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ABSTRACT Industrial processes are nonlinear and complicated in nature, requiring accurate fault detection
to minimize the deterioration in performance and to respond quickly to emergencies. This work investigates
industrial process defect identification and isolation, which is analytically difficult owing to their complexity.
This paper carefully analyzes four design methods for flaw identification and isolation based on Principal
Component Analysis (PCA), Fisher Discriminant Analysis (FDA), Kernel Fisher Discriminant Analysis
(KFDA), and Sequential quadratic programming (SQP). Our study includes the Tennessee Eastman Process
(TEP) and the Penicillin Fermentation Process (PFP), among other comparable methods. We assess the
proposed fault detection and isolation methods through detailed analysis and comparison. The simulation
findings from our extensive investigation provide remarkable insights. Simulation findings show that FDA
and KFDA work well in fault identification and isolation, but PCA has certain limits. We also considered
SQP as a TEP fault detection and isolation improvement tool. SQP is noted for its success in nonlinear
and restricted optimization problems, making it ideal for fault identification and isolation in complicated
industrial processes. Data-driven design approaches increase problem identification in complicated industrial
processes with greater reliability and efficiency than PCA-based methods. This study also shows that
advanced data-driven techniques can improve industrial fault diagnosis, improving operational safety and
system performance by leveraging the FDA, KFDA, and SQP.

INDEX TERMS Principal component analysis, fisher discriminant analysis, kernal fisher discriminant
analysis, fault detection and isolation and meta-heuristic optimization.

I. INTRODUCTION
A. RESEARCH OBJECTIVE
Various engineering systems, like aeroplane engines, chem-
ical processes, electronic equipment [1], and electrical
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machines [2], [3], [4], [5], need to be closely observed to
make sure they work well, reliably, and safely [6]. Fault
Detection and Diagnosis (FDD) is one of the most crucial
technologies for assuring the safe operation of process indus-
tries in order to minimize performance degradation and avert
potentially hazardous situations [7]. Although model plants
are typically unavailable in the process industry, data-driven
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problems for fault detection and isolation strategies are a
major topic of research [8].

The objective of this research is to assess the superi-
ority of advanced data-driven techniques, exemplified by
statistical, and meta-heuristic, over traditional-based meth-
ods for industrial fault diagnosis, emphasizing their ability
to enhance problem identification, increase reliability, and
achieve higher efficiency in addressing intricate industrial
process issues, thereby advancing operational safety and
performance.

B. LITERATURE REVIEW
A fault can be characterized as a divergence from the nor-
mal distinguishing property that is not permitted [9]. For
example, a number of different faults, such as equipment
degradation, seasonal changes, plant-wide oscillations, and
several others, can cause a variety of malfunctions in the
process equipment. In most cases, the actuators, components,
and sensors are the ones to go wrong. These defects are
responsible for a variety of industrial incidents that have
occurred in the sector as well as emergency shutdown sce-
narios [10]. Researchers around the globe have employed a
wide variety of strategies to diagnose problems for process
breakdowns and malfunctions in pursuit of an efficient Fault
Detection and Diagnosis (FDD) [11]. The term ‘‘Advanced
Statistical and Meta-heuristic methods’’ encompasses a col-
lection of complex techniques employed in the FDD domains
for data analysis, optimization, and problem-solving. The
specificity’s of these strategies are outlined below:

1) Advanced Statistical Methods: These approaches tran-
scend the scope of fundamental statistical analysis.
These approaches encompass increasingly intricate and
specialized techniques for investigating, examining,
and deriving meaningful conclusions from data. The
aforementioned techniques frequently address the anal-
ysis of extensive datasets, multidimensional domains,
and complex, non-linear associations. Advanced sta-
tistical approaches encompass a range of sophisticated
techniques that are employed to analyze complex data
sets and derive meaningful insights. Some illustrative
examples of such methods include:

• Machine Learning Algorithms: Algorithms such
as neural networks, random forests, support vector
machines, and gradient-enhancing are commonly
employed in many computational tasks, including
classification, regression, clustering, and others.

• Bayesian Inference: The application of a prob-
abilistic framework to the process of statistical
inference, wherein assumptions are iteratively
revised and updated in response to the acquisition
of new evidence [12].

• Dimensionality Reduction: PCA and t-SNE are
widely used techniques in data analysis that facil-
itate the reduction of variables while preserving
crucial information.

2) Meta-heuristic: The optimization algorithms dis-
cussed below draw inspiration from natural processes,
social behavior, and mathematical models. Complex
optimization issues may be effectively addressed with
these methods, since they are capable of overcoming
the limitations and time constraints associated with
traditional approaches. Meta-heuristic techniques are
specifically developed to effectively navigate through
an extensive search space in order to identify solutions
that are close to optimum. Meta-heuristic approaches
encompass a variety of techniques that are employed to
solve complex optimization problems [13], [14], [15],
[16]. Some notable examples of these methods include:

• Genetic Algorithms: Algorithms that employ the
principles of natural selection to iteratively gener-
ate and refine solutions for optimization purposes.

• Tabu Search: One approach to optimization
involves the utilization of a short-term memory
mechanism that keeps track of previously visited
solutions, so preventing redundant revisits and pro-
moting a more varied exploration of the search
space.

• Simulated Annealing: An optimization strategy
that draws inspiration from the annealing pro-
cess in metallurgy, when a material undergoes a
gradual cooling procedure to mitigate the pres-
ence of flaws. The process entails systematically
and repeatedly examining the range of potential
solutions, even if they are not the most optimum,
in order to avoid being trapped in local optima.

Advanced statistical and meta-heuristic techniques are
of paramount importance in addressing intricate challenges
across diverse fields such as engineering, research, business,
and computer science. These methodologies facilitate the
management of extensive data analysis, optimization, and
decision-making obstacles that conventional techniques may
find difficult to tackle.

In the industrial domain, interconnections between pro-
cesses are prevalent, and system issues often trigger a mul-
titude of alarms simultaneously [17], [18]. Consequently, the
use of univariate statistical monitoring techniques becomes
inadequate for higher-dimensional systems. The presence of
numerous alarms fails to offer a clear indication of the vari-
ables responsible for the anomaly. In contrast, multivariate
statistical methods prove to be effective in fault detection as
they account for the correlations between variables [19].

