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ABSTRACT Noticeable growth in the use of intelligent devices has resulted in the generation of vast
amounts of data from sensor devices. When dealing with large amounts of data, it is common to observe
databases with large amounts of missing values. This is a challenge for data miners because various methods
for data analysis only work well on complete databases. A traditional approach to handling missing data
is to discard instances of missing values and only use complete cases for analysis. However, research has
shown that this approach is not practical especially when large amounts of data are missing. This led to an
increased need to develop strategies for replacing missing values with plausible values through imputation.
This study presents an imputation strategy called med .BFMVI for recovering missing values before training
downstream classification models. Experiments simulated missingness from 10% to 40% using MCAR and
MAR mechanisms and the performance of the proposed technique was measured against state-of-the-art
techniques. Overall, the proposed algorithm recorded the best imputation accuracy as opposed to benchmark
techniques and showed significant improvements on downstream learning.

INDEX TERMS Electronic health records (EHR), imputation, Internet of Things, missing data.

I. INTRODUCTION
The application of machine learning techniques in healthcare
can lead to the generation of actionable insights ranging from
streamlining operations in hospitals, toxicity prediction to
early detection of diseases [5], [38]. Statistical techniques
that exploit the richness and variety of clinical data are
relatively sparse, creating an avenue for further research in
this area [1]. As vast amounts of information are available
today, experts in the medical field have become reliant on
machine learning techniques for performing various tasks
[2], [8]. These information will be generated from numerous
epidemiological and clinical sources such as claims records,
data from longitudinal studies and clinical trials which over
time have become invaluable assets for medical research.
In most of these studies, data is gathered over time from
individual subjects via repeated or continuous monitoring
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and assessment of both health outcomes and risk factors. For
instance, longitudinal studies are used to find the correlation
between levels of exposure and health effects such as chronic
diseases. Originally, these studies collect prospective data,
prior to the knowledge of future events, therefore mitigating
bias from the responses of participants [3].

Another popular and valuable means of obtaining clinical
data are Electronic Health Records (EHR). The widespread
adoption of EHR over the years has led to the generation of
massive amounts of data containing qualitative, quantitative
and transactional data [4]. While primarily developed for
storing patient records and enhancing administrative tasks,
researchers explored secondary applications for EHRs in clin-
ical informatics [5]. EHRs rely on data collected by various
end devices, and data is collected instantly by physical objects
that incorporate sensors, and network connectivity [7].

The issue of missing data is a prevalent challenge that
poses significant challenges in the interpretation and analysis
of longitudinal clinical data sets [9], potentially diminishing
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their plausibility and producing biased conclusions. The
presence of missing values may cause complications in the
interpretation of important insights in a study or even inval-
idate the entire study [10]. As machine learning algorithms
and statistical models rely on fully observed data sets, it is
important to develop appropriate strategies to handle missing
data effectively.

Classification algorithms such as Random Forests [11],
Classification and Regression Trees (CART) [12], do not
have built-in techniques for addressing missing values
present in the training data. By ignoring instances with
missing values and using only complete records in the classi-
fication algorithm, vital information may be lost in a given
distribution [13]. The presence of missing data is a major
challenge for experts aiming to solve classification problems
in real-life studies [14].
The aim of classification problems is to develop a clas-

sifier from a sample of training data to ensure the correct
classification of new test observations. In the training set, the
classmembership is assumed to be stated for each observation
whereas missing values may be present in corresponding
features/attributes. The test data on the other hand will con-
sist of newly observed records with similar but unlabelled
features. The goal of classification problems is to effectively
assign class labels to the test data [15]. The problem formula-
tion assumes a Missing Completely at Random (MCAR) and
Missing at Random (MAR) mechanism in the training and
test data set. This research identifies one approach to clas-
sification where instances with missing values are ignored
before building a classifier. This approach can only yield
effective results when the amount of missing data is relatively
low. However, research has shown that adequate imputation
techniques can improve classification accuracy even for a
missing rate of 5% [16], [17].

A. LITERATURE REVIEW
The issue of missing data has gained attention from experts
in various domains. Numerous research efforts have been
directed towards tackling the problem of incomplete data by
attempting to devise improved imputation methods that are
more precise and dependable. In this section, we examine
different research studies and recent undertakings that aim to
address this issue.

