IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 7 August 2023, accepted 28 August 2023, date of publication 20 September 2023, date of current version 27 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3317369

== RESEARCH ARTICLE

Indexing Structures for the Efficient
Multi-Resolution Visualization of Big Graphs

MARCO MESITI™, MARIO PENNACCHIONI, AND PAOLO PERLASCA

Department of Computer Science, Universita di Milano, Milan, Italy
Corresponding author: Marco Mesiti (marco.mesiti @unimi.it)

This work was supported by the National Center for Gene Therapy and Drugs Based on RNA Technology through the NextGenerationEU
Program under Grant G43C22001320007.

ABSTRACT Nowadays there is a great interest in the visualization of property graphs to make their
navigation, inspection, and visual analysis easier. However, property graphs can be quite large and their
rendering on web browsers can lead to a dark cloud of points that is difficult to visually explore. With the aim
of reducing the size of the visualized graph, several approaches have been proposed for substituting clusters
of related vertices with aggregated meta-nodes and introducing meta-edges among them, but they usually
consider the graph in main-memory and do not adopt efficient data structures for extracting parts of it from
the disk. The purpose of this paper is to optimize the preparation of the graph to be visualized according to a
certain resolution level by introducing refined data structures and specifically tailored algorithms. By means
of them, the rendering time is reduced when changing the current visualization through zoom-in, zoom-
out, and related operations. Starting from a cluster hierarchy that represents the possible aggregations of
graph nodes, in the paper we characterize a visualization according to a horizontal slice of the hierarchy
and propose indexing structures and incremental algorithms for quickly passing to a new visualization with
minimal changes of the current one. In this process, we ensure a consistent and efficient aggregation of
addictive properties associated with nodes and edges. An extensive experimental analysis has been conducted
to assess the quality of the proposed solution.

INDEX TERMS Property graphs, node indices, edge indices, aggregations according to a cluster hierarchy,
multi-resolution visualization, zoom-in and zoom-out operations, incremental algorithms.

I. INTRODUCTION

Property graphs are nowadays largely used in different
contexts like the bio-molecular domain (for the representation
of proteins interaction), smart cities (for urban traffic
management), social networks (for maintaining individual
relationships), and semantic web (for knowledge represen-
tation). These graphs do not simply report the network
topology but also properties of the individuals and their
relationships. Properties can be minimal information (e.g.
weights) but also records of key-values pairs or complex
vectors. The visual exploration of such graphs [1], [2]
is of paramount importance for detecting and analysing
useful hidden patterns. However, when property graphs
tend to be large, a dark cloud of points is drawn making
impossible to discern its content. Moreover, visualization

The associate editor coordinating the review of this manuscript and

approving it for publication was Rahim Rahmani

libraries turn out to be unacceptable slows (especially
when used in web applications) and the user experience is
compromised.

Among the different approaches proposed for dealing with
graphs of big size (e.g. [3], [4], [5] for biomolecular networks
visualization, [1], [6], [7], [8] for the proper visualization
and interactive analysis of complex graphs), the visualization
based on the identification of clusters/communities/motifs
of nodes that are highly related (or tightly connected) is
gaining momentum and exploited in different contexts ([9],
[10], [11]). We have also recently proposed an approach
for the exploration of big bio-molecular networks that
relies on the construction of a hierarchy of communities
on the graph and allows the visualization of the graphs
at different levels of resolution by exploding the identified
communities [12]. In this kind of visualization, meta-nodes
are introduced in the visualization for representing clusters of
nodes and meta-edges for representing relationships among

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

103585

https://orcid.org/0000-0001-5701-0080
https://orcid.org/0000-0001-6674-2822
https://orcid.org/0000-0001-5924-5457

IEEE Access

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

atomic-nodes and meta-nodes. Meta-nodes can be exploded
(zoom in operation) or collapsed (zoom out operation) for
changing the current visualization and provide a better
rendering of the network that the user wishes to navigate and
explore. For example, starting from the network reported in
Figure 1, a cluster hierarchy can be identified (as the one
in the right-hand side of the figure) and used for the graph
visualization at different levels of resolution starting from
meta-nodes in the higher levels of the hierarchy (reported
in the top part of Figure 2) to visualizations containing also
atomic-nodes belonging to the original graph (bottom part of
Figure 2). In this way, the user can decide the part of the
network to be expanded or collapsed and thus pointing out
structural properties of the entire graph.

Even if many research works have been focused on
identifying the right visualization artifacts and interaction
strategies for the proper visualization of the meta-nodes and
their relationships, the issue of identifying data structures and
algorithms for handling big graphs that cannot be maintained
in main-memory still needs to be properly addressed. This
is definitely relevant for reducing the rendering time when
moving to a new resolution and when networks are stored in
secondary memory (independently from the model adopted
for the representation). Moreover, even if many approaches
consider the presence of a cluster hierarchy, a characterization
of the current visualization in its terms is missing. This is of
great relevance in order to identify incremental algorithms for
the application of the zoom in/out operations. Finally, there is
the need to maintain consistent and efficient the aggregation
of addictive properties in the passage from a resolution to
another.

In this paper, we focus on the extraction of the graph to
be visualized from a database in secondary memory, and
on the generation of visualizations according to a hierarchy
of clusters with which the multi-resolution partitioning of
the graph can be defined. Our work relies on the following
observations. The first observation is that when providing
a graph visualization at a certain level of resolution, we
are considering meta-nodes that form a chain in the tree
hierarchy (as highlighted in Figure 2). The interesting chains
are those that horizontally cut the hierarchy into two parts.
Each one of these chains, named slices, corresponds to a
resolution level of visualization, and by using this concept
it becomes natural the passage from one resolution level to
another and incremental algorithms can be easily devised.
The second observation is that the containment relationships
among clusters can be easily identified by exploiting numeric
intervals associated with each node of the cluster hierarchy
and by associating to the graph node the pair of numbers
corresponding to the cluster leaf it belongs to. Relying on
the proposed indexing structures, the main zoomry and
zoomgpyr operations are computed more quickly. A final
observation is that additive attributes associated with nodes
and edges can be pre-aggregated in our indices, often
avoiding the access to the original graph in the generation of
a visualization.

103586

Starting from these observations, in this paper we define
the concept of slice along with its properties that can
be exploited in the application of several visualization
operations (i.e. the zoomry and zoomgyr operations and
also other ones introduced in this paper). All these operations
are made efficient by the introduction of our indexing
structures. These structures enhance those introduced in [12]
by considering addictive properties and a different numeric
scheme. Moreover, a detailed analysis of their properties
and time complexity are reported with their positive effects
on the execution of navigation operations. An extended
evaluation of the performances of the proposed approach
has been also conducted with real graphs showing that
the approach can be exploited in web applications dealing
with graphs with millions of edges and produce compact
visualizations through meta-nodes and meta-edges in a few
seconds.

The paper is organized as follows. Section II presents
our data structures. Section III presents the concept of
slice and its use in the generation of the graph at a given
resolution. Section IV deals with our navigation operations
and their time complexity. Section V reports the experimental
results while a comparison with related work is discussed in
Section VI. Section VII draws our conclusions and outlines
future research directions. In the supplementary, proofs of the
lemmas and theorems introduced in the paper are reported.

Il. GRAPHS, CLUSTER HIERARCHY AND INDEXES

A. GRAPH

Given a set of labels £ and values V, a property graph is an
unordered graph G = (V, E, n, &), where V is the set of nodes
and E € V x V is the set of edges. Properties are values
associated with nodes and edges are represented by means of
functions n : Vx L — Vand & : E x L — V. Given
a vertex v € V, v.[represents the value associated with the
property [of the vertex v (analogously for an edge e € E).
We assume the existence of a special label used for uniquely
identifying vertices (denoted v.id). Even if properties
on edges/vertices can be of any type, we assume the
presence of additive properties [13] (like weight on edges)
that can be aggregated (with commutative and associative
functions like max, min, sum) as described in the next
section.

Example 1: Figure 1 shows an excerpt of a protein-
to-protein interaction network of the arabidopsis thaliana
organism. Each node is characterized by different properties:
a unique identifier, the protein name, the corresponding
organism, and the probability of expressing a GO function.
For the sake of readability, in the figure we have highlighted
these properties only for node 1. Edges represent their
functional relationships and their strength is reported in the
w(eight) property. In this graph, a hierarchical clustering
method has been applied to cluster similar proteins and
highlighted in two ways: nodes belonging to the same leaf
cluster present the same color; dashed lines delimit the
aggregation of clusters. |

VOLUME 11, 2023

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

IEEE Access

_o-da”
. name:AT5G61380 /b
org:arabidopsis thalian, s
G0:0000002 A&

p:0.75
2

©
-
>

FIGURE 1. (a) A property graph on which a hierarchy cluster-based detection algorithm has been applied. Nodes with the same color have been
clustered together. Moreover, dashed lines aggregate clusters at higher levels of the hierarchy. (b) The corresponding cluster hierarchy.