Several techniques, including data-driven minimization
techniques, have been explored to address the challenges
posed by faults in industrial systems [20], [21]. Among these
strategies, Principal Component Analysis (PCA) emerges as
a prominent approach. PCA is renowned for its capability
to reduce the dimensionality of data while preserving cru-
cial information from the original dataset. Over the course
of more than four decades, PCA has garnered extensive
attention and utilization in the industrial domain due to its
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profound dimensionality reduction capabilities [22]. PCA
serves as a valuable tool in transforming high-dimensional
data into a lower-dimensional representation while preserv-
ing vital information [23]. In the realm of fault diagnosis,
Hotelling’s T 2and Square Prediction Error (SPE) Q statis-
tics are frequently employed in conjunction with PCA. The
T 2 statistics assess the PCA subspace, providing insights into
deviations from the normal behavior, while the Q statistics
offer an evaluation of the residual space, capturing anomalous
patterns. PCA provides useful insights into the structures
of data and assists in simplifying complicated datasets.
However, it is crucial to realize the inherent constraints
associated with PCA. The aforementioned constraints are
especially evident when examining the attributes of unpro-
cessed data, since they can have a substantial impact on
the efficacy of PCA. A major shortcoming of PCA is the
linearity assumption. PCA assumes that data linkages are
linear, therefore linear combinations of the original char-
acteristics may properly reflect data changes. In real life,
data often have non-linear correlations that PCA cannot
represent. PCAmay not accurately describe complicated non-
linear patterns, resulting in inadequate variance explanation
and dimensionality reduction. Another limitations of PCA
is outlier sensitivity. Outliers can disproportionately affect
PCA principle components. Additionally, outliers can affect
PC, misrepresenting the data’s structure as PCA maximizes
variance.

Fisher Discriminant Analysis (FDA) emerges as a valu-
able technique for nonlinear dimensionality reduction. Its
core functionality involves the calculation of a transformation
matrix that selects a set of vectors aimed at maximizing
inter-class separation while minimizing intra-class separation
[24], [25]. Notably, FDA excels in fault isolation diagnostics,
showcasing its effectiveness in identifying and isolating spe-
cific faults within a system. Conversely, PCA demonstrates
its prowess in fault detection [26], [27], [28].
Kernel Fisher Discriminant Analysis (KFDA) serves as a

remarkable technique for dimensionality reduction, specif-
ically tailored for highly nonlinear systems. Unlike FDA,
KFDA exhibits significantly enhanced fault isolation capabil-
ities in the context of nonlinear systems. KFDA accomplishes
dimensionality reduction by estimating a dataset’s projection
into a higher-dimensional space using a linear classification
algorithm within its feature space. However, the computa-
tional complexity associated with the implicit feature space
can be laborious. To overcome this challenge, the kernel
method is employed, circumventing the computational bur-
den while maintaining the efficacy of KFDA [29].

Metaheuristic optimization is a highly effective approach
that employs intelligent algorithms to efficiently address
intricate optimization problems, surpassing conventional
methods [30], [31]. The applications of this methodology are
wide-ranging, encompassing diverse fields such as engineer-
ing, finance, logistics, and data science [29], [32], [33], [34],
[35]. It facilitates effective resource allocation, parameter
tuning, and decision-making procedures. Among the plethora

of optimization approaches, Sequential Quadratic Program-
ming (SQP) emerges as a formidable contender, renowned
for its prowess in industrial process optimization owing to
its diminished computational time, seamless implementation,
and remarkable efficacy in tackling intricate constraint prob-
lems [36], [37]. Various shortcomings in different systems
can be identified and diagnosed with the use of optimiza-
tion techniques, which have found widespread use in this
area. Faults in the transmission network, for instance, can
be detected and localized using optimization-based fault
detection algorithms [38] in the power systems industry.
Optimization methods have also been used in the chemical
industry to enhance both the effectiveness and dependability
of complex system problem detection and diagnosis [39].
These implementations show how optimization strategies can
improve system speed and security through fault detection.

Linear Discriminant Analysis (LDA) and Support Vector
Machine (SVM) are commonly employed by researchers for
the purposes of dimensionality reduction and classification.
However, the applicability of these methods in complicated
industrial processes is sometimes hindered by certain restric-
tions. The LDA algorithm assumes a Gaussian distribution
and equal class covariance, whichmight limit its effectiveness
when applied to heterogeneous and imbalanced data com-
monly seen in industrial environments [40]. Likewise, the
performance of SVMsmay be adversely affected by the curse
of dimensionality and the difficulties associated with accu-
rately defining complex decision boundaries that are inherent
in sophisticated datasets commonly seen in industrial set-
tings [41]. On the other hand, the selected methodologies,
namely PCA, FDA, KFDA, and SQP, have been specifi-
cally designed to effectively tackle these intricacies. PCA is
highly effective in capturing the fundamental variance present
in a dataset. However, it may potentially disregard signifi-
cant variances that are peculiar to certain classes. The FDA
algorithm improves the distinguishability between different
classes, however it may encounter difficulties in accurately
capturing nonlinear associations. The integration of KFDA
and SQP combines the benefits of PCA, FDA, and nonlinear
classification in order to overcome the limits associated with
fault identification in complex industrial processes, resulting
in improved accuracy.

C. CONTRIBUTIONS
Within the context of this review, the main aim is to provide
a thorough and complete assessment of the latest develop-
ments in defect detection algorithms specifically pertaining
to industrial processes. The primary objective of this research
activity has been to devise efficacious methodologies for the
identification and containment of faults, particularly in sit-
uations when the lack of a dependable mathematical model
presents difficulties. The review’s contributions may be suc-
cinctly described as follows:

1) Comprehensive Framework Development: The pri-
mary focus of the present research is the formulation
and establishment of an all-encompassing framework
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specifically designed for the purpose of detecting and
isolating faults in industrial processes. The proposed
framework not only tackles the challenges that arise
due to the lack of a mathematical model but also
places significant emphasis on the implementation of
data-driven design techniques, hence enhancing its
versatility across many circumstances.

2) Integration of Advanced Techniques: In this study,
we reviewed several sophisticated methodologies, such
as PCA, FDA, KFDA, and SQP, inside the established
framework. The selection of these approaches was
based on their well-established relevance in the field
of defect identification.

3) Comparative Analysis of Fault Isolation: An essential
component of this review article is a comprehensive
comparative examination of the fault isolation perfor-
mance across the employed methodologies. It is worth
noting that although PCA had considerable ability in
detecting faults, its effectiveness in isolating faults was
restricted when compared to the superior performances
of FDA, KFDA and SQP.