Research conducted by [18] assessed the accuracy of ran-
dom forest-based imputation for datasets with non-linearity,
non-normality and interaction in biomedical research.
To evaluate the effect of these factors, datasets were sim-
ulated based on the missing at random (MAR) mechanism
and imputation was carried out using RF-based techniques
(missForest and CALIBERrfimpute), and their performances
were evaluated in comparison to predictive mean matching
(PMM). Both RF-based imputation techniques showed high
imputation accuracy. However, CALIBERrfimpute showed
better performance when estimating regression coefficients
as opposed to missForest which produced highly biased

regression coefficients especially for skewed variables in
non-linear models.

The KNN method is a machine learning algorithm which
approaches imputation by classifying the closest neighbours
to missing values and using these neighbours to impute miss-
ing values based on a distance measure between points. In
[19], missing data was imputed base on the K-NN algorithm
considering different mechanisms and missing data models.
The authors further assessed the performance of imputation
techniques using the Naive Bayes algorithm. Results from the
study showed that the accuracy of the imputation technique
closely matched the accuracy of the original complete data.

A study conducted by [34] assessed the performance of
multiple imputation in clinical/epidemiological research. The
results showed that the multiple imputation technique pro-
duced unbiased estimates for both Missing at Random and
Missing Completely at Randommechanisms when compared
with traditional techniques such as LOCF and mean substi-
tution. [36] showed the merit of MI for imputing missing
values, especially when the rate of missing data is above 10%.
An advantage of multiple imputation over single imputation
is that single imputation methods tend to underestimate the
variance that may exist in a given distribution in some cases.
Therefore, MI methods have been proposed to overcome this
limitation [13].
The missForest imputation technique was introduced by

[35], which builds upon the random forest approach. This
method involves combining multiple unpruned regression
and classification trees through averaging. The authors
evaluated its effectiveness on numerous datasets from biolog-
ical fields, introducing artificial missing values to evaluate
the accuracy of the technique under various missing data
rates. The results showed that the missForest method effi-
ciently handles both continuous and categorical missing
data. In comparison to alternative imputation methods like
KNN, the study revealed that missForest outperformed
other comparative techniques, particularly in scenarios where
the dataset exhibited non-linear relationships and intricate
interactions.

The authors in [37] {proposed a stochastic imputation
technique based on the bayesian framework. An uncertainty
aware attribute was introduced, which accounted for uncer-
tainties in the prediction model. The technique showed a high
performance as opposed to comparative techniques when
evaluated using real-world EHR data, MIMIC-III.

A straightforward approach to handling missing data per-
haps is by learning a different classifier on the different
patterns of the observed values in a data set. A study con-
ducted by [29] used this approach in conjunction with neural
networks to investigate the diagnosis of thyroid diseases. This
is referred to as the network reduction approach. Standard
discriminative classifiers can be fitted to learn each model
and [29] observed that each subspace of observed features
learned on a neural network classifier produced better per-
formance compared to regression imputation based on neural
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network (NN) combined with an NN classifier considering
all the features as inputs. A major drawback of this approach
however is that the number of missing patterns on features
is exponential based on the number of features considered
[30]. In the case of the data set considered by [29], four inputs
with four missing patterns on features were considered which
made the approach more feasible.

This study builds upon previous research conducted by
[39] and presents a novel missing value imputation tech-
nique for classification problems. The algorithm exploits the
class boundaries of a target variable and chooses the best fit
objective function for imputation from a list of predefined
sub-techniques.

B. CONTRIBUTIONS OF THE STUDY
As various imputation techniques exist in literature, when
faced with real-life missing instances where there is no
ground truth data, it is important to have imputation
approaches that will embed the capability of selecting optimal
algorithms for imputing missing values. This paper proposes
an imputation algorithm called med .BFMVI that is capa-
ble of choosing appropriate techniques for filling-in missing
instances based on established features and labels in a given
distribution.

A validation technique was also developed using a reverse
error score function RES(r) that is based on two error cal-
culations between two final imputation estimates, which is
used to obtain final imputation results for filling in missing
instances. The performance of pre-defined sub-techniques
were weighed against benchmark techniques and for each
sub-technique, this study demonstrates that selecting the best
plausible sub-technique improves the accuracy of down-
stream classification tasks in clinical data.