B. CLUSTER HIERARCHY

A cluster hierarchy can be induced on a graph G by means
of different kinds of hierarchical cluster detection algorithms
(see Section VI) by taking into account the node and edge
properties and the network topology. A cluster hierarchy can
be represented as a ranked labeled tree C = (¢, V¢, Ec¢),
where V¢ is the set of nodes representing clusters, c, is
the root of the hierarchy, and Ec C V¢ x V¢ represents
the inclusion relationship (e.g. (¢, ¢) € Ec¢ means that c is
contained in ¢). A peculiarity of this tree is that each internal
node presents at least two children (i.e. a cluster is split in
at least two sub-clusters) that are ranked. In addition, L(V¢)
denotes the leaf nodes of C, F : V. — L(V() is a surjective
clustering function that identifies, for each vertex in the graph
G, the leaf node of tree C it belongs to. Nodes in L(V¢) can be
ordered relying on the structure of the cluster hierarchy. This
ordering will be exploited for the creation of the indices in
the following section. For each ¢ € L(V¢), cluster(c) denotes
the not empty set F~!(c). Of course cluster(c) can be easily
extended to each node of C using the inclusion relationship.
For each internal vertex ¢ € V¢, L.(V¢) denotes the leaves of
the subtree rooted in c. To facilitate the reading, we introduce
the following notations on trees. For ¢, ¢’ € V¢:

o child(c) is the list of children of ¢, eventually empty
when c is a leaf node;

o sibling(c) is the list of siblings of c;

e path(c)=(c,, .., ¢) is the path from the root ¢, to c;

o level(c) is the level of ¢ starting from 0, i.e. |path(c)| — 1

o desc(c) is the set of descendants of c;

o parent(c) is the parent of ¢ (undefined for c,);

VOLUME 11, 2023

e cand ¢ are disjoint (denoted ¢ % ¢") when ¢ & desc(c’)
and ¢’ ¢ desc(c).
The right-hand side of Figure 1 shows the cluster hierarchy
that we use in our running example.

C. LEAFINDEX STRUCTURE

For making efficient determining the cluster an atomic-node
belongs to and when a cluster is contained into another clus-
ter, we introduce an indexing structure named LeafIndex
that associates with each node ¢ of the cluster hierar-
chy two kinds of information. First, a pair of natural
numbers that are used for determining the inclusion
relationships among clusters and the level of ¢ in the
hierarchy. Second, the number of vertices and internal
edges of G that belong to the cluster, and a set of
tuples {(I1, ny, s1, mxy, mny), ..., (Ik, ng, sk, mxy, mny)} for
the addictive properties /1, ..., [y that can be specified for
the vertices of G. A tuple (I;, nj, s;, mx;, mn;) represents the
number n; of occurrences of the property /; in the vertices of
G belonging to the cluster c; whereas, s;, mx;, mn; represent,
respectively, the sum, the max and the min values that this
property assumes. We remark that for an internal cluster ¢
of the hierarchy C, n; and s; are computed by means of
the corresponding fields in the children of c¢. Depending on
the context, the tuple can be extended with the result of the
application of any aggregate function for the maintenance of
aggregated data at different granularities.

In this section, we refer to the hierarchy cluster C =
(¢r, Ve, Ec) defined on a graph G that presents L =
{l1, ..., It} addictive properties. The LeafIndex structure
is formally defined as follows.

103587

l E E E ACC@SS M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

(2)

(b)

FIGURE 2. Multi-resolution visualizations are obtained from the graph G
in Figure 1 by considering the cluster hierarchy and the current slice
(delimited by a red line). (a) the slice consists of the hierarchy root and
G is represented as a single meta-node. (b) the slide consists of the
children of the hierarchy root. In this case three meta-nodes are shown
along with their relationships. (c) the slice involves leaf nodes of the
hierarchy. In this case, either meta-nodes (top part) or meta-nodes with
atomic-nodes (bottom part) can be shown.

Definition I (LeafIndex) : The LeafIndex LI asso-

ciates a tuple of values to each cluster of C as follows:

e Yc;e L(Ve),0 <i< |L(Ve)|—1, LI(c;)) = (i, i, lev,
ny, ng, agg), where i is the rank in the list L(V¢), lev =
level(c;), ny and ng are the number of vertices/edges of
G belonging to ¢;, and agg is the set of tuples associated
with addictive properties.

e Yc € Vc\L(V¢), LI(¢c) = (imins imax, lev, ny, ng, agg)
where lev = level(c)), imin = minger, ve)(LI(C)),
Imax = maxger,(ve)(LI2(c)), ny and ng are the number
of vertices/edges of G belonging to ¢, and agg is the set
of tuples associated with addictive properties computed
by the children of c. LI; denotes the j-component of the
6-tuple. g

Accordingly, each vertex v € G is associated with a single
index i (denoted as LIg(v)), corresponding to the specific leaf
cluster in which it has been included (i.e. it implements JF),

103588

TABLE 1. Basic operations on a cluster hierarchy C.

operation computation with the index
¢ € desc(c”) | LIi(c) < LIi(¢") < LIx(c") < LlIz(c)
c € child(c¢’) | ¢ € desc(c’) ALIs(c) = LI3(c/) +1
c~c ¢ € desc(c’) V ¢’ € desc(c)
cqbc LIz(c) < LI;(¢") V LI2(c’) < LIy (c)
veEc LI; (c) < LI (F(v)) ALlz(c) > LI2(F(v))

because, for each leaf cluster ¢;, LIi(c;) = Llx(c;). Figure 3
reports the tuples of the LI index associated with the clusters
of our hierarchy.

Lemma 1: The following properties hold on the LI} and
LI, fields of LeafIndex for a cluster hierarchy C.

1) Ve € Ve, LIi(c) < LIx(c).

2) Ve € Ve \ L(Ve) (internal nodes of C)

a) LI(c) = mingecchitace)(LI1(c)),
b) LI(c) = maxyechitace) (LI (c)).
3) Vi, € Ve, cpedesc(c)) < LIi(c1) < LIi(co)A
LIr(cy) = LIx(c2)
4) VYey,c0 € Ve, % 2
LIx(c2) < LIi(c1)
5) Ve, c1,c2€ Ve, LIi(c1) #LIi(c2) Vv Lix(cy) # LI (c2),
i.e. (LI1(c), LIx(c)) is unique in V¢.
6) Vci, ca € Ve, only one of these alternatives occurs:
a) Lli(c1) < LIx(c1) < LIi(c2) < LIx(c2)
this happens when c¢1 % c¢».
b) LIi(c2) < LIx(c2) < LI(c1) < LIx(c1)
this happens when c¢; 7 ¢;.
¢) LI(c1) < LIi(c2) < LIx(c2) < LIi(cy)
this happens when ¢; € desc(cy).
d) LIi(c2) < LIi(c1) < LI(c1) < LIx(c2)
this happens when c¢;| € desc(cy). O

< Ll(c1) < Lli(cy) Vv

Next Lemma is a nice index property for determining the
number of leaf nodes on a subtree rooted in c.

Lemma 2: ¥c € Ve,let C' = (V', E’, ¢) the subtree rooted
in ¢. Then, |L(V')| = LI(c) — LI;(¢c) + 1. O

Corollary 3: |L(Vc)| = LIx(c;) — LIi(c;) + 1. O

Table 1 introduces some basic operations on the cluster tree
can be computed by exploiting the LeafIndex structure
in constant time according to the following theorem. These
operations will be exploited in our algorithms. Note that,
v € cin Table 1 is a short notation for v € cluster(c).

Theorem 4: Let F V. — L(V¢) be the clustering
function between a graph G and a cluster hierarchy C, with
¢,/ € Ve and v € V. The operations in Table 1 can be
computed in constant time by means of LI. (|

Algorithm 1 reports the code for the generation of the
first three fields of the LeafIndex. The last fields can
be easily computed by aggregating the values from the
graph G for leave clusters of C, and for an internal cluster
¢ by aggregating the values occurring in the children of
¢ (this process is not described any longer because it is
straightforward). The parameters of the function create_LI

VOLUME 11, 2023

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

IEEE Access

(0,0,1,2,1,{(p,2,1.55,0.8,0.75)})
(1,2

(3,6,1,13,174(p,
8.{(pf7,4.52,0.92,0.4)})

D G

E H
(1,1,2,3,2,{(p,3,1.82,0.63,0.59)}) "~ (3,3,2,5,5,{(p,5,3.18,0.86,0.39) 6,6,2,3,3,{(p,3,2.38,0.95,0.62) })
(2,2,2,4,3,{(p,4,2.7,0.92,0.4)}) (4,5,2,5064{(p,5,3.54,0.98Q.5

I

(44,3,33,{(0,3,2.15,0.91,0.58)})
(a)

FIGURE 3. Leaflndex and edgelndex.

are the vertex c, the next LI to be assigned, the current level
lev, and the LeafIndex structure L/. Initially, the function
is called on the root vertex c;, with O as first LI; and also as
level. The function has two different behaviors in the case of a
leaf vertex (lines 10 and 11) or of a non-leaf vertex (lines 3 to
8). For the leaf vertex, the function simply assigns the input
value (the next LI) i to both LI; and LI, and the level lev to
the current vertex ¢ and the value i is returned back. In the
other case, function create_LI is recursively invoked on each
of its children. Since for the first child, the value j to be passed
to the recursive call is the same value of the parent node, j
is initialized to i — 1. The other parameters are: the child of
position k (cg), the current value of j incremented by one (the
next LI}, Lemma 1 - Point 2), the next level (lev+1) and the LI
index. Note that at each interaction, j is the last LI, received in
the previous iteration incremented by one (Lemma 8 - Point
1). In lines 7 and 8, the function assigns the LI index to the
current vertex ¢ and returns the same value. The level of all
children of c is lev + 1.