Throughout this research endeavor, a comprehensive
framework for detecting and isolating faults in industrial
processes has been developed, considering the absence of
a mathematical model and necessitating the application of
data-driven design strategies. Notably, PCA, FDA, KFDA,
and SQP have been implemented as part of this framework.
To evaluate the effectiveness of these methods, renowned
benchmark processes such as the Tennessee Eastman Pro-
cess (TEP) and the Penicillin Fermentation Process (PFP)
have been meticulously examined. The findings of this study
reveal that each method exhibits the capability to detect
faults with relative ease. However, PCA falls short in terms
of fault isolation when compared to FDA and KFDA. This
disparity in performance can be attributed to PCA’s limited
consideration of information from other classes, whereas both
FDA and KFDA take such information into account. Conse-
quently, FDA and KFDA demonstrate significantly superior
fault isolation capabilities compared to PCA, aligning with
the observed results and highlighting the importance of con-
sidering information from multiple classes. In contrast, SQP
has emerged as a notably proficient methodology, surpass-
ing approaches such as KFDA and PCA in terms of fault
detection accuracy and false alarm mitigation. Moreover,
the convergence behavior of SQP exhibits an exceptional
characteristic, enabling it to rapidly attain convergence to the
desired solution, thereby minimizing computational time and
enhancing the overall efficiency of fault detection algorithms.

These findings contribute to the growing understanding
of fault detection and isolation in industrial processes, shed-
ding light on the advantages and limitations of different
data-driven design strategies. The observed performance dis-
parities underscore the significance of utilizing advanced
techniques, such as FDA, KFDA, and SQP which con-
sider the correlation and inter-class information, leading
to improved fault isolation outcomes. By leveraging these

insights, researchers and practitioners can enhance the reli-
ability and effectiveness of fault detection and isolation,
ultimately bolstering the operational safety and performance
of industrial systems.

D. CHARACTERISTICS AND DIFFICULTIES OF METHODS
In this article, PCA, FDA, KFDA and SQP approaches are
considered which are designed for fault diagnosis of indus-
trial processes. In particular, these approaches are applied to
two benchmark processes for performance comparison. The
main characteristics and difficulties for fault diagnosis are as
follows:

1) Fault detection The ability to diagnose a faulty condi-
tion correctly and quickly is crucial and highly desired.
The main difficulty in fault detection is false alarms
which should be minimal. In this article, PCA is used
for fault detection which is a reliable, efficient, and
accurate algorithm.

2) Fault isolability The ability of the diagnostic system
to distinguish between various failures is known as
isolability. The main hurdle in achieving fault isolation
is that transformation matrix orientation is achieved
by hit and trial technique which should be observed
carefully. In this research, FDA and KFDA are well
suited for the isolation of faults.

3) Robustness A fault diagnosis system should be robust
and be able to withstand uncertainties and disturbances
which is done by maintaining a False Alarm Rate
(FAR) less than 2% in this article. The main difficulty
in achieving a lower false alarm rate is that the system
should be sensitive to faults in such a way that false
alarms should be minimal.

4) Fault identification Another issue in fault diagnosis
is that finding the major root cause of the fault is nec-
essary when undergoing thorough fault diagnosis. SQP
plays amajor role in fault identification by optimization
of the TEP process through metaheuristic approaches.

5) Sensitivity One of the main issues of fault diagnosis
system is that it should be sensitive to faults. It is
observed by simulation by case studies of TEP and
PFP that they are sensitive to faults as they are detected
when introduced in a process. The main hurdle in mak-
ing a system sensitive is that the threshold level should
be adaptive and robust.

E. ORGANIZATION
The structure of the paper is organized as follows. Section
II provides a concise overview of Principal Component
Analysis (PCA). In Section III, Fisher Discriminant Anal-
ysis (FDA) is comprehensively discussed, highlighting its
underlying principles andmethodologies. The detailed explo-
ration of Kernel Fisher Discriminant Analysis (KFDA) is
presented in Section IV, providing a deeper understand-
ing of this advanced technique. The modelling of SQP
for fault detection and false alarm minimization is dis-
cussed in Section V. Furthermore, Section VI showcases
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the practical application of the four strategies on various
real-world systems, illustrating their effectiveness and per-
formance in fault detection and isolation scenarios. The
case studies shed light on the practical implications and
advantages of employing PCA, FDA, KFDA, and SQP
in industrial settings. Finally, Section VII summarizes the
key findings and contributions of the paper, emphasizing
the significance of data-driven design strategies in fault
detection and isolation for industrial applications. In this
manner, the present investigation provides a comprehensive
examination of PCA, FDA, KFDA, and SQP presents case
studies highlighting their practical deployment, and con-
cludes with a concise summary of the research outcomes.

F. ACRONYMS, UNITS AND DIMENSIONS
NOMENCLATURE
PCA Principal Component Analysis.
FDA Fisher Discriminant Analysis.
KFDA Kernal Fisher Discriminant Analysis.
SPE Sqaure Prediction Error.
SQP Sequential Quadratic Programming.
Zobs Input-output data set.
Z̄obs Mean of input-output data.
Z(k) Normalized data set ∈ (m× n).
9 Number of samples.
9 Number of principal components.
C Covariance of matrix ∈ (m× m).
P Loading vector ∈ (m× m).
0 Diagonal matrix of covariance matrix eigen

values ∈ (m× m).
m Number of input-output variables.
0pc Principal component of eigen values ∈ (m× ψ).
0res Residual component of eigen values

∈ (m× m− ψ).
Ppc Principal component of loading vector

∈ (m× ψ).
Pres Residual component of loading vector

∈ (m× m− ψ).
T Transformation matrix.
Jth,SPE Threshold for square prediction error.
Jth,T 2

PCA
Threshold for T 2 statistics.

T 2 T 2 statistics.
St Total scattering matrix ∈ (m× m).
X Input-output data set ∈ (n× m).
xi Transpose of ith row of input-output data set

∈ (m× n).
x̄ Mean of input-output data set ∈ (m× n).
Sw Within scattering matrix ∈ (m× m).
Sj Scattering matrix of class j ∈ (m× m).
Sb between Scattering matrix ∈ (m× m).
λ Eigen vector for generalized vector solution.
Wψ Set of eigen vectors.
wk Matrix of eigen vectors.
T 2
δ T 2

δ threshold statistics.
ζ Number of classes.
8 Non linear function for initial data.

Vi Matrix of eigenvectors for KFDA approach.
Zi Transformation matrix for KFDA approach.
α Combination of vectors for KFDA approach.

II. PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA stands as a powerful multivariate statistical technique
that facilitates the transformation of correlated variables
within the original data into a set of uncorrelated variables,
encapsulating themost salient information [42]. Its roots trace
back to pioneering work by Pearson [43], while the modern
conceptualization of PCA was solidified by Hotelling [44],
who introduced the notion of Principal Components (PCs).
The amalgamation of these historical and contemporary con-
tributions has led to PCA’s prominent position in data analysis
and dimensionality reductionmethodologies. PCA endeavors
to establish a novel coordinate system that emphasizes the
salient dimensions, distilling essential information from the
original data [45]. By employing a linear transformation,
PCA effectively partitions the initial dataset into two sub-
spaces: the major subspace capturing the most significant
variations, and the residual subspace containing the remain-
ing information [46], [47]. This unique technique excels in
reducing the dimensionality of data, thus enabling efficient
data representation. The selection of the critical number of
PCs plays a pivotal role in capturing the dominant features of
the dataset.

The PCs serve multiple essential objectives, including:
1) Extraction of Crucial Information: PCs aim to cap-

ture the most vital information embedded within the
data table. By identifying the dominant patterns and
variations, they distill the fundamental insights that
drive the underlying phenomena.

2) Dimensionality Reduction: An intrinsic goal of PCs
is to minimize the size of the dataset while retaining
the critical information necessary for analysis. By elim-
inating redundant or less informative dimensions,
PCs facilitate efficient data representation, leading to
enhanced computational efficiency and interpretability.

3) Simplification of Data Description: PCs offer a
means to simplify the representation and description of
complex datasets. By condensing the information into
a reduced set of dimensions, PCs provide a concise
summary that encapsulates the essential characteris-
tics of the data, enabling concise and insightful data
exploration.

4) Structural Analysis of Samples and Variables: PCs
enable a comprehensive examination of the interrela-
tionships between samples and variables. Through their
calculation, PCs unveil the underlying structure and
dependencies within the dataset, facilitating the iden-
tification of key factors that contribute to the observed
patterns and variations.

By pursuing these objectives, PCs serve as a powerful tool
for data analysis, enabling researchers to uncover crucial
information, reduce dataset size, simplify data representation,
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and delve into the structural relationships within the
dataset.

PCA effectively addresses these objectives by computing
new variables, referred to as principal components. These
components are generated as linear combinations of the orig-
inal variables, aimed at achieving specific goals. The primary
component exhibits the largest variance, thereby capturing
the most significant variation within the dataset. Moreover,
PCA offers a visual representation of the data and variables
in the form of maps, illustrating the patterns of similar-
ity between observations and variables. This visualization
enables researchers to gain insights into the underlying struc-
ture and relationships present in the dataset. The process
of computing the PCs and subsequently transforming the
data based on these components is known as PCA. Often,
only a subset of the PCs is utilized, while the remaining
components are disregarded. Numerous disciplines, ranging
from population genetics, micro biome research, atmospheric
science, to image processing, rely on PCA to unravel patterns
and derive meaningful information from complex datasets.
PCA serves as a fundamental analytical tool in these domains,
facilitating data exploration and dimensionality reduction
[48]. The basic structure of the PCA being discussed is as
follows:

• Step 1: To initiate the analysis, consider a measurement
vector of dimensionality m and a total of 9 samples for
a given process, as depicted in Equation 1 [49]:

Zobs,1
,

. .

Zobs,m

 ∈ Rm (1)

In equation (1), Zobs and 9 represents the vector is
an observation vector and samples, each associated
with a unique measurement vector, respectively. This
initial setup provides the foundation for subsequent
data analysis and exploration, as various techniques
and methodologies can be applied to uncover valuable
insights from the dataset.

• Step 2: This subsequent step involves normalizing the
vector by computing the mean and standard deviation of
the observation vector, denoted as Zobs. This normaliza-
tion process is governed by the equations 2 and 3 [49]
presented below:

Zobs,i =
1
9

9∑
j=1

Zobs,i(j) (2)

σ 2
obs,i =

1
9 − 1

9∑
j=1

(Zobs,i(j) − Zobs,i(j))2 (3)

In equation (2), Zobs,i represents themean value of the jth
component, calculated by summing all corresponding
values across the 9 samples and dividing by the total
number of samples. Equation (3) defines σobs,i as the
standard deviation of the jth component, computed by

subtracting the mean value of the jth component from
each sample value, squaring the differences, summing
them up, dividing by (9−1), and taking the square root.

• Step 3: To determine the location of the normalized
vector, we utilize the following relation:

Z (k) =


Zobs,1(k)−Zobs,1

σobs,1
.

.

.
Zobs,m(k)−Zobs,m

σobs,m

 (4)

while Z (k) is the normalized matrix with process
variables and samples. Normalized vector can be sum-
marized as,

Z (k) =
[
Z (1) . . ,Z (9)

]
∈ Rm×9 (5)

Here, Z represents the normalized vector, obtained by
subtracting the mean vector from the observation vector
(Zobs) and dividing the result by the standard deviation
vector (σ ). This transformation ensures that the normal-
ized vector is centered around zero mean and scaled to
unit variance, facilitating meaningful and standardized
comparisons within the dataset.

• Step 4: To take covariance of equation (5):

C =
Z × ZT

9 − 1
(6)

where C is the covariance of Z × ZT matrix.
• Step 5: To apply Singular Value Decomposition (SVD)
as shown below:

Z × Z ′

9 − 1
= P0PT (7)

where P is the loading vector and0 is the singular matrix
with eigen values.

0 = diag
(
γ 2
1 , . . . γ

2
m

)
, γ 2

1 ≥ γ 2
2 ≥ γ 2

3 ≥ . . . γ 2
m

(8)

where γ1 is the first eigen value.
• Step 6: To determine the number of PCs ψ and divide P
and 0 into the following:

0 =

[
0pc 0
0 0res

]
, 0pc = diag

(
γ 2
1 , . . . γ

2
ψ

)
(9)

0res = diag
(
γ 2
ψ+1, . . . γ

2
m

)
∈ R(m−ψ)×(m−ψ),

γ 2
ψ ≥≥ γ 2

ψ+1. (10)

P =
[
Ppc Pres

]
∈Rm×m, Ppc∈Rm×ψ , Pres∈Rψ×m

(11)

where Ppc is the principal component of loading vector
while Pres is the residual component of loading vector.
Similar is the case for 0 matrix.