II. METHODOLOGY
This paper follows the recommendations of scientific
research for simulating missing data, paying attention to the
principles outlined by [31].

A. DATA COLLECTION
The data used for conducting experiments were reviewed and
collected from secondary data sources through the University
of California Irvine (UCI) machine learning repository. The
datasets were carefully validated from the works of previous
authors and selected to describe the problem statements con-
sidered in this study. For experimental purposes, we consider
a dataset where all data entries are known. Instances with
real missing values were disregarded from analyses because
access to the true values of missing instances was required
in order to measure the performance of the imputation algo-
rithms. Therefore, artificial missing data was simulated at
different rates ranging from 10% to 40% of the overall obser-
vations in a distribution. The choice of missing rates was
inspired by the works of [32] which confirmed that missing
data in IoT smart spaces reaches approximately 40% follow-
ing the analysis of eight streams of IoT data. Missing data

TABLE 1. Original CVD dataset before the introduction of artificial
missing data.

was also simulated based on Missing Completely at Random
(MCAR) and Missing at Random (MAR) mechanisms.

B. PERFORMANCE EVALUATION
The performance of each imputation algorithm is evaluated
based on the following metrics:

• Root mean squared error (RMSE) and Mean Abso-
lute Error (MAE): This measures the accuracy and
precision of the imputation algorithms (how close the
predicted values are to the ground truth) and is given by

RMSE =

√√√√1
n

n∑
i=1

m∑
j=1

(Pij − P̂ij)2 (1)

and

MAE =

√√√√1
n

n∑
i=1

m∑
j=1

(|Pij − P̂ij|) (2)

where Pij is the original (true) value and P̂ij represents
the imputed values. It is important to note that an error
score closer to 0 indicates better performance.

• Classification accuracy: This is measured by the false
negative and false positive error rates [33]. The false
negative error is based on a probabilistic condition that a
respondent is classed under a category that is lower than
the respondent’s true category. Similarly, the false posi-
tive error measures the probability of a respondent being
classified under a higher category than the respondent’s
true category. This can be derived by the formula below;

Accuracy =
TP+ TN

TP+ TN + FP+ FN
× 100 (3)

C. PROBLEM STATEMENT
Let P = {Pi}ni=1 be an n×p- dimensional matrix of n distinct
observations having p attributes/features and V is a response
variable having class labels that are influenced by P. This
research takes into account no dependence structure between
the attributes in P. Let D be an n × p matrix showing the
missingness of the corresponding features of P which was
simulated at 10% - 40% missing rates. In practice, incom-
plete data is generated for a random size n of the population
(P,V ,D) set as the training data which was used to train the
classifier

D = {(Pi,Vi,Di)}ni=1, (4)

where the class labels in V n
i=1 are fully observed, Pi =

(Pij)mj=1 = (Pi1, . . . ,Pip) denotes the m features of the
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i-th observation measured along the indicator variable Di =

(Dij)mj=1 where

Dij =

{
0, Pij is missing

1, otherwise.
(5)

without any loss of generality in the matrix, lets assume that
for each i, the observation Pi = (Pij)mj=1 contains m0 cate-
gorical attributes for j ∈ {1, 2, . . . ,m0} and m1 continuous
features for j ∈ {m0+1, . . . .,m0+m1} such thatm0+m1 = m.
Let the j-th categorical attribute contain kj distinct values of
the j-th continuous variable that represents the (m0 + j)-th
feature of Pi, indexed by j ∈ {1, . . . ,m1} and takes the values
from a continuous set Cj ⊂ R. We can map the kj distinct
values to the initial kj natural values for each categorical
features, such that Pi ∈ {1, . . . , k1} × · · · × {1, . . . , kpo} ×

C1 × · · · × Cp1 ⊂ Rm.
Here, lets assume that the {(Pi,Vi)}ni=1 satisfies the model

Vi = g(Pi), i = 1, 2, . . . , n, (6)

where g(.) denotes an unknown function which maps a
p-dimensional number (which belongs to a subspace of Rm)
to a discrete set R which represents the class labels and
Vi ∈ R.We assume that R has m values and therefore, the
classification problem is established from m classes before
imputing missing value. In order to consider closely related
covariates in the imputation model, the algorithm selects
instances that fall within the same class and uses the repre-
sentative covariates to estimate missing instances.