Theorem 5: Algorithm 1 computes LI in O(|V¢]). (]

D. EDGEINDEX STRUCTURE

An index can be also created on the edges among
non-overlapping clusters in C by means of the edges
E of G. This index (named EI) is a graph (Vi, Ej, ¢p)
whose nodes are the clusters in V¢ and E; contains the
edges between two non-overlapping clusters (ci, c2) for
which at least an edge exists in G among the nodes
belonging to the clusters ¢ and ¢;. Since addictive properties
can be also specified on the edges of the graph G, the
pair (ng, {(l1, n1, s1, mxy, mny), ..., (g, ng, Sk, mxg, mng)})
can be associated with each edge of E; through function ¢y,
where ng is the number of edges in G across c¢; and ¢, and
the tuples correspond to the addictive properties Iy, ..., Ik
on edges across the two clusters. When (cy, ¢p) is an edge
between leaves of C, in the tuple (I;, n;, s;, mx;, mn;) of an
addictive property /;,

VOLUME 11, 2023

3,9°80.95,0.39)})

(5,5,3,2,1,{(p,2,1.39,0.76,0.63) })

(2,{(w,2,0.40,0.25,0.15)})

(4,{(w,4,1.87,0.85,0.17)})
C e F)
<27

©

=

El

o
— = —
N & =
= 3 =
2 px
N '
(=] o0
= S
S =
° ©
o 2
s s
o z
& =
= <

(2,{(w,2,1.22,0.65,0.57) })
D

(3,{(w,3,0.76,0.53,0.05)})

(b)

Algorithm 1 CreatelLeafIndex
Input: The cluster tree C = (c,, V¢, Ec)
Output: the index LI

LI < {}
create_LI (¢, 0,0, LI)
return L/
1: function create_LI(c, i, lev, LI)
2: if |child(c)| > 0 then >
3: j=i—1;
4: for k = 1tondo
5: j = create_LI(ck,j+ 1,lev+ 1, LI)
6: end for
7: LI(c) = (,]J, lev)
8: return j
9: else >
10: Li(c) = (i, 1, lev)
11: return i
12: end if
13: end function

« n;is the number of edges in G among the clusters ¢; and
¢ presenting the property /;;

o s; is the sum of the values associated with /;;

o mx;, mn; are the max and min value associated to /; in
the edges among the clusters ¢ and c;.

When c; or ¢ is not a leaf cluster, n; and s; are computed
as the sum of the corresponding fields in the edges of the set
{(c, |c € child(cy), ' € child(cy) A (c, ") € Ep}, and mx;
and mn; are the max and the min of the corresponding fields.
This is an important observation for reducing the cost of
computation of these tuples. Moreover, during the exploration
of the graph, aggregate properties that hold among clusters
and their aggregated strength do not need to be computed on
the fly.

Definition 2 (EdgeIndex) : The EdgeIndex EI is a
graph (V;, Ey, ¢1), where Vi = Vc\{c:}, Er = {(c1,¢2) € Ec

103589

IEEE Access

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

Algorithm 2 CreateEdgeIndex
Input: The cluster tree C = (¢,, V¢, Ec),
The graph G = (V,E, n, &)
the set L of addictive properties
Output: the index EI = (Vy, Ey, ¢r)
Vi <~ VC_\ {cr}
Er < 0, Ef <0
¢; empty function
: for each (vi, vy) € E s.t. F(vy) # F(v2) do
includeEdge(L, (v1, v2), Er, (F(v1), F(v2)), ¢r)
: end for
: for each (¢, ¢p) € E; do
for each (c1, ¢3) € path(cy) x path(ca)
S.t. 1 7"C2/\(C] ;éc_l V ¢ ;éc_z) do
includeEdge(L, (c1, ¢2), Ef, (c1, ¢2), ¢1)
end for
: end for
: return (V;, E; U E[, br)

R e A A T

=

11: procedure includeEdge(L, e1, Eyqr, €2, @)

12: if e € E,, then

13: for each / € L addictive property on e; do
14: dr(ex).n = ¢r(ex).n+1

15: ¢r(er).s = ¢rer).s + ey.s

16: ¢r(er).mx = max(¢py(ez).mx, ey.mx)
17: ¢1(e2).mn = min(¢py(er).mn, e;.mn)
18: end for

19: else

20: Evar = Eyar U {e2}

21: for each [€ L addictive property on e¢; do
22: let (1, 1, val, val, val) a tuple for [>
23: Pler) = Pp(e2) U{, 1, val, val, val)}
24: end for

25: end if

26: end procedure

s.t.c1 # ¢z, and A(vy, vo) € E s.t. cluster(vy) € desc(cy) and
cluster(vy) € desc(cz)}, and V(c1, ¢2) € Ejf, ¢1((c1,¢2)) =
(ng, agg), where ng is the number of edges in G between the
clusters ¢ and ¢, and agg is the set of addictive properties
as discussed above. 0

The construction of this index is realized in two steps
by means of Algorithm 2 (in this case we report the
construction of the tuples for addictive properties that are
generated according to the previous lemma). In the first step
(lines between 1 and 3), the edges that occur among the
clusters in V¢ that are leaves of the hierarchy are determined
and included in E;, by calling the IncludeEdge procedure.
By means of this procedure, we check if the meta-edge
ey is already included in the set E;. In the positive case,
the addictive properties L associated with e are included
in e>. In the negative case, the edge e, is included in E;
and the addictive properties of e; used for initializing the
aggregated values associated with e, by means of the ¢

103590

function. The inclusion of edges in E; is accomplished by
selecting the edges whose source and target vertices fall in
different leaf clusters. All the leaf nodes of the hierarchy C
should be considered because they are all disjoint. Note that
this step requires to access the graph G because we need
to determine the edges connecting nodes among clusters.
Starting from these edges, other edges are included in
the index by considering their inclusion relationship with
previously calculated edges (lines between 4 and 9). This
computation does not require to access the graph G and can
be calculated by considering the edges in E; and aggregating
them. Specifically, for each pair (¢1,c2) € E; (ie. leaf
vertexes in V¢ already determined), we determine pairs
(c1, ¢2) of their ancestors for which the following conditions
hold:

e 1, ¢y are respectively ancestor or equal to ¢1, ¢
e C] 7% c2,1.e. not common ancestor of ¢1,c
e C1, ¢2 not both equal respectively to ¢ and 2

In this case, (c1, ¢2) is included in E; through the IncludeEdge
procedure and the associated addictive properties are kept
updated. In IncludeEdge, the evaluation of the previous
condition is needed because a pair ¢y, ¢» can be the ancestor
of other pairs of leaf vertexes ci, ¢2. At line 10, the graph
(Vi,E; U Ep) (obtained through the union of the edges
computed in the two steps) is returned with the calculated

properties.
Theorem 6: Algorithm 2 correctly computes the
EdgeIndex EI intime O(E| + |Vc|?). O

The cardinality of the edges in EI strictly depends on
the inter-relationships existing among the cluster of nodes
identified in the graph G. So, it is relevant to evaluate its size.
The following theorem introduces a finer upper ground limit
on this number.

Theorem 7: Let (V, Ef, ¢r) be the EdgeIndex.

|Er| < %(|VI| + DIVil = z level(v) O
ecVy
Ill. MULTI-RESOLUTION VISUALIZATION AND SLICES
To identify the correct multi-resolution visualization of the
graph we introduce the concept of slice as a subset of vertices
of V¢ that are reported in the current view.

A. NODE CHAINS AND SLICES
Starting from the cluster hierarchy structure it is possible to
identify sequences of vertices, named node chain, that are
contiguous according to the leafindex structure that we
have introduced in the previous section. These vertices are
those that can appear in a multi-resolution visualization of G.
Definition 3 (Node Chain): A node chain in a cluster tree
C is a non-empty list of vertices (cq, . .., ck) belonging to V¢
s.t. Vi2 < i < k), LIx(ci—1) + 1 = LIi (c)). |
Example 2: Consider the LeafIndex in Figure 3.
The following sequences, with their corresponding LI
and LI, values, are node chains: (G 3), Ha,5), K,6))
(B(0,0), C1,2), G3.3), la,4))- O

VOLUME 11, 2023

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

IEEE Access

Lemma 8: The following properties hold on node chains.

1) Yce Ve \L(Vc) (internal node), child(c) is a chain.

2) if (c1, .., ¢j, .., cx) is a node chain, then (c1, .., ¢}, .., ¢
.., Ck) 1s a node chain, where (c; .. cf) = child(cj).

3) if (c1,.v¢],ncfncr) is a node chain, and

child(cj) = (c} ...cj’), then (c1,...,¢j, ..., cr) is a
node chain.
4) if (c1, .., ¢j), (ch, .., cx) are node chains and Ll>(cj) =

LIi(cp)—1, then (cy, .., cx) is a node chain.

5) if c1, cp are distinct in a chain, then ¢ # c3.

6) Vc € Ve \ L(V¢),desc(c) N L(V¢) is a node chain
(cl, .., cp) s.t. LI1(c1)=LI(c) A LI(c;)=LI(c).

7 if (c1,...,¢j ..., cr) and (c}, o ,c]h) are node chains
s.t. LIi(cj) = LI (c}) A Lh(cj)) = LIz(cj}.l), then

(cl,...,cjl,...,c]’?, ..., cr)is a node chain.

8) if cc = (cy, .., ¢p, .., Ck, .., ¢j) is a node chain, ¢ ¢ cc,
and cc N desc(c) = (cp, .., cx) 1s not empty, then
(c1, .., ¢, .., ¢j) is a node chain. O

Node chains that appear in a multi-resolution visualization
of the graph G are named slices. A slice is a complete chain,
that is a chain that cut horizontally the cluster hierarchy in

two parts.
Definition 4 (Slice): A slice is a node chain (cy, ..., cr)
s.t. LIi(c1) = 0and LIs(ck) = LIx(cy), O

Example 3: Figure 2 reports some examples of slices.
Figure 2(a) shows a slice in which only the root vertex forms
the slice. Figure 2(b) reports a slice corresponding to the
explosion of the meta-node A. Figure 2(c) contains a slice
obtained by the previous one by exploding the vertex C. The
chain formed by L(V(¢) is also a slice.]

In the following, S(C) denotes the set of all slices that can
be generated on a cluster C, and S(c) the slices of the subtree
rooted at ¢ € V.

Starting from Lemma 8 (Item 5) that establishes a relation-
ship between slice and disjoint nodes in the cluster hierarchy,
the next theorem makes more evident this relationship by
claiming that each subset of disjoint vertices can be used in a
slice. For instance, in the hierarchy in Figure 3, if we consider
the disjoint nodes B, E, H, a slice exists containing them (e.g.
the slice (B, D, E, G, H, K)). Since EI represents all possible
relationships among disjoint vertices, it can be exploited for
the verification of the condition of this theorem.