• Step 7: Find the transformation matrix:

T = ZT × P (12)

where T is the transformation matrix.
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The tracking indices used for Principal Component Analysis
(PCA) include Hotelling’s statistics, such as the Square Pre-
diction Error (SPE) or Q statistics, defined by the equation
below:

Jth,SPE = θ1

(cα√2θ2h20
θ1

+ 1 +
θ2h0(h0 − 1)

θ21

) 1
h0

(13)

θi =

m∑
j=ψ+1

(
γ 2
j

)i

, i = 1, 2, 3, h0 = 1 −
2θ1θ3
3θ22

(14)

cβ is the normal deviate corresponding to β percentile. where
Jth,SPE is the threshold for SPE. Similarly, Jth,T 2

PCA
statistic

threshold is given by:

Jth,T 2
PCA

=

ψ

(
9 − 1)(9 + 1)

)
9

(
9 − 1

) Fβ (ψ,9 − ψ) (15)

where Fβ is the F-distribution with ψ and 9 − ψ degrees of
freedom.
T 2 and Q are calculated by the following equations,

SPEPCA =

∥∥∥(
I − PpcPTpc

)
z
∥∥∥ 2

E
(16)

T 2
PCA = zTPpc0−1

pc P
T
pcz (17)

TheQ statistic serves as ameasure of the deviation or distance
of a given observation from the normal behavior captured by
the PCA model. By evaluating the magnitude of the Q statis-
tic, deviations or abnormalities in the dataset can be detected,
aiding in fault detection and identification. On the basis of
following set of rules, fault is detected, SPE ≤ Jth,SPEPCA and
T 2
PCA ≤ Jth,T 2

PCA
⇒ fault-free, otherwise faulty.

III. FISHER DISCRIMINANT ANALYSIS (FDA)
While PCA is a renowned technique for dimensionality
reduction, it does not explicitly consider the information
pertaining to different types of faults during the development
of its transformation matrix, denoted as T . However, this
aspect is addressed by FDA. In FDA, the transformation
matrix is constructed with the specific objective of mini-
mizing within-class scatter while simultaneously enhancing
the separation between different fault classes. By consid-
ering the interplay between classes, FDA aims to extract
discriminant features that effectively distinguish and classify
different types of faults. This discriminative power allows
FDA to outperform PCA when it comes to fault detection
and identification tasks, particularly in scenarios where the
differentiation between different fault classes is crucial.

Let us consider a process characterized by m variables,
with9 observations available for each variable. Furthermore,
assume that there are ζ distinct fault classes affecting the
process. For the jth class, let 9j represent the number of
observations, which are organized and stacked in a matrix
denoted as x ∈ R9×m. In this matrix, each row corresponds
to the transpose of the ith observation, denoted as xi.

• Step 1: Calculate total-scatter matrix St [50]:

St =

9∑
i=1

(xi − x̄)(xi − x̄)′ (18)

where xi is the transpose of ith row of matrix x ∈ R9∗m,
9 is the number of total samples and x̄ means the mean
of x.

• Step 2: Calculate within scattering matrix Sw:

Sw =

ζ∑
j=1

Sj (19)

Sj =

9j∑
xi∈xj

(xi − x̄j)(xi − x̄j)′ (20)

where Sj is the scattering matrix of class j,0j is the
number of samples of class j, xi belong to xj and x̄j is
the mean of xj.

• Step 3: To determine the between class scattering matrix
Sb [50],

Sb =

ζ∑
j=1

9j(x̄j − x̄)(x̄j − x̄)′ (21)

St = Sb + Sw (22)

where St is the total scattering matrix.
• Step 4: Find the FDA vectors by following relation:

Sbwk = λkSwwk (23)

where wk is the matrix of eigen vector. The purpose
of the primary FDA vector is to maximize the diffuse
between classes whereas minimizing the scatter inside
classes:

opt(
wTk Sbwk
wTk Swwk

) (24)

whereas it is assumed that the inverse of Sw exists.
• Step 5: Separate the eigenvectors:

Wψ =
[
w1 w2 w3 . .wψ

]
(25)

• Step 6: FDA transformation vectors are calculated
by [50]:

Zi = W T
ψ × xi (26)

where Zi is the transformation matrix.
For fault detection of any class of faults T 2 statistics is
used [50],

T 2
j = xT ×Wψ̄ (W

T
ψ̄
SjWψ̄ )

−1Wψ̄T × x (27)

Threshold for jth fault is computed as follows [50],

T 2
δ =

ψ̄(9 − 1)(9 + 1)
9(9 − 1)

Fβ (ψ̄, 9 − ψ̄) (28)

If T 2
j > T 2

δ then there is fault, otherwise no fault.
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IV. KERNAL FISHER DISCRIMINANT ANALYSIS (KFDA)
In statistical analysis, a nonlinear extension of linear dis-
criminant analysis is known as Kernel Fisher Discriminant
Analysis (KFDA). KFDA aims to minimize within-class
scatter while maximizing between-class scatter, thereby
enhancing the discriminative power of the analysis. To over-
come the limitations posed by the implicit feature space,
a nonlinear variant of FDA called KFDA has been proposed
in the literature [51].

KFDA employs a simple nonlinear mapping to project
a dataset exhibiting nonlinear behavior onto a higher-
dimensional feature space. Subsequently, a linear classifica-
tion method is applied within this feature space. However,
due to the potentially enormous or infinite dimensions of
the implicit feature space, direct computations in this space
are impractical. To address this challenge, KFDA utilizes a
kernel function to calculate the dot products of vectors in the
feature space, rather than operating directly in the implicit
feature space. The KFDA algorithm typically involves three
primary steps. Firstly, the KFDA vectors are computed
through offline computations using input-output data. Subse-
quently, KFDA transformation vectors are derived, allowing
for the projection of data onto the transformed feature space.
Finally, data is classified based on the derived KFDA vectors,
employing the discriminative power of the method [52]. This
approach enables effective nonlinear analysis and classifi-
cation, addressing the limitations associated with traditional
linear discriminant analysis techniques.

• Step 1: The KFDA vectors are obtained by leverag-
ing the training data, which is partitioned into distinct
classes [53]. This division allows for the identification
of specific groups or categories within the dataset, each
representing a distinct class:

x =
[
x1 x2 . . .xζ

]
(29)

where ζ is the number of classes. Through the use of
non-linear function, 8 the initial data is converted into
high dimensional space,

8 : xi → 8(xi) ∈ Fh, h > m

Vi =

9∑
i=1

(αi8(xi)) (30)

whereas Vi is the matrix of eigenvectors, αi is the com-
bination of vectors α1, α2, . . . α9 .

