the observation
is kept at the local Satellite. On consumption, queries are
always addressed to the Federator. Synchronous requests
are served from the Federator. Directly, in the centralized
case, or, indirectly (i.e. after the Federator has gotten it

from the corresponding Satellite), in the decentralized one.
Alternatively, for asynchronous subscriptions, the Federator
forwards the notifications towards the subscribed consumer
upon a new observation is generated (again, directly, in the
centralized deployment, or, indirectly from the Satellite were
the observation is originally stored, in the decentralized case).

The simulation environment included four different
providers and four consumers which are located at different
Europe regions (i.e. North, South, West and Central Europe).
Communication latency across regions is taken from the
Inter-Region latency services that major cloud providers like
Google or Azure provides. As we are focusing on a relative
comparison, absolute latency values are not relevant, but we
are normalizing inter-region latencies to: 1 (communication
within the same region); 2 (communication between close
regions); and 3 (communication between distant regions).
The scenario could be extended to more locations just defin-
ing more inter-region latencies. Providers generate obser-
vations following a Poisson random function. Consumers
are subscribed to observations coming from two different
providers located in randomly selected regions. The simula-
tions are run 1000 times.

C. RESULTS AND DISCUSSION
Pertaining to the processing overhead introduced by the DET
components, Table 1 summarizes the results obtained during
the experimental evaluation. The operation of the four mod-
ules evaluation has been split in twomain phases, Request and
Processing. During the Request phase, the module gets all the
necessary information to carry out its duties. Once all these
data are gathered, during the Processing phase, the actual
mapping, curation, linking or enrichment is done. Only in the
case of the Mapper, the Request phase is absent, since it only
uses the incoming data entity for its operation. As it has been
described, for each of the modules a large number of data
points (i.e. sensor measurements) were processed. The results
presented in Table 1 are the average and standard deviation
values for each case.

The overhead introduced isminimal. Only in the case of the
Curator, the average processing time raises over 10 millisec-
onds. Though, for the overall overhead computation, the time
that they require to get the necessary information (whether
it comes from external sources or from the same Satellite
Broker) to perform their operations, which in Table 1 is called
request time, has to be considered. While for the Mapper
there is no need for additional data, the Curator requires
information for feeding the ML-algorithms producing Data
Quality metadata and performing observations classification
(e.g. outlier or not). Similarly, the evaluated Enricher needs
external services to provide the additional attributes with
which the data items are augmented. Finally, the Linker also
demands information within the Context Broker but, in this
case, the request is less demanding.

As from the results shown in Table 1, the example
components evaluated show low processing times consid-
ering the mid-sized computing resources employed for the
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TABLE 1. DET performance evaluation results.

experimental evaluation. However, for those components that
requires larger amounts of data to operate, the main part of the
introduced overhead would be attributable to actually getting
these data. Thus, looking at these results, it can be concluded
that datamapping, which is the only step that has to bemanda-
torily part of every Injection and Enrichment chain within
the DET has a negligible overhead. Moreover, data linking,
which is the minimum form of data augmentation, can also
be always enabled due to its very low impact. On contrary,
the inclusion of data curation or complex enrichment of data
items might need to be carefully assessed considering the
functionality-vs-overhead trade-off. In these cases, dynamic
composition of the DET would allow consumers to choose
between higher performance or enriched data.

Regarding the overhead comparison between the central-
ized and the de-centralized deployments, Table 2 presents
the results of the evaluation carried out. Since the objective
of the evaluation was to compare the two alternatives, the
most usual centralized approach where data is gathered at
one server located in the cloud, and the de-centralized one
chosen for the DET design and implementation, the values
shown in Table 2 have been normalized to the average inter-
region latency, so that they are not dependant on the actual
evaluation scenario but they can be extrapolated. As the
evaluation use a Monte Carlo strategy with 1000 repetitions
of the simulations, Table 2 presents the average and standard
deviation values of the normalized delay for the case of both
synchronous (Synch) requests (i.e. the time taken between a
data request by a consumer and its corresponding response)
and asynchronous (Asynch) notifications (i.e. the time taken
between a data publication by a provider and its correspond-
ing notification to the subscribed consumer).

The centralized approach outperforms the de-centralized
one, mainly for the synchronous requests case. However, for
the asynchronous subscriptions the advantage of the central-
ized approach is smaller. This is mainly because, in this case,
in which the publication of data items is decoupled from the
notification to the interested subscribers, the de-centralized
option benefits from the low delay introduced in the publi-
cation process, which is always handled locally, and the fact
that those data items that do not have a matching subscription
are not sent to the central broker, thus introducing valuable

TABLE 2. Centralized-vs-decentralized overhead comparison.

savings both in terms of delay and in terms of data transmis-
sion overhead.

V. CONCLUSION
The DET has been designed to enable heterogeneous data
harmonization and enrichment. It leverages linked-data and
AI-based data processing. Its modular architecture, for which
the NGSI-LD context management standard is the key base-
line, is meant to support decentralized operation and adapta-
tion to heterogeneous data. As it has been described in the
paper, the proposed solution is able to extract high value
datasets from existing heterogeneous data sources (from pub-
lic and private stakeholders) and publish enriched datasets
and data-streams using NGSI-LD, which have been harmo-
nized and aggregated using a data enrichment toolchain.

Overall, we argue that the semantic data enrichment that is
supported by the DET brings many advantages to data pro-
cessing, such as: (1) making data more valuable by providing
some meaning to it; (2) enabling more efficient and accurate
discovery and reasoning; (3) establishing links among pieces
of data; and, (4) allowing more complex processing flows and
event processing.

The proposed solution has been validated through actual
integration of multiple data sources. The actual DET imple-
mentation and deployment has been also briefly presented
and it has been the basis for the experimental evaluation that
has been performed for assessing its performance. The eval-
uation has shown that the de-centralized approach adopted
for the DET deployment enables larger control for data
providers while it does not jeopardize the performance. In this
respect, the design decision taken related to the decentralized
deployment of the DET has also been proven as appro-
priate, as the evaluation results have demonstrated that the
overhead introduced compared to more classical centralized
data management platforms is not that high considering the
non-functional benefits of keeping data within the provider’s
domain (e.g. sovereignty of data, exploitation of edge infras-
tructures, etc.). Moreover, the results from this evaluation
have demonstrated the viability of the proposed solution not
only from the functional standpoint but also from the non-
functional one, as the delay introduced by the data enrichment
modules implemented can be considered negligible.
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