Theorem 9: YU C V¢ s.t. Yuy,uy € U, uy 7 up, 3aslice
seS(C)s.t. U Cs. O

The following theorem establishes the cardinality of S(C)
by considering the cluster hierarchy structure.

Theorem 10: |S(C)|=1 +Hcechild(mo,(c)) 1S(0)| O

Example 4: Consider the hierarchy C in Figure 1. S(C) =
{4),B,C,D),(B,D,E,F),(B,C,G,H,K),(B,D, E, G,
H,K),(B,C,G,I,J,K),(B,D,E,G,I,J,K)}. Therefore
|S(C)| = 7. The same result can be obtained by considering
the subtrees rooted at the children of the root of C. Indeed,
S(subtree(B)) = {(B)}, S(subtree(C)) = {(C), (D, E)},
S(subtree(F)) = {(F),(G,H,K),(G,I,J,K)}. Thus,

VOLUME 11, 2023

IS(C)] = 1 4+ |S(subtree(B))| * |S(subtree(C))| =*
|S(subtree(F))| =1+ 1%2%x3="17. U

B. MULTI-RESOLUTION VISUALIZATION
A slice represents a resolution level according to which the
graph G should be visualized and the current visualization can
contain atomic-nodes of G and meta-nodes. For this reason,
we introduce the concept of expanded slice for representing
the expanded meta-nodes in the current visualization.
Definition 5 (Expanded Slice): An expanded slice is a pair
(cc, o) where cc is a slice according to Definition 4 and o :
L(Vc)Nee — Boolean is a partial predicate indicating where
the leaf cluster is expanded.]
For the sake of simplicity, in the remainder, we consider
o(c) undefined equivalent to o(c) = false. This
assumption simplifies the presentation of our results.
Example 5: The two multi-resolution visualizations on the
right part of Figure 2(c) are obtained by the slice reported in
the left part of the figure. In the first case, the leaf nodes are
not expanded (i.e. o is undefined or false for B, D, E, F).
By contrast, in the other the leaf node E is expanded (i.e.
o(E) = true). O
Having introduced the expanded slice, we are now ready
to introduce the multi-resolution visualization of a graph G
that can be obtained by an extended slice. Intuitively, a multi-
resolution visualization of a graph G is a graph G, with two
kinds of vertices: meta-nodes, corresponding to the clusters
present in the slice that have not been expanded, and aromic-
nodes representing the vertices occurring in the graph G
that are instances of the clusters belonging to the slice that
have been expanded. Due to the different types of nodes that
are present in Gp, three kinds of edges can be identified
in Er: edges of the original graph G (atomic-edges); those
that represent relationships among (non-expanded) clusters
(meta-edges); and finally, those that represent relationships
among atomic-nodes and (non-expanded) clusters (mix-

edges).
Definition 6 (Multi-Resolution Visualization): Consider a
cluster tree C = (cr, V¢, Ec) built on a graph G =

(V,E,n, &), LI and EI=(V}, Ej, ¢7) the indexing structures
introduced in the previous section, and (cc, o) an expanded
slice indicating the leaf clusters that are marked as expanded
(where cc = (cy, ..., cr)). A multi-resolution visualization
for G according to (cc, o), is a graph Gr = (V, Er, nr, &L),
in which two kinds of vertices (V; = VLmGta U VLDOde) can be
identified:

o Vit ={c|c € cc,0(c) =1}
o VEOde ={veV|FW) € {c€cclo(c) = true}}
and three kinds of edges can be highlighted:

o E°*® ={(c,0)lc,c € V"2, (c,0) € Ef}

o E}°9 ={(v,V) € Elv,v € Vj°d}

o EME={(v, 0)lve V%, ce VIt A (F(v), o) €Er}
ny and &, are computed relying on the corresponding ones
defined on G and on LT and ET. |

103591

IEEE Access

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

Example 6: Consider the expanded slice (B, D, E, F), ¢),
where ¢(E) = true. In this case, the visualization contains
Viet® = (B, D, F}, Vpede = (4,7, 8,9}, EFt? = {(B, D)},
E[** = {(D,4).(D,8),(f,4), (F, 8)}, and Ef°%° = {(4,8),
(7, 8), (8,9)}. The graphical representation is in the right
bottom part of Figure 2(c). O

The next lemma represents a link between the Edge Index
and the multi-resolution visualization that can be used for
improving the algorithms’ performances.

Lemma 11: The following properties hold on G =
(VL, EL, n1, &) and its ET = (Vy, Ey, ¢p):

) Vpets c v,

2) Ef** CEp.

3) V(er, e2) €Ef°™2, &r((c1,) =i ((c1, €2)) O

IV. OPERATIONS ON THE VISUALIZATION

The initial multi-resolution visualization of a graph G
according to a cluster hierarchy C consists of a single meta-
node (the root ¢, of C) and no edges are present (i.e. G =
({cr}, @, nL, 8), where np(c,) = LI(c,)).

Starting from that, the operations introduced in this section
can be applied for changing the visualization. All the
operations are specified starting from an expanded slide and
lead to a newly expanded slice. Even if the visualization
can always start from the initial graph G, in the section we
provide incremental algorithms that allow us to obtain the
visualization that results from the application of the operation
on the current visualization. Note that this incremental
approach is fundamental for a local application of the
modifications to the part of the graph visualization that needs
to be changed.

A. THE zooMry OPERATION

The zoomzy operation can be invoked on the meta-node ¢ for
expanding the visualization at a deeper resolution level. When
c is a leaf of the cluster hierarchy, the expansion introduces
the vertices in G belonging to the cluster c. This action is
simply marked in the slice.

Definition 7 (zoomry Operation): Let Gy be a multi-
resolution visualization of a graph G according to an
expanded slice ecc = ((c1,..,¢j, .., k), 0) and a cluster
hierarchy C. The zoompy operation on the meta-node c;
(0(cj) # true) leads to a new expanded slice as follows

(C1s e €] o€}y), 0) if ¢; ¢ L(Vc)
{c} c}’} =child(c;)

((c15 oy Cjy oy c), o[t rUE/C)]) if ¢j € L(V()

/
ecc =

where: o[t rue/c;] indicates function o in which only the
value for ¢; is changed in t rue. Then, a new visualization
G°" is obtained. 0

Example 7: The right part of Figure 2(a) shows the initial
graph visualization according to the slice highlighted in the
cluster hierarchy (left part of the figure). Then, the right
part of Figure 2(b) shows the result of the application of
the zoomyy operation on the meta-node A. Finally, the top

103592

Algorithm 3 zoomzy

Input: The cluster tree C = (¢, V¢, Ec),

The graph G = (V, E, n, &)

the set L of addictive properties

the indexing structures LI and EI = (V, Ey, ¢1)

the expanded slice (cc, o)

anodec € cc:o(c) # true

the current visualization Gy, = (V, Er, ., &)
Output: anew visualization G} " = (V" E[°", n'e", £1'°™)

1 VPoU(e) « vy € VPO A (v,0) € Er)

2: V" (e) <~ v e V[*** 2 A (v,) € EL}

3: EFCV «— ()

4: if c is a leaf cluster in C then

5: V(c) < cluster(c)

6: E(c) < {(v1,v2)I(v1,v2) € E Avy,vp € V(c)}

7. &LV = {¢(e)le € E(o)}

8: for each (vi,n) € E: F(vi) =cAF(n) #cdo
9; if v) € V°?¢(c) then
10: includeEdge(L, (v, v2), Ef Y, (v1, v2), 17
11: else
12: Letc; € ccs.t. vy € ¢4
13: includeEdge(L, (v, v2), Ef €, (v1, ¢1), §1°")
14: end if
15: end for
16: else

17: V(c) < child(c)
18: E(c) < {(c1,¢2) € Efl|ct, 2 € V(c)}
19: &0 = {g1(e)le € E(0)}

20: for each (vi,vy) € E s.t. 3¢c; € V(¢) s.t. vy € ¢;
21: and vy € VEOde(c) do
22: includeEdge(L, (v, v2), Ef ", (¢1, v2), ")

23: end for

24: Ep®" = Ef*" U {(c1, c2)€Eflc1 V() 2 € ymetace))
250 EISV =&MU {r(c1,)l €V (e), c2€ VA (0)}
26: end if

27: VISV = (Vi \ {c) U V(c)
28: E;°" = (EL \ {(v, 0)|(v,c) € EL}) UE[®" U E(c)
29: £ = (&L \ {EL(Ov, O)I(v, ©) € ELH U &

30: =" = (L \ {nL(©PH U {n(m)|v € V(o))
31: return (V]', Efe™, piev, £new)

right part of Figure 2(c) shows the result of the application
of zoomry on the meta-node C, which also allows the
visualization of atomic-nodes (as shown in the bottom right
part of Figure 2(c)). O

Algorithm 3 presents the steps executed when the zoomry
operation is invoked on a vertex c¢ of the current visualization
Gr. The current expanded slice (cc, o) should contain ¢ and
o(c) # true (indeed, only meta-nodes can be expanded).
As depicted in the left part of Figure 4(a), the meta-node
¢ in G can be connected with: other meta-nodes (named
V[***2(c) and depicted in the red area) by exploiting meta-
edges; or, with atomic-nodes (named VL“Ode(c) and depicted
in the blu area) by exploiting mix-edges. The effect of the
zoomry operation is the removal of ¢ (and its incident edges)
and the introduction of new nodes and edges that should be
connected with the nodes in the colored areas.