It is noteworthy that missing values can also be present in
the test set V ′.

III. CLASS-WEIGHTED med.BFMVI IMPUTATION
This study tailors themed .BFMVI for classification problems
and encodes the target variable. Considering the data with m
categories, the class variables are simply recreated based on
m-1 assuming that the final class variable is already known or
is dependent on other identified variables.

This dependence is mathematically expressed as:

m∑
i=1

pi, pi ∈ {0, 1} (7)

where pi represents the i-th binary variable and pi ∈ {0, 1}
simply requires that the class variables must reflect the
available boolean variables. The above equation can also be
represented as:

pj = 1 −

∑
i̸=j

pi (8)

which clearly shows the linear dependence that exists
between other variables and the j-th variable. The interaction
between the binary variables in the classification problemwill
always be represented as

pi.pj = 0, i ̸= j (9)

as both variables are mutually exclusive, meaning when the
first value is 0, the other value is 1.

The goal of the classification task is to make use of a train-
ing set{(Pi,Vi)}ni=1 to produce estimates for g(.). Considering
a new set of L observations, P′

= {P′
i}
L
i=1, the corresponding

classes V ′
= {P′

i}
L
i=1 are predicted by the classifier using

V̂ ′
i = ĝ(P′

i), where bootstrap samples were used to construct
A number of trees from the training set at random and aver-
aged to improve the accuracy of classification based on the
equation:

f̂bagg(P) =
1
A

a∑
a=1

f̂a(P) (10)

The typical process involved in the imputation algorithm
relies on three prescribed techniques. The first technique is
based on the k − NN algorithm where vectors xD(1), . . . , x

D
n

with d(xi,x(1)) ≤, . . . ,≤ d(xi,x(k)) represents the rows of the
matrix XD, and d(xi,x(k)) is the distance given by Distxy =√∑m

k=1(Xik − Yjk )2. For each point (y) in Ci, the distance

(x,y) between the missing point and nearest imputed value
is stored in a similarity array (S). The array (S) is sorted in
descending order and the top K data for (y) in Ci is selected
for imputation.

The process is repeated using a new imputation algorithm
andmissing values within clusters are imputed using a regres-
sion model where for each matrix Ci, the data was split and
the regression model was trained on the response y(s)obs and
predictor variable x(s)obs. The trained regression model is then
used to predict the missing values in Xs.
The final imputation technique (missForest) is initiated by

pre-imputing the missing values in X with the mean of the
distribution, after which the predictors Xs = 1, . . . , p are
stacked in ascending order considering the amount of values
that are missing. Each missing value in Xs is then imputed
by first of all fitting the rf on the response y(s)obs and predictor
variable x(s)obs. Next, the trained rf model is applied to x(s)miss to
predict the missing values of y(s)miss. The imputation process
is repeated until the set stopping criterion (γ ) has been met.
This is achieved when the difference between the most recent
imputed data matrix and the old matrix has an increase for the
first time, considering the variable types present. Lets take the
n×pmatrix to be a set of continuous variables in the proposed
approach. Therefore, the difference in the new and previous
imputed matrix N is defined as:

1N =

∑
j∈N (X

imp
new − X impold )

2∑
j∈N (X

imp
new)2

(11)

The class weight γj from the j-th attribute is used, which
serves as a basis for weighing the med .BFMVI between
observations as follows:

med.BFMVI (pa, . . . , pn) =

m∑
j=1

γjmed.BFMVI (paj, . . . , pnj).

(12)
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Algorithm 1 Class-Weighted med .BFMVI Imputation

Input: (P,V,D) with P ⊂ Rn×p having missing values, V
contains m class labels
Output: Imputed matrix P̂.
1: Pre-processing the Data: Lets first of all transform

class variables of V using (8).
2: Initialisation: Lets consider the class labels in V and

use them as a basis for splitting P in to {Pv}mv=1 consid-
ering their weights γj. Take each class v given Pv and
pre-impute missing continuous features p1 using mean
imputation.