• Step 2: The KFDA transformation vectors are subse-
quently calculated to enable the projection of online
measurements into a higher-dimensional space. This
transformation process plays a crucial role in extend-
ing the analysis beyond the original measurement
space, facilitating the exploration of complex rela-
tionships and capturing intricate patterns. By utilizing
the KFDA transformation vectors, the online mea-
surements are effectively mapped into the transformed
feature space. This higher-dimensional representation
allows for a more comprehensive analysis, enabling

the detection of subtle variations and discriminating
characteristics that may not be apparent in the origi-
nal measurement space. Through this transformation,
the KFDA algorithm enhances the ability to capture
and leverage the discriminative information present in
the online measurements, opening up new avenues for
accurate classification, fault detection, and performance
analysis [53]:

Zi = Vi8(xi) (31)

• Step 3: The final step in KFDA involves the clas-
sification of the transformation matrix [54], [55].
After the online measurements are projected into the
higher-dimensional feature space using the KFDA trans-
formation vectors, the classification process takes place.

V. SEQUENTIAL QUADRATIC PROGRAMMING (SQP)
The TEP and the PFP are two well-known industrial pro-
cesses that make extensive use of SQP. Taking into account
the inherent complexities of fault identification and diag-
nosis, SQP has shown to be an excellent optimization tool
in the TEP. The complex restrictions of the TEP are eas-
ily managed by SQP since the problem is formulated as
a restricted optimization job; this allows for precise fault
detection and efficient process control. SQP has also shown
great success in the PFP, where it has been used to opti-
mize the parameters of the fermentation process, leading to
increased penicillin output and better overall efficiency. Due
to its iterative nature, SQP is able to efficiently explore the
PFP’s multi-dimensional search space and converge on the
parameters that would produce the highest yield of penicillin.
These use cases demonstrate how effective SQP is at meeting
the challenges of real-world industrial processes and how it
can be optimized and controlled in a wide variety of settings.
Various defects in different systems can be identified and
diagnosed with the use of optimization techniques, which
have found widespread use in this area. Faults in transmis-
sion lines, for instance, can be detected and localized using
optimization-based fault detection algorithms in the power
systems industry. Optimization methods have also been used
in the chemical industry to enhance the efficiency and reli-
ability of complex system problem detection and diagnosis.
These implementations show how optimization strategies can
improve system speed and security through fault detection.
SQP effectively searches the TEP’s multi-dimensional

search space because of its iterative nature. SQP iteratively
updates the variables to enhance the objective function and
computes the search direction by approximating the Hes-
sian matrix. Exploration and exploitation are balanced in
SQP, allowing for effective fault identification by using first-
and second-order derivative information. Particularly help-
ful for the TEP is SQP’s capability to handle nonlinear
constraints, which permits more precise modelling of the
process’s dynamics and restrictions. Constraints like material
balance equations and equipment operating restrictions are
taken into account while the process variables are optimized.
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This all-encompassing method not only enhances the reliabil-
ity of issue detection, but also aids in keeping the TEP running
smoothly and effectively. In addition, SQP is preferable due
to its convergence qualities, which aid in defect identification
and alert minimization in the TEP. In a short amount of time,
it converges on the optimal solution, allowing for immediate
defect diagnosis and effective action. SQP is useful for fault
identification and alarmminimization, improving the security
and dependability of TEP operations thanks to its efficient
handling of the TEP’s complicated dynamics and its conver-
gence characteristics.

In order to address the issue of minimizing false alarms and
detecting faults using SQP, the following procedural steps are
undertaken:

A. PROBLEM DESCRIPTION
• Decision Variables: Let L denote the vector of decision
variables that will be used to optimise the system.

• Constraints: Constraints, such as physical boundaries,
operational restrictions, and sensor boundaries of TEP,
will be defined now to guarantee the system stays inside
the predetermined parameters.

• Objective Function: The objective function is a mathe-
matical representation that measures both the frequency
of false alarms and the accuracy of the identification
of faults. The expression f(L) is used to denote the
objective function that is to be minimized.

B. MODELLING THE OBJECTIVE FUNCTION
The primary aim of the objective function should be to strike
a delicate equilibrium between the minimization of false
alarms and the maximization of fault detection accuracy. The
formulation of this concept can be expressed as:

minf (L) = ω1 × FAR(L) + ω2 × FDR(L). (32)

In equation (32), False Alarm Rate (FAR)L represents the
occurrence of false alarms, Fault Detection Rate (FDR)L
represents the fault detection accuracy, and ω1 and ω2 are
weighting factors that determine the relative importance of
false alarms and fault detection. The current challenge at the
moment involves the development of a system model that
accurately encompasses the various dynamics and behaviours
exhibited by the system. This model can be effectively rep-
resented through a collection of formulas, which serve to
describe its complex workings:

g(L) = 0, h(L) ≤ 0. (33)

C. LOGICAL STEPS OF THE SQP OPTIMIZATION
ALGORITHM

• Step 1: The SQP algorithm employs an iterative
approach for continuously updating the decision vari-
ables in order to minimize the objective function,
while simultaneously ensuring that the limitations are
satisfied.

• Step 2: During every cycle, SQP algorithm solves a
subproblem of quadratic programming by employing
the estimated values of the gradient ∇f (L) and Hessian
matrix (H (L)).

• Step 3: The subproblem can be formulated as:

min1L
[
∇f (L)τ1L+ 0.5(1Lτ )H (L)1L

]
,

subject to g (L)+ Jg (L)1L = 0,

h (L)+ Jh (L)1L ≤ 0. (34)

In equation (34), symbol 1L denotes the variation in
decision variables, while Jg (L) and Jh (L) refer to the
Jacobian matrices of g (L) and h (L) correspondingly.

• Step 4: Once the optimization process converges, eval-
uate the obtained solution and assess the FAR, FD accu-
racy, and other relevant performance metrics using the
optimized decision variables, L∗.

By following these steps and utilizing the appropriate math-
ematical expressions, SQP can effectively minimize false
alarms and enhance fault detection accuracy, leading to
improved system performance and operational safety. The
parameter setting of SQP for MATLAB is shown in Table 2.

VI. CASE STUDIES
A. TENNESSEE EASTMAN PROCESS (TEP)
The Tennessee Eastman Process (TEP) represents a nonlin-
ear, open-loop, and inherently unstable industrial process that
has found wide application in various fields such as sensor
fault detection, statistical processmonitoring, and data-driven
network study identification. Serving as a benchmark for
industrial process analysis, TEP consists of five distinct
processing units, each playing a crucial role in the overall
operation:

1) Two-Phase Reactor: This unit serves as the core of the
TEP, facilitating an exothermic reaction process.

2) Separator: The separator unit is responsible for sep-
arating the different components or phases generated
during the reaction within the two-phase reactor.

3) Stripper: The stripper unit plays a critical role in the
purification process, removing impurities or unwanted
components from the mixture.

4) Compressor: The compressor unit is responsible
for increasing the pressure of the process, enabling
efficient transportation and further processing.