When c is a leaf node of the cluster hierarchy C (left part of
Figure 4(a)), ¢ needs to be substituted with its atomic-nodes
(as in the right part of the figure). Therefore, the atomic-nodes
of cluster ¢ (i.e. V(c¢) = {ui,uy,...,u,}), all the related

VOLUME 11, 2023

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

IEEE Access

meta-nodes

@) zoom in
@ L i 4 zoom out
o (@]
atomic-nodes
(a) leaf cluster ¢ with atomic-nodes ui, ..., un

... meta-nodes

zoom in

@ . 4y zoom out

atomic-nodes

(b) internal cluster ¢ with c1,...,cy child clusters

FIGURE 4. Main cases in the execution of zoomy and zoomoyr operations.

internal edges (i.e. E(c)), and properties are determined (lines
5 to 7) that correspond to the graph delimited by the two
colored areas on the right-hand side of Figure 4(a). At this
point, the nodes in V(c) should be connected with nodes in the
colored areas. For the atomic-nodes in the blu area, we need
to identify edges (vi,v2) € E such that vi € V(c) and
vy € VLnOde (c). When this condition is verified the atomic
edge (v1, v2) can be included in the new visualization. For
the meta-nodes in the red area, we need to identify edges
(v1,v2) € G such that vi € V(c) and v, belongs to a
cluster ¢; of the current extended slice. When this condition
holds, the mix-edge (v, ¢;) can be included in G;°". In both
cases addictive properties of the included edges are properly
updated.

When c is an internal node of C (see the left-hand side of
Figure 4(b)), ¢ needs to be substituted with its child meta-
nodes. Therefore, similarly to what has been done in the
previous case, the children ci, ..., c, of ¢ are determined
(line 17) along with the edges E(c) between nodes in V(c)
(by exploiting the E; index, line 18), and the related node and
edge properties taken from EI and LI (line 19). The obtained
sub-graph corresponds to the nodes and edges delimited by
the two colored areas on the right-hand side of Figure 4(b).
We have now to determine the edges that connect nodes
in V(c) with those contained in the two colored areas. For
the nodes in the blu area, we need to identify the edges
(v1,») € E s.t vy belongs to a cluster ¢; among those
contained in V(c) and v, belongs to the nodes in the blue
area(i.e. vy € VLnOde (c)). When this condition holds, the edge
(ct, v2) can be included in the new visualization. For the nodes
in the red area, by exploiting the index E I, itis easy to identify
the edges existing between V(c) and those contained in the
red area (line 24). Line 27 creates the final set V;'*" from the
previous V; removing the node ¢ and adding the ones in V(c);
similarly, at line 28 the new E;'*" is generated by removing
from Ey, edges involving ¢ and including the edges previously
computed. Finally, node/edge labeling functions are updated
accordingly (lines 29-30).

B. THE ZoOMoyr OPERATION
The zoomgpyr operation is the inverse operation of zoomry
and allows the visualization of the graph at a lower resolution

VOLUME 11, 2023

level. Differently from zoomry, this operation can be invoked
both on a meta-node or on an atomic-node. In the last case,
the slice does not change (only the associated o function is
updated).

Definition 8 (zoomoyr Operation): Let Gp be a multi-
visualization of a graph G according to an expanded slice
ecc = ((cq, .., cl, .., C", .., ck), o) and a cluster hierarchy C.
The application of the zoomgyt operation on:

1) a meta-node ¢f (I < p < n, ¢ # root(C),
a(cf) = false) leads to the expanded slice
ecc’ = ((cq, .., Cj, .-, Ck), 0) with ¢; = parent(cf) and
{c}, . c]'-’} = ecc N desc(c)).

2) an atomic-node v € G s.t. F(v) = cf leads to ecc’ =
(T c}, " c}“, ey Ck), o[false/cf]).

From ecc’, a new visualization G°" is obtained. O

Example 8: The invocation of zoomgyr on any one of the
atomic-nodes in the right bottom part of Figure 2(c) leads to
the graph visualization reported in the top part of Figure 2(c).
In this case, the slice does not change. The invocation of
zoomgyr on D leads to the graph visualization on the right
part of Figure 2(b).]

Algorithm 4 reports the pseudo-code of the zoomgyr
operation. This operation is simpler than the zoomyy oper-
ation because it works only on the current multi-resolution
visualization G, by taking into account the cluster hierarchy
C and the node v that needs to be collapsed. After the
initialization of the data structures, we need to identify the
nodes to be eliminated from the current visualization (i.e.
V(c)) where c is the meta-node that is determined according
to the node v on which the zoomgyr is invoked. If v is
an atomic-node (e.g. one of the uyg,...,u, nodes in the
right-hand side of Figure 4(a)), c is the leaf cluster associated
with it, and V(¢) = {uy, ..., u,} because we need to remove
all the atomic-nodes of the cluster c¢. If v is a meta-node,
c is its parent in the hierarchy and V(c) contains the meta-
nodes ¢’ in the expanded slice ecc such that ¢’ € desc(c)
and o(c’) = false (meta-nodes in Gy that are descendant
of ¢) or atomic-nodes v of a cluster ¢ in the expanded slice
ecc such that o (c) = true (the picture in the right-hand side
of Figure 4(b) shows the case in which only meta-nodes are
children of ¢). Then (lines 10-12) all new edges in which

103593

IEEE Access

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

Algorithm 4 zoomgyr

Input: The cluster tree C = (¢, V¢, Ec),
the set L of addictive properties
the expanded slice (cc, o)
the current visualization G;, = (Vr, Er, nr, L)
anodev e Vy
Output: anew visualization G} " = (V" Ef°Y, n€", £1'°™)
D (EfCYERT) < (9, 9)
: if v € V%€ then
c <« F©v)
V(c) < cluster(c)
else
¢ < parent(v)
Vic) < {c € Vi“etalc’ € desc(c)}U
e VL“°de|v’ €c}

R LA

: end if

10: for each (vi,v)e (VL \ V(c)) x V(c¢) s.t. (v1,V)€EEL do
11: includeEdge(L, (vi, V'), E[€", (¢, v1), §°")

12: end for

13: VEew = (VL U{ch \V(c)

14: EEGW:EBQWU(EL\{(W ,m)eEr|vieV(c)vvreV(c)})
15: £ =7 U (EL \ {&L((v, va)Ivi€eV(e) Vv eV(O)})
16: n" = (e \ {nL(cp)lvi € V(O U {n(o)}

17: return (V" EPSY, npe", E1CV)

N=J

one of its vertex falls in the colored area are substituted with
an edge that connects the node in the colored area and c.
By exploiting the sets previously described, the algorithm
provides the components of G;°" (lines 13-16) by inserting
the new elements and removing the old ones, and this leads
to the situation depicted in the left-hand side of Figure 4(b).

C. THE zOOMpeep OPERATION

The zoompggp oOperation allows the expansion of a cluster
at any level of the hierarchy and reports its atomic-nodes.
The same effect can be realized by subsequent zoomry
invocations, but this operation is faster.

Definition 9 (zoompggp Operation): Let Gy be a multi-
resolution visualization of a graph G according to an
expanded slice ecc = ((c1,..,¢j, .., k), 0) and a cluster
hierarchy C. The zoompggp operation on a meta-node c;
(0(cj) # true) allows to obtain a new expanded slice:

(c1somn €]] if ¢; ¢ L(C)
e Cr), o) {c;, ¢} =desc(cj) N L(C)

a’:a[true/c}]..[true/c]'.’]

((c1s s Gy ooy CE)s if ¢ € L(C)
o[true/c]) 0
Example 9: Starting from the slice in Figure 2 b) and
applying zoompggp to C, the slice and the visualization in
Figure 5 are obtained. The graph has both meta-nodes (B and
F) and atomic-nodes (instances of D and E).]
Algorithm 5 is a slight extension of the treatment of a
leaf meta-node of Algorithm 3. The main difference consists
in the computation of the V(c) and E(c) sets. In this case,
they need to contain the atomic-nodes (and corresponding
edges) of the cluster ¢ (independently from the fact that
c is a leaf or internal cluster). Having said that, the other

/
ecc =

103594

FIGURE 5. Multi-resolution visualization obtained by applying zoompggp
to the meta-node C of the slice in Figure 2 b).

Algorithm 5 zoompggp

Input: The cluster tree C = (¢, V¢, Ec),
The graph G = (V,E, n, &)
the set L of addictive properties
the indexing structures LI and EI = (Vy, Ey, ¢1)
the expanded slice (cc, o)
anode c € cc:o(c) # true
the current visualization Gr, = (Vz, Er, nr, L)
Output: a new visualization Gzew = (VL“eW, Efew, nypev, Sfew)
D VPO (e) « {vlv e VPO A (v, ¢) € EL)
D VPR < v e VPR A, 0) € EL)
D EPY <0
V(c) < {v € VLI (c) < LIg(v) < LI(c)}
D E(c) < {(v1,v)l(vi, v2) € E Avi, vz € V(o))
D EL°Y = {¢p(e)le € E(0)}
s =y e V(o))
: for each (v1,12) € V(¢) x V}°9(c) do
includeEdge(L, (v, v2), Ef ", (v1, v2), §1°")
10: end for
11: for each (vi,vy) € E s.t. dc; € V(c)s.t. vy € ¢4
12: and vy € VL“Ode(c) do
13: includeEdge(L, (v, v2), Ef ", (cr, v2), ")
14: end for
15: VP = (VL \ {ch U V(c)
16: E;°" = (EL \ {(v,0)|(v,c) € EL}) UE['°" U E(c)
17: £ = (EL \ {EL((v, O)I(v, ©) € EL}) UL
18: " = (., \ {nL()) Uny "
19: return (V" EPeY, npe", E1°V)

I R

©

activities carried out by the algorithm are the same one
discussed for the zoomry operation when dealing with leaf
meta-nodes.