3: Iterative Step: For each missing instance
i in class v, the imputed data matrix P̂v,t

is derived using med.BFMVI (pa, . . . , pn) =∑m
j=1 γj med.BFMVI (paj, . . . , pnj). This process

is repeated for each v using each sub-technique from III
to obtain P̂t = {̂Pv,t }mv=1.

4: Error Calculation: Lets use the error score func-
tion in 15 to determine the choice of imputation. The
sub-technique with the lowest error is used to impute
missing values for instances in v.

5: Stopping Criteria: Stop when the imputed values with
the lowest RES(r) score is used to impute missing values
in P̂

The result of the rf imputation is then set as the threshold,
which is placed as the initial value of the first estimate gen-
erated in Algorithm 1. A reverse error score function RES(r)
representing the error between γ and the final sequence βCi
in each group Ci is expressed as:

Mγ =
∂(γ )
∂n

=

√∑N
i=1(Xγ − ŷβci )2

n
(13)

Mβci =
∂(βci)

∂n
=

√∑N
i=1(ŷβci − Xγ )2

n
(14)

RES(r) = M (γ, βci) =

[
∂(γ )
∂n

∂(βci)
∂n

]
(15)

where γ is the imputation threshold for Ci and βCi is the best
estimate from the previously chosen imputation techniques.

By using the class weights, imputation of the missing con-
tinuous variables is conducted based on the sub-techniques
considered in section III and the score function in
Equation 15.

IV. EXPERIMENTAL SETUP
For the purpose of reporting the comprehensive performance
of classification techniques on real-world applications, this
research evaluates the accuracy of imputation techniques on
classification problems of real-world clinical data reporting
Cardiovascular Diseases (CVD) among a range of partici-
pants obtained from the UCI Machine Learning Repository
[23]. CVD are mostly identified as conditions that involve
the blockage of blood vessels thereby causing ischemic heart

TABLE 2. Missing data mechanisms used for the generation of missing
data M in the data set P . lets take f to be the density of the missing data
pattern. Pmiss and Pobs represent the missing and observed data
respectively.

disease (IHD) (angina, myocardial infraction) or stroke [24].
These conditions prevent the flow of blood to the brain or
heart. To obtain the binary classification, various health and
lifestyle factors of participants were considered in the dataset
to identify plausible diagnosis of cardiovascular diseases.

For the purpose of experiments, missing data is generated
at different rates ranging from 10% - 40% for different miss-
ing data mechanisms. The fully observed data generated from
CCA was taken as the ground truth. The different imputation
techniques were applied on the range of datasets generated
and their performances were compared against all the tech-
niques embedded in the optimised imputation algorithm.

Because different missing datamechanisms affect the qual-
ity of imputation, simulations were conducted considering
two missing data mechanisms: missing at random (MAR)
and missing completely at random (MCAR). These statistical
assumptions are summarised in Table 2. In order to generate
the MCAR mechanism, a subset of the records in P was
sampled at random, assuming that each entry has equal prob-
ability of being chosen. The MARmechanism was generated
by sampling the entire dataset and modelling the missing data
probability for the target variable. For instance, if Ri = 1 the
corresponding value of P is deleted.

This study compares the proposed algorithm with six well
established imputation methods as follows:

V. RESULTS
The imputation methods were tested on real-world clinical
data obtained from the UCI Machine Learning Repository.
This data contains n = 10, 000 observations and p =

11 dimensions. Next, the results show that the quality of
imputation produced from the med .BFMVI sub-methods is
higher compared to other benchmark methods, which further
leads to an improvement in the performance of downstream
classification tasks. This research evaluates the performance
of these methods considering different missing rates for
MACR and MAR conditions.

A. IMPUTATION ACCURACY
The imputation accuracy for each technique was evaluated,
assuming the MCAR condition. Among all the methods
considered, Figure 1 and 2 shows that at least one of the
med .BFMVI techniques record the lowest RMSE and MAE
scores for 10% - 40% missing rate indicating strong perfor-
mance, followed by the imp.mice technique which is closely
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TABLE 3. Average computational complexity for benchmark and med .BFMVI imputation techniques at 30% Missing Rate.

FIGURE 1. RMSE of imputation algorithms for MCAR data.