5) Mixer: The mixer unit combines different compo-
nents or streams to achieve the desired composition or
mixture.

These five processing units collectively form the TEP, rep-
resenting a complex and interconnected system that poses
challenges for analysis, control, and fault detection. Due to
its inherent complexity, the TEP has emerged as a benchmark
for evaluating the performance of various methodologies and
techniques in the context of industrial process analysis and
control. In this work, we demonstrate the efficacy of above
mentioned data-driven approaches for computing FDR, ADR
and MDR. The TEP involves a series of interconnected units
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FIGURE 1. Schematic diagram of TEP.

TABLE 1. Comparison of methods with previous literature for TEP.

that facilitate the desired chemical transformations. Initially,
a reactor initiates the conversion of the gaseous feed com-
ponents (A, C, D, and E) into liquid products (G and H).
Subsequently, a condenser cools the gaseous product stream
emerging from the reactor. Following this, a gas-liquid sep-
arator effectively segregates the gas and liquid components
within the cooled product stream. To maintain the process
continuity, a centrifugal compressor re-introduces the sep-
arated gas stream back into the reactor. Finally, a stripper
unit enables the conversion of the separated gas and liquid
components, fulfilling specific process requirements. The
intricate interplay between these chemical elements and the
series of units involved in the TEP exemplifies its complex
nature. Understanding and effectively controlling these trans-
formations and interactions within the process is essential
for optimizing its performance and ensuring desired product
outcomes.

The data consist of 52 variables and 960 samples while
there are 12 manipulated variables, 41 measured variables
and 21 faults of TEP. Normal data is the one with no faults.
Figure 1 shows the diagram of the TEP.

FIGURE 2. Fault detection of feed loss (Stream 1) fault using PCA for TEP.

r There are four different performance indicators for FDD
for any industrial system which are False Alarm Rate (FAR),
Missed Detection Rate (MDR), Fault Detection Rate (FDR)
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FIGURE 3. Fault detection of feedloss (Stream 1) fault using FDA for TEP.

FIGURE 4. Fault isolation using FDA for TEP.

FIGURE 5. Fault isolation using KFDA for TEP.

and Time delay. FAR, MDR, FDR and TD are defined by
following mathematical expressions [56],

FAR =
Samples above the limits

Total number of normal samples
(35)

FIGURE 6. SQP convergence for TEP.

FIGURE 7. FDR by SQP for TEP.

FIGURE 8. FAR by SQP for TEP.

MDR =
faulty samples under the limits
Total number of faulty samples

(36)

FDR =
Samples above the limits

Total Number of faulty samples
(37)

TD = Td − Ti (38)

where Td is the fault detected at time index while Ti is the
fault introduced at time index. Table 1 shows the comparison
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FIGURE 9. Schematic diagram of Penicillin Fermentation Process [61].

of False Alarm Rate (FAR), Missed Detection Rate (MDR),
False Detection Rate (FDR) and Time Delay (TD) for PCA
and FDA for TEP. It is observed that FAR is 0.62% using
PCA while it is reduced to 0% using FDA. MDR is 0%
in PCA while it is approximately 0.12% for FDA. FDR
and TD are approximately same in PCA and FDA. TEP is
implemented for PCA, FDA and KFDA for Fault Detection
and Diagnosis (FDD). Figure 2 shows the fault detection for
feedloss fault of TEP process using T 2 statistics for PCA.
Figure 2 shows that the occurrence of a fault is at 160 samples
while the maximum magnitude of T 2 is about 150. Fault
detection of feedloss fault using FDA for TEP is shown in
Figure 3. Figure 3 shows there is no false alarm while the
fault detection rate is about 99.87%. Fault isolation between
normal and different faults of TEP using FDA is shown
in Figure 4. Similarly, fault isolation between normal and
different faults of TEP using KFDA is shown in Figure 5.
Comparison of figure 4 and 5 shows that data points of faults
are very much isolated in KFDA as compared to FDA.

The convergence plot for the best and average fitness of
SQP is presented in Figure 6, showcasing the rapid conver-
gence of the proposed SQP optimization function towards
the desired optimal point for the benchmark TEP. This
convergence behavior demonstrates the efficacy of SQP in
efficiently navigating the complex search space of the TEP,
enabling the identification of optimal solutions. Figure 7
displays the FDR, providing empirical evidence of SQP’s
remarkable fault detection capabilities. The depicted FDR
highlights the increased rate at which SQP accurately detects
faults within the TEP, underscoring the effectiveness of the
optimization-based approach in fault detection and diagnosis.
Moreover, Figure 8 visually represents the successful min-
imization of the FAR achieved by SQP. The plot illustrates
the ability of SQP to significantly reduce the occurrence of

FIGURE 10. Fault detection of substrate concentration fault using PCA.

FIGURE 11. Fault detection of substrate concentration fault using FDA.

TABLE 2. Parametric adjustment of SQP.

false alarms, which is crucial for enhancing the reliability
and efficiency of fault detection systems. These figures col-
lectively demonstrate the prowess of SQP in fault detection
and alarm minimization for the TEP, emphasizing its utility
as a powerful optimization tool in industrial processes.

B. PENICILLIN FERMENTATION PROCESS (PFP)
Alexander Fleming discovers penicillin in 1928, making it
one of the most often prescribed medicines [59]. Penicillin’s
fermentation procedure is an example of a nonlinear, dynamic
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TABLE 3. Comparison of methods with previous work for PFP.

FIGURE 12. Fault isolation by FDA.

FIGURE 13. T 2 statistics is shown for B Composition (Stream 4) fault
using PCA for TEP.

batch process. Two stages comprise industrial penicillin pro-
duction: the pre-culture stage and the fed-batch stage. First of
all, penicillin consumes a significant percentage of the initial
substrate supply, causing the substrate to decrease. Contin-
uous maintenance of the substrate is a related open-loop
process [60]. In the second step, penicillin is enhanced and
released into the medium. When performed at an acidic pH,
the overall efficiency of absorption increases by 2 to 5%.
Butyl, amyl, or isobutyl acetate is utilized to extract the
substrate from a cold acidic soap. Fermentation processes
for penicillin are now highly automated. During the active
production phase, the pH is maintained between 5.5 and 6,

FIGURE 14. T 2 statistics is shown for B Composition (Stream 4) fault
using FDA for TEP.