D. THE ZOOMc1ass OPERATION
When atomic-nodes of different clusters are reported in the
current multi-resolution visualization, it might be useful to
go back to a visualization in which only meta-nodes are
reported. For this purpose, we introduce the zoomcrass
operation. Differently from all the other operations, this
one is not applicable to a specific node of the current
visualization but to the entire visualization. Its effect is to
remove atomic-nodes and substitute them with the meta-node
representing their most specific cluster. This operation
corresponds to the application of zoomgoyr operations of
atomic-nodes.

Definition 10 (zoomcrass Operation): Let Gp be a
multi-resolution visualization of a graph G according to

ecc = ((c1,...,¢ck),0) and a cluster hierarchy C. The

VOLUME 11, 2023

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

IEEE Access

Algorithm 6 zoomcrass

Input: the cluster tree C = (V¢, Ec),
the graph G = (V, E, n, &)
the set L of addictive properties
the indexing structure EI = (Vy, Ej, ¢1)
the slice (cc, o)
the current visualization G;, = (Vr, Er, nr, L)
Output: a new visualization G;*" = (V" EPY, nje", £1'°")
: Vlfeaf <~ {c|lc € cc Ao (c) = true}
. Vilew « Vineta U V]}eaf
D EpS=(EL\{(vi,) €ELIF(v) € Vi°2F v F(vp) € Vi °2T))
U{(c1, ¢2) € Eflcy, ca ecc}
2 &L = {1((c1, 2))l(cr, c2) € Ef°"}
LS =)y € V)
: return (V'©", EPeY ERSY, piew)

FouksL

zoomcrass operation allows to obtain a new expanded slice

ecc = ((c1,...,ck),0"), with 6/(c) = false for ¢ €
{c1s o i) O

Example 10: Let((B,D, E,G,1,J,K), 0)beanexpanded
slice where o(c) = true for all meta-nodes in the slice.

This slice corresponds to the leaves of the cluster hierarchy
and the visualization corresponds to the initial graph G in
Figure 1. The application of zoomcrass on it produces a
visualization in which all the atomic-nodes are substituted
by the corresponding leaf meta-nodes. U

Algorithm 6 reports the pseudo-code of the zoomcrass
operation and starts by identifying the meta-nodes VLleaf
that are expanded in the current visualization (line 1).
The atomic-nodes belonging to such clusters need to be
removed from the current visualization and substituted by
the corresponding meta-nodes (line 2). Consequently, all the
edges that involve the removed atomic-nodes need to be
deleted from the new visualization. Edges contained in the
edgeIndex involving vertices in V;°2* should be included
in the visualization (line 4). Finally, properties should be
updated accordingly (lines 5,6).

E. CORRECTNESS AND COMPLEXITY RESULTS

The following theorems introduce correctness and com-
plexity results on the application of our operators to
a multi-resolution visualization Gy of a graph with
respect to a cluster hierarchy C and the expanded slice
ecc.

Theorem 12: The application of one of our operations
to Gy always returns an expanded slice according to
Definition 5. Moreover, the corresponding visualization
algorithms are compliant with Definition 6. 0

Theorem 13: For each pair of expanded slice eccy, ecca,
there exists a sequence of operation zoomry, zoomoyr that

allows to reach ecc; starting from ecci. O
Theorem 14: The complexity of our operations are:
zoomry O(E] + O(IV])
zoomour O(EL]) + max(O(|V]), O(|Vcl))
ZOOMpEEP O(E]) + OV
ZOOMCTASS O(IEL]) + O(IVLD) O

VOLUME 11, 2023

FIGURE 6. Example of hierarchy generated in one of our experiments.

V. EXPERIMENTAL RESULTS

Experiments were made to verify the effectiveness of the
approach proposed for being used in a Web environment. The
used machine is equipped with an i7 Intel core processor with
8 cores at 2.80 GHz, 120 Gbyte RAM, and a 1 Terabyte SSD.
The machine runs an Ubuntu 12.04 Linux operating system.

All the algorithms described in this paper have been
implemented in Python 3.7 and the original graph, the
hierarchy, the LI and EI indexing structures, and the
visualization graph have been stored in neo4j [14]. So, each
time one of our operators is invoked, the visualization graph
is updated by considering the hierarchy, the original graph
(when needed), and the slice.

Many operations were simplified by exploiting the cypher
query language with improvements in the overall execution
times, like for example determining the nodes in the original
graph that belong to a given cluster, or counting the cross
clusters edges. However, it has also introduced some pitfalls.
For example, neo4j does not allow to copy nodes/relations
from one database to another and thus we were forced first
to read them in main-memory and then write them back to
the destination database. Another limitation is the lack of
bulk operations for writing/updating a set of nodes/edges in a
single request. This caused the creation of several requests
to the server with negative effects on the execution times.
Finally, injections by means of textual files are much faster
than the use of the cypher create statement. So, in some
cases, it is easier to extract inter-cluster relationships from
a file, than using a cypher query for the same purpose.
We point out these drawbacks because sometimes a great part
of the execution times are due to the storing/updating of the
visualization graph.

A. DATASETS

Two real datasets have been considered for evaluating the
performances of our algorithms whose characteristics are
reported in Table 2. The first one (denoted G°") contains
unweighted graphs related to social networks and Amazon
product networks made available by Stanford Large Network
Dataset Collection (https://snap.stanford.edu/

103595

IEEE Access

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

TABLE 2. Description of real datasets and generated hierarchies.

(a) Social and amazon networks with corresponding hierarchies

Gsn 1 2 3 4 5 6 7 8 9 10

N 762 4,039 3,490 | 265,214 3,455 4,369 | 196,591 | 1,088,092 410,236 168,114

Es?| 25,289 | 88,234 | 108,559 | 381,405 | 393,592 | 682,354 | 950,327 | 1,542,103 | 2,439,437 | 6,797,557

avg(Deg(G™™)) 66 44 62 3 228 312 10 3 12 81

max(Deg(G?)) 387 1045 919 7636 1750 2185 14730 9 2760 35279

D(G®™) 0.088 0.011 0.018 1.0e-5 0.066 0.072 5.0e-5 3.0e-6 3.0e-5 4.8e-4

threshold 100 250 250 500 250 250 500 500 500 500

CSI]

V& 24 49 54 1,092 44 63 1,420 9,976 3,152 1,254

leaves 19 39 42 941 33 49 1,278 9,689 2,895 1,069

depth 2 2 3 4 3 4 4 2 4 5

avg([leaf]) 40 99 81 279 105 89 153 112 142 157

[ET2] 213 211 1,040 45,291 663 1,700 | 124,501 33,487 183,063 481,108

(b) Protein networks with corresponding hierarchies

GPro 1 2 3 4 5 6 7 8 9 10
VPro| 1,457 11,996 20,408 18,785 6,441 13,535 6,467 20,380 14,740 19,336
EPrO] 278,102 | 501,304 | 831,109 | 1,052,490 | 1,429,032 | 1,910,253 | 2,350,476 | 2,772,322 | 4,820,370 | 6,312,308
avg(Deg(GP™)) 382 84 81 112 444 282 727 272 654 653
max(Deg(GP™)) 1,112 673 386 1,274 2,438 2,377 3,640 1,747 4,176 4,396
D(GPr®) 0.262 0.007 0.004 0.006 0.069 0.021 0.112 0.013 0.044 0.034
threshold 250 250 250 250 250 250 250 250 250 250
(Cpro
\Vgro 14 174 272 260 103 173 88 236 213 255
leaves 10 145 224 230 92 148 79 211 194 227
depth 2 3 3 4 2 4 2 4 4 4
avg([leaf]) 146 83 91 82 70 91 82 97 76 85
|EIPTO| 57 8,691 11,060 20,384 4,285 11,538 3,143 20,001 19,528 25,524

data/). The second one (denoted GP"°) are weighted
networks of proteins extracted from different public sources
and integrated through UNIPred-Web [12]. The reason for
this choice is twofold and makes the two datasets valid
test-beds for evaluating our approach: the diversity of the
application contexts and their different complexities and
topologies. For each graph, we report the number of nodes,
the number of edges, the average and max degree of their
nodes, and the density. Then, we generated the hierarchy
by applying the hierarchical method proposed in [12] that
relies on the use of the Louvain clustering algorithm [15]
and applies a threshold on the size of the obtained clusters
(when a cluster contains a number of nodes lesser than a given
threshold, the cluster is not any longer split). Table 2 reports
the adopted threshold for each graph. The characteristics
of the obtained hierarchies are shown in Table 2(a) and
Table 2(b). For each hierarchy, we report the number of
nodes and leaf nodes, the hierarchy depth, the average number
of nodes in the leaf clusters, and the number of edges
inEI.

The considered graphs present a varying number of nodes
and edges starting from small graphs (around 25,000 edges)
to large graphs (around 6.8 million edges). The density of
the considered graphs also varies between 3 % 107% and
2,6 % 10~!. The generated hierarchies arrive to have a depth
of 5. Figure 6 shows an example of a hierarchy, with depth 4,
generated for the graph G5*°. This graph presents more than
20 thousand nodes, but the hierarchy contains 272 meta-
nodes leading to a better visual representation in a web
page. Moreover, Figure 7(a) shows a comparison between

103596

the edges in G and those presented in EI, and the vertices
of G and the vertices in EI. The diagram is represented
according to a semi-logarithm scale in order to better interpret
the result. Indeed, the vertices and edges in EI are always
much lesser than those in G. Figure 7(b) shows another
perspective of the same result by comparing the number of
edges of EdgeIndex with respect to the edges of G: the
size of EdgeIndex is several orders of magnitude lesser
than the size of G. These diagrams prove the compactness
of the obtained index. Next sections will show the suitability
of the index in creating visualizations at different resolutions.

B. PERFORMANCE RESULTS

Several experiments have been done to assess the effective-
ness of our solution. We have also checked whether the use
of unweighted/weighted graphs has effects on the algorithms’
performances, but there is no statistical evidence. The most
significant experiments are reported.