FIGURE 2. MAE of imputation algorithms for MCAR data.

followed by missForest outside the sub-methods embedded
in the med .BFMVI technique. Comparatively, the stc.reg
technique showed the weakest performance for the MCAR
condition, followed by the benchmark knn technique and the
knn based sub-technique in the med .BFMVI method.
The experiments were repeated for the MAR condition.

Comparatively, for all the missing data ratios, the proposed
method still shows the best performance in terms of imputa-
tion accuracy with the lowest RMSE andMAE for all missing
data ratios as seen in Figures 3 and 4. Among the bench-
mark methods stc.reg still shows the weakest imputation

FIGURE 3. RMSE of imputation algorithms for MAR data.

FIGURE 4. MAE of imputation algorithms for MAR data.

performance. It can be noted that the benchmark imp.mice
approach performs well when 10% - 20% of the data is MAR.
However, for higher missing rates 30% - 40%, the regression
approach shows the weakest RMSE score.

B. COMPUTATIONAL COMPLEXITY
Next, the computational complexity of imputation methods
were compared, showing the time required to complete a
cycle of imputation for the dataset with n = 10000 observa-
tions across each identified missingness pattern. Simulations
were still conducted on a machine having an Intel Core 2 Duo
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TABLE 4. Classification accuracy (%) of CVD data at 30% missing rate.

(3.06 GHz) processor which is limited to 8 GB RAM. Results
can be seen in Table 3 below.

Among the med .BFMVI methods, the regression based
imputation scales very well considering the sample size n
and dimension p for both MCAR and MAR mechanisms.
Despite its imputation quality, the random forest based impu-
tation performs relatively poor when compared to the other
sub-techniques. Among the benchmark methods, imp.knn
imputation performs poorly for both MCAR and MAR
conditions.

C. IMPUTATION PERFORMANCE ON DOWNSTREAM
CLASSIFICATION TASKS
In this section, the performance of machine learning classi-
fication algorithms trained on the range of imputed data is
assessed. The challenge of classification tasks in completely
observed data also differs widely across data sets.

In Table 4, the effect of the imputation methods on the
accuracy of downstream classification tasks for MAR and
MCAR scenarios are presented. Each benchmark methods
and each individual med .BFMVI method were trained on
classification problems to highlight performance gains across
each imputation technique. Simulations were further con-
ducted using 30% missing data rate.

Similarly, when trained on downstream classification
algorithms, it can be observed that med .BFMVI shows com-
parative performance against benchmark techniques. As seen
in Table 4, imputation done on MCAR scenario shows per-
formance gains on all imputed data as compared to the
unimputed data. Overall, from the sub-technique of the
proposed approach, the med .BFMVIreg shows the best per-
formance when trained on the classification algorithms with
an accuracy of 89.7% when trained on the random for-
est classifier. An ensemble meta-estimator called bootstrap
aggregation was used to train subsets of the imputed data
and aggregate the individual predictions using voting tech-
nique. This led to a 1.32% increase in classification accuracy
between the chosen sub-technique from med .BFMVI and

unimputed data. Similar response can be observed in the
MAR scenario with med .BFMVIreg showing a bagged clas-
sification accuracy of 92.4%, showing a 1.98% gain when
compared to a scenario where the classifier is trained on the
unimputed data set.

VI. CONCLUSION
This study presents an imputation approach that is capable of
estimating missing values by exploiting the predefined class
boundaries of a target variable and choosing the best fit objec-
tive function from defined sub-techniques. The algorithm
first isolates the parameters of a given category and repro-
duces a distribution with closely tied membership covariates.
The proposed technique empirically out performs benchmark
techniques in terms of imputation accuracy for both MCAR
and MAR conditions and results in performance gains when
trained on classifiers. This technique is particularly useful for
clinical researchers aiming to solve classification problems
where low to high rates of missing values can be seen. The
proposed approach can also be extended to other domains
such as Photovolataic (PV) fault detection as this domain
relies on historical data from live PV installations, which is
not always available in full [25]. In addition to the above,
the proposed mechanism can also be integrated into Machine
vision application pipelines for pixel imputation due to dis-
crepancies in images caused by scenarios such as occlusion,
domians include automated pallet racking [26], industrial
food inspection via Convolutional networks [27], and quality
inspection within manufacturing facilities [28].
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