1) CONSTRUCTION OF LEAFINDEX AND EDGEINDEX

The first experiment is devoted to evaluate the time required
for the construction of the two indexing structures. These
operations are executed only once and offline. Figure 7(c) and
Figure 7(d) report the execution times for the construction
of LeafIndex (starting from an available hierarchy) and
EdgeIndex comprehensive of the time required for storing
the indices in the neo4j database. The time required for
constructing the LeafIndex is often negligible also when
the size of the graphs grow. This is due to the linear
complexity of the developed algorithm. Things are different

VOLUME 11, 2023

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

IEEE Access

Y e T T I T
2 9 % 3 @ % % % 9

o
2 2 2 5 % 98 =
=

(a) Graphs vs edgeIndex edges and nodes

400 1 —— create_LIDB

300

time (s)

100

500000 + —— [EI|

400000

300000

€1

200000

100000

0

0 1 2 3 a 5 6 7
IEl 1le6

(b) Size of edgeIndex vs number of edges

—— create_EIDB

4000

3000

(s)

2000

ime

t

0 2000 4000 6000 8000 10000
Vil

(c) leafIndex: creation and storage time

—— avg(zoomyy)

- _A._/\\I\J\
0 ® ® K
0 1 2 2 4 5 6 7

IEl 1le6

(d) edgeIndex: creation and storage time

—— zoomyy path
—— leaf node explosion

15.0
125
_ 10.0
5.0
25
0.0

0 1 2 3 4 5 6

IE| 1e6

(e) zoomiy: avg time to unfold internal nodes

FIGURE 7. Experiments of main operations on real datasets.

for the construction of EdgeIndex. Indeed, in this case,
all the inter-meta-nodes relationships should be computed
and their number is quadratic w.r.t. the number of nodes of
the hierarchy. Therefore, EdgeIndex construction time is
generally higher than LeafIndex construction time.

2) z0OM1y AND ZOOMoyr OPERATIONS

The second experiment is devoted to the analysis of the
cost of the zoomry and zoomgyr operations in dealing with
the internal nodes of the hierarchy. Through this kind of
experiment we can evaluate the effectiveness of our indexing
structures because the original graph does not need to be
considered. Figure 7(e) reports the average time for the
invocation of the zoomry operation on all the internal nodes
of the hierarchy starting from the root for our two datasets.
A linear dependency can be identified on the number of edges
of the original graph. The average time is mainly negligible

VOLUME 11, 2023

(f) zoomry: unfond leaf node vs entire path

(less than 5 sec.) with the exception of the graph with 6,8
million edges where the time moves to 17.5 sec. Starting from
the visualization obtained by exploding all internal meta-
nodes, the zoomgyr operation is invoked in reverse order
until the visualization contains only the hierarchy root. The
average time for each invocation is linear w.r.t. the number of
edges of the graph. The execution time is mainly negligible
(usually less than 0.5 sec) with a pick of 10 sec for the biggest
graph.

3) NAVIGATION FROM THE ROOT TO THE LEAVES OF THE
HIERARCHY

In order to simulate a possible graph exploration that a user
might be interested in, we have created a max length path
from the hierarchy root to the leaf-meta-node with the highest
number of atomic-nodes. Therefore, in this case, we have to
explode the higher number of meta-nodes and then introduce

103597

IEEE Access

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

in the visualization a high number of atomic-nodes. Then,
we have taken the average time required to zoomry all the
meta-nodes in the path. In this case, the execution time is
higher than in the previous cases. The reason is that the
explosion of the leaf hierarchy node requires querying the
original graph to extract the corresponding atomic-nodes.
This behavior is also confirmed by Figure 7(f) where two
lines are proposed: one represents the execution time of all
the zoomyy path steps, and the other represents only the
execution time of the last step. As the reader can see, the
execution of the internal steps is negligible w.r.t. the explosion
of the leaf node and this is due to the presence of the
EdgeIndex that for internal nodes of the hierarchy does not
require any complex computation. We have also considered
the execution of the zoomgyr operation on the same path but
in reverse order. Usually, the average execution time is less
than 0.24 sec (and in the worst case is less than 0.5 sec).

VI. RELATED WORK

Many approaches were proposed for the visualization and
interactive analysis of complex graphs [1] and for the design
of visualization and navigational tools [7], [8].

A. HIERARCHICAL CLUSTERING APPROACHES

Different approaches have been proposed for the identifi-
cation of communities/clusters/groups in complex networks
that share commonalities according to a distance function.
Although no formal definition of cluster is universally
accepted [16], a largely adopted measure to quantify the
quality of clusters is the minimization of modularity func-
tion [17] where nodes in the single clusters are more likely
to be connected than expected in a random network null
model [18]. Since the global optimization of the modularity is
a well known NP-hard problem [19], different local heuristics
are used [20], [21], [22], [23], [24], [25], [26].

When the clustering is hierarchical, the structure imposed
by the hierarchy can be exploited both for the visualization of
the clusters and for supporting navigation operations through
the clusters [1]. These facilities allow the visualization of the
network at different granularities. At coarser granularities, the
general organization of the network can be inspected, whereas
at finer granularities, it is possible to appreciate peculiarities
of specific parts of network [6]. The computation of the
hierarchy can be realized by means of agglomerative [20],
[27] and divisive algorithms [22]. More advanced techniques
rely on the construction of a multi-layer network, where each
layer has a dedicated scale parameter [28]. Usually, because
of their good scaling property, agglomerative methods are
preferred for large-sized networks and when used in web-
tools (that should provide fast responses).

Approaches and systems for the visual exploration of the
hierarchical communities have been proposed [29], [30] as
well as multi-resolution visualizations of cellular network
processes [31] and biological pathways [32]. However, their
focus is mainly on the rendering of the meta-nodes on

103598

the canvas, whereas our focus is on the data and indexing
structures adopted for easily retrieving and preparing big
graphs to be rendered at different granularity levels.

B. ABSTRACT VISUAL REPRESENTATIONS

The indexing structures that we have presented in this
paper can be exploited in graph visualization tools (like
PivotGraph [11], Zame [10], and Motif Simplifications [9])
to increase the scalability of the visualization procedures and
to summarise nodes and edges with shared characteristics and
thus produce succinct visualizations of important properties
of large networks. In this case, instead of applying clustering
techniques, nodes are classified according to a property (e.g.
a categorical attribute, geographic region, topological fea-
ture) and a hierarchy can be generated on it. By using this type
of aggregation, as suggested in [2], interesting relationships
between attribute, properties, and topological features can be
revealed. However, to be interactively exploited, aggregations
need to be achieved in a preprocessing step, as our indexing
structures.

C. WEB-BASED GRAPH VISUALIZATION TOOLS

Several tools have been proposed in the last few year for the
visualization and interaction of graph-based networks, espe-
cially in the context of protein networks (e.g. Genemania [3],
ZoomOut [33], PINV [34], STRING [4], IMP 2.0 [35], and
UNIPredWeb [12], [36]) for the interactive exploration of
protein networks (a comprehensive survey can be found
in [37]). Few of them supports the possibility to generate
clusters of nodes and exploit them for the navigation of the
network topology (i.e. STRING [4], UNIPredWeb [12], [36]).
UNIPredWeb shows communities of nodes at different levels
of detail and can expand or collapse community on-demand.
On the contrary, STRING can just cluster nodes by coloring
them, built without allowing users to expand or collapse
the displayed communities. ZoomOut can apply clustering
methods using a set of computed descriptors for each network
and all networks can be visualized as single nodes of a super-
network, were interconnections among networks are based
on the calculated clustering distances. However, this tool
does not identify communities/clusters inside each network
but only clusters of networks. In this paper, our focus is
on the back-end of the multi-resolution visualization when
meta-nodes are used at different granularities by providing
properties of the data structures and algorithms.

VIl. CONCLUSION AND FUTURE WORK

In this paper we have proposed the use of a cluster
hierarchy for the navigation of big property graphs at
different resolution levels. Cluster of atomic-nodes are
substituted with meta-nodes and different kinds of edges
are introduced in the visualization to show the relationships
among meta-nodes and atomic-nodes. Different indexing
structures and the concept of slice have been introduced to
make faster the folding and unfolding operations that can
be applied on the visualization. An incremental approach

VOLUME 11, 2023

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

IEEE Access

has been adopted in the implementation of the operations in
order to minimize the part of the visualization affected by
the application of the operations. The paper also contains
an in depth analysis of the properties of the proposed data
structures and the time complexity of our operations.

The proposed approach has been applied to real graphs of
different sizes. Graphs with millions of edges can be handled
in a reasonable amount of time (usually less than 10 sec with
a pick of 20 sec for graphs with almost 6 million edges).
The obtained hierarchy usually counts an average number
of 200 nodes with picks of 10 thousand nodes for sparse
graphs with a low density. We remark that visualizations with
such a number of nodes can be done in a web application.
In the implementation, we used neo4j for storing and updating
the graph visualization. However, a good part of the time
(around 90%) is devoted to the neo4j reading and writing
operations. We think that execution times can be improved
in new releases of neo4j where these operations will be
optimized.

To the best of our knowledge, we are not aware of other
approaches similar to ours and this is the reason for the
lack of comparison experiments. We are however working
on ablation studies to demonstrate the effectiveness of our
indexing structures and algorithms.

As future work we would like to combine the back-side
services described in this paper with new visual artifacts
that will improve the multi-resolution visualization of the
property graphs. Moreover, we wish to extend the clustering
algorithm used in this paper to provide a better organization
of the clusters from a visualization point of view. Indeed,
sometimes the produced clusters might be merged to reduce
their number by taking into account the dimension of the
visualization canvas. This kind of aggregation does not
depend on the similarity measure used for clustering together
the nodes but from external parameters (size of the canvas,
density or level of connectiveness of the graph). Finally,
we would like to extend the methodology for dealing with
temporal graphs thus being able to consider also the time
in the generation of the hierarchy and in the visualization at
different granularities.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their useful suggestions for improving the quality
of their work and the members of Anacleto Labora-
tory (https://anacletolab.di.unimi.it/) with the University of
Milano for useful discussions on the topic of this article.

REFERENCES

[1] I. Herman, G. Melancon, and M. S. Marshall, “Graph visualization and
navigation in information visualization: A survey,” IEEE Trans. Vis.
Comput. Graphics, vol. 6, no. 1, pp. 24-43, Jan./Mar. 2000.

[2] C. Nobre, M. Meyer, M. Streit, and A. Lex, “The state of the art in
visualizing multivariate networks,” Comput. Graph. Forum, vol. 38, no. 3,
pp. 807-832, Jun. 2019.

[3] M. Franz, H. Rodriguez, C. Lopes, K. Zuberi, J. Montojo, G. D. Bader,
and Q. Morris, “GeneMANIA update 2018, Nucleic Acids Res., vol. 46,
no. W1, pp. W60-W64, Jul. 2018.

VOLUME 11, 2023

[4]

[5]

[6]

[71

[8]

[9]

[10]

(11]

[12]

[13]
(14]

(15]

(16]
(17]
(18]

(19]

[20]

[21]

[22]

(23]

(24]

(25]

[26]

(27]

D. Szklarczyk, A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas,
M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen,
and C. V. Mering, “STRING v11: Protein—protein association networks
with increased coverage, supporting functional discovery in genome-
wide experimental datasets,” Nucleic Acids Res., vol. 47, no. DI,
pp. D607-D613, Jan. 2019.

N. T. Doncheva, J. H. Morris, J. Gorodkin, and L. J. Jensen, “Cytoscape
StringApp: Network analysis and visualization of proteomics data,”
J. Proteome Res., vol. 18, no. 2, pp. 623-632, Feb. 2019.

N. Elmgqvist and J.-D. Fekete, ‘‘Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines,” IEEE Trans.
Vis. Comput. Graphics, vol. 16, no. 3, pp. 439-454, May 2010.

T. Munzner, “A nested model for visualization design and validation,”
IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 6, pp. 921-928, Nov. 2009.
M. Sedlmair, M. Meyer, and T. Munzner, “Design study methodology:
Reflections from the trenches and the stacks,” IEEE Trans. Vis. Comput.
Graphics, vol. 18, no. 12, pp. 2431-2440, Dec. 2012.

C. Dunne and B. Shneiderman, ‘“Motif simplification: Improving network
visualization readability with fan, connector, and clique glyphs,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., Apr. 2013, pp. 3247-3256.
N. Elmgpvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete, “ZAME:
Interactive large-scale graph visualization,” in Proc. IEEE Pacific Vis.
Symp., Mar. 2008, pp. 215-222.

M. Wattenberg, “Visual exploration of multivariate graphs,” in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., New York, NY, USA,
Apr. 2006, pp. 811-819.

P. Perlasca, M. Frasca, C. T. Ba, J. Gliozzo, M. Notaro, M. Pennacchioni,
G. Valentini, and M. Mesiti, “‘Multi-resolution visualization and analysis
of biomolecular networks through hierarchical community detection and
web-based graphical tools,” PLoS ONE, vol. 15, no. 12, pp. 1-28,
Dec. 2020.

M. Golfarelli and S. Rizzi, Data Warehouse Design: Modern Principles
and Methodologies. New York, NY, USA: McGraw-Hill, 2009.

A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, and J. Partner, Neo4j in Action,
vol. 22. New York, NY, USA: Manning Shelter Island, 2015.

V. A. Traag, “Faster unfolding of communities: Speeding up the Louvain
algorithm,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 92, no. 3, Sep. 2015, Art. no. 032801.

S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
nos. 3-5, pp. 75-174, Feb. 2010.

M. E. J. Newman, “Modularity and community structure in networks,”
Proc. Nat. Acad. Sci. USA, vol. 103, no. 23, pp. 8577-8582, Jun. 2006.
M. Newman, Networks: An London, UK.
Oxford Univ. Press, 2010.

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “On modularity clustering,” IEEE Trans. Knowl. Data
Eng., vol. 20, no. 2, pp. 172-188, Feb. 2008.

V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech., Theory Exp.,
vol. 2008, no. 10, Oct. 2008, Art. no. P10008.

B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291-307,
Feb. 1970.

M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821-7826, Jun. 2002.

G. Palla, I. Derényi, I. Farkas, and T. Vicsek, “Uncovering the overlapping
community structure of complex networks in nature and society,” Nature,
vol. 435, no. 7043, pp. 814-818, Jun. 2005.

P. Pons and M. Latapy, “Computing communities in large networks using
random walks,” J. Graph Algorithms Appl., vol. 10, no. 2, pp. 191-218,
2006.

A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 70, no. 6, Dec. 2004, Art. no. 066111.
A.Noack and R. Rotta, ‘“Multi-level algorithms for modularity clustering,”
in Proc. Int. Symp. Exp. Algorithms, in Lecture Notes in Computer Science,
vol. 5526, Dec. 2009, pp. 257-268.

A. Clauset, C. Moore, and M. Newman, ‘“Structural inference of
hierarchies in networks,” in Statistical Network Analysis: Models, Issues,
and New Directions, vol. 4503. Pittsburgh, PA, USA: Springer, 2007,
pp. 1-13.

Introduction.

103599

IEEE Access

M. Mesiti et al.: Indexing Structures for the Efficient Multi-Resolution Visualization of Big Graphs

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A. Ashourvan, Q. K. Telesford, T. Verstynen, J. M. Vettel, and D. S. Bassett,
“Multi-scale detection of hierarchical community architecture in structural
and functional brain networks,” PLoS ONE, vol. 14, no. 5, pp. 1-36,
May 2019.

D. Auber and F. Jourdan, “Interactive refinement of multi-scale network
clusterings,” in Proc. Int. Conf. Inf. Vis., 2005, pp. 703-709.

B. Renoust, G. Melangon, and T. Munzner, ““Detangler: Visual analytics for
multiplex networks,” Comput. Graph. Forum, vol. 34, no. 3, pp. 321-330,
Jun. 2015.

0. O. Ortega and C. F. Lopez, “Interactive multiresolution visualization
of cellular network processes,” iScience, vol. 23, no. 1, Jan. 2020,
Art. no. 100748.

F. Paduano and A. Forbes, “Extended LineSets: A visualization technique
for the interactive inspection of biological pathways,” in Proc. Symp. Biol.
Data, 2015, p. S4.

E. I. Athanasiadis, M. M. Bourdakou, and G. M. Spyrou, ‘“ZoomOut:
Analyzing multiple networks as single nodes,” IEEE/ACM Trans. Comput.
Biol. Bioinf., vol. 12, no. 5, pp. 1213-1216, Sep. 2015.

G. A. Salazar, A. Meintjes, G. K. Mazandu, H. A. Rapanoél, R. O. Akinola,
and N. J. Mulder, “A web-based protein interaction network visualizer,”
BMC Bioinf., vol. 15, no. 1, p. 129, Dec. 2014.

A. K. Wong, A. Krishnan, V. Yao, A. Tadych, and O. G. Troyanskaya,
“IMP 2.0: A multi-species functional genomics portal for integration,
visualization and prediction of protein functions and networks,” Nucleic
Acids Res., vol. 43, no. W1, pp. W128-W133, Jul. 2015.

P. Perlasca, M. Frasca, C. T. Ba, M. Notaro, A. Petrini, E. Casiraghi,
G. Grossi, J. Gliozzo, G. Valentini, and M. Mesiti, “UNIPred-web: A web
tool for the integration and visualization of biomolecular networks for
protein function prediction,” BMC Bioinf., vol. 20, no. 1, p. 422, Dec. 2019.
G. A. Pavlopoulos, A.-L. Wegener, and R. Schneider, “A survey of
visualization tools for biological network analysis,” BioData Mining,
vol. 1, no. 1, p. 12, Dec. 2008.

MARCO MESITI received the master’s and Ph.D.
degrees in computer science from the University
of Genova, in 1998 and 2003, respectively. He is
currently an Associate Professor with the Depart-
ment of Computer Science Giovanni degli Antoni,
Universita degli Studi di Milano. He was a Visiting
Researcher with Bellcore (then Telcordia Tech-
nologies), Morristown (New Jersey), in different
periods, from 1998 to 2000. His research interests
include the integration, querying, and visualization

of different kinds of information (structured and semi-structured) according
to different data models (relational, graph, and nosql). Moreover, he has
been involved in different projects for graph data integration, node and edge
prediction, and heterogeneous network visualization. On these topics, he has
published more than 100 papers in international conferences and journals.
He is an Associate Editor of the Data Science and Engineering journal
(Springer) and Applied Sciences (MDPI).

MARIO PENNACCHIONI received the master’s
degree in mathematics. He has been a Research
Associate with the Department of Computer
Science Giovanni degli Antoni, Universita degli
Studi di Milano, since 2017. Previously, he has
worked either as a computer scientist free lance
or an employee in several companies (e.g., banks,
marketing analysis). His area of expertise is mainly
in data management and data mining.

PAOLO PERLASCA received the master’s and
Ph.D. degrees in computer science from the Uni-
versity of Milano, in 1999 and 2003, respectively.
He is currently an Assistant Professor with the
Department of Computer Science Giovanni degli
Antoni, Universita degli Studi di Milano. He has
worked in the area of data security, integrity and
protection, and in the management and protection
of intellectual property and digital rights. His
current research interests include the development
of efficient systems for the analysis, merging, and the visualization of large
heterogeneous networks.

Open Access funding provided by ‘Universita degli Studi di Milano’ within the CRUI CARE Agreement

103600

VOLUME 11, 2023