FIGURE 15. Aeration rate fault is simulated using PCA for PFP.

but it can reach 7 due to the consumption of lactic acid or
the release of NH3.MgCO3, CaCO3, or phosphate buffer will
be added if the pH is higher than 8. Agitator power is 30W,
and the rate of aeration ranges from 30 to 60 L/h, which is
initially high and then produces less oxygen over time [60].
Thus, an improvement in PFP’s safety and dependability is
highly desired. Errors must be minimized and prevented if
penicillin production is to continue at a high level of qual-
ity. This research endeavor is not primarily concerned with
the precise explanations of biosynthesis and chemical pro-
cesses. Chemical reactions occurred in a process are followed
from the literature [60]. This model disregards environmental
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FIGURE 16. Aeration rate fault is simulated using FDA for PFP.

variables such as temperature and pH. The simplified diagram
of PFP is shown in Figure 9.
The training data consist of 6 measured variables and

70 samples of while the testing data consist of 6 measured
variables and 50 samples. There are 16 faults of PFP.
Figure 10 shows the fault detection of feed substrate concen-
tration fault using PCA. Table 3 shows that FAR is 2.85%
using PCA while it is reduced to 0% for FDA. Similarly,
MDR is 0% using PCA while it 2.87% using FDA. A plot
of detection for FDA is shown in Figure 11. Figure 12 shows
the faults isolation by FDA while fault isolation performed
by KFDA is shown in Figure 5. It is observed that isolation is
much better achieved in KFDA as compared to FDA.

To support the claims, further nonlinear valve data is sim-
ulated using the offered methodologies. Figure 13 displays
the T 2 statistics for the defect of B Composition (Stream 4)
using PCA for TEP. The detection of a problem is seen to
occur at the 160th sample. The data demonstrates that both the
FAR and theMDR are recorded as 0%, indicating a high level
of reliability and accuracy in the obtained results. Figure 14
presents the T 2 statistics for the fault in B Composition
(Stream 4) using the FDA for TEP. The findings confirm that
the FAR and the MDR both register at 0% when employing
the FDAmethodology. Figure 15 depicts the simulation of the
PFP PCA. The simulation results indicate that the FAR is
1.3%, but the MDR is 0.5%. The simulation of PFP system
is conducted using the FDA, as seen in Figure 16. The simu-
lation results indicate that the FAR is 0.5%, and the MDR is
0.10%.

C. RESEARCH SUMMARY AND MANAGERIAL INSIGHTS:
ENHANCING INDUSTRIAL FAULT DETECTION AND
ISOLATION
In summary, our research has conducted a comprehen-
sive examination of three data-driven design methodologies,
namely PCA, FDA, and KFDA. Additionally, we have
explored the use of SQP optimization for the purpose of
detecting and isolating faults in industrial settings. The uti-
lization of complex mathematical principles in these systems

entails intricate technical details, however their consequences
for industrial management are of great significance. The
results of our study highlight the possibility of improv-
ing problem diagnostics in intricate industrial systems,
leading to reduced operational interruptions and increased
system dependability. The following insights offer useful
implications for managers and decision-makers who may
have limited familiarity with the underlying mathematical
concepts:

1) Tailored Approach Selection: Each approach, namely
PCA, FDA, and KFDA, have distinct advantages. PCA
and FDA have been found to be effective in detecting
faults, making them accessible to non-technical read-
ers. On the other hand, KFDA has been recognized for
its exceptional ability to isolate faults, distinguishing
it from the other methods. This observation empowers
managers to effectively synchronize their choice of
methods with their operational requirements.

2) Trade-off Between Alarms and Detection:Managers
possess the capacity to recognize and comprehend
the inherent compromise between the occurrence of
FAR and the potential for MDR. While the Fisher
Discriminant Analysis (FDA) is effective in reducing
false alarms when compared to PCA, it is possible
that the FDA may exhibit a little greater percentage of
missed detections. This trade-off has an impact on the
manner in which operational teams choose the order of
priority for addressing alerts.

3) Resource Optimization with KFDA: The signifi-
cance of KFDA’s fault isolation proficiency becomes
evident to readers who possess less knowledge in math-
ematical models. The exact fault localization capability
of the KFDA enables managers to effectively allocate
resources for maintenance activities, hence minimizing
downtime.

4) Precision through SQP Optimization: The use of
SQP optimization techniques has substantial admin-
istrative ramifications. Non-specialized readers may
comprehend that this improvement contributes to the
reduction of false alarms, enabling operators to rapidly
prioritize significant concerns and improve overall effi-
ciency.

Fundamentally, although the study incorporates intricate
mathematical models, the key insights for managers and
decision-makers are practical. Managers may make educated
decisions on fault detection and isolation procedures by com-
prehending the practical implications discussed earlier. This
will result in optimized operations, reduced downtime, and
enhanced system dependability.

D. ASSOCIATED ASSUMPTIONS AND LIMITATIONS OF
COMPARATIVE STUDY
PCA, FDA, and KFDA are dimensionality reduction tech-
niques commonly used in various fields, including industrial
fault detection and diagnosis. When applying these, there are
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TABLE 4. Statistical test for comparative methods.

TABLE 5. Complexity comparison: n is the number of samples, d is the dimension, p and q are the number of original testing samples, t is the rank and c
is the number of classes.

TABLE 6. Comparison of various FDD approaches in industrial control.

several necessary assumptions and considerations to keep in
mind:

1) PCA: Assumptions are essential when using PCA
for FDD in TEP and PEP. PCA presupposes linear-
ity and statistical independence, which may work in
present case studies, but avoid nonlinearities. Stan-
dardize variables to eliminate scaling difficulties and
assure normal distribution for reliable findings. Out-
liers should be addressed to avoid skewing results.
Avoid overfitting by having more observations than
variables and interpreting industrial system primary
components meaningfully. Balance variability preser-
vation and dimensionality reduction while selecting
preserved components. Use domain knowledge to con-
nect mathematical and physical interpretations. If data
is temporal, try Dynamic PCA. Validate and update
the PCA model to reflect changing operational cir-
cumstances. PCA works with other methodologies
and expert opinions to provide a complete industrial
strategy [62].

2) FDA: Using FDA procedures in industry relies on fun-
damental assumptions to ensure process effectiveness
and dependability. Deviations from a steady, well-
defined operating behavior indicate fault. A detailed
knowledge of the system’s behavior of case studies and
dynamics are needed to define normal functioning and
identify deviations. It is assumed that fault isolation

allows for diverse reactions to deviations. An assump-
tion of a largely constant operational environment
is established since rapid changes may affect sen-
sor accuracy. Historical data is assumed to enable
model creation and performance benchmarking. These
principles drive FDA application, but their relevance
and adaptability should be assessed based on unique
procedures and industrial circumstances [63].

3) KFDA: The kernel, a key part of KFDA, affects
data translation into higher dimensions. Additionally,
KFDA works best when classes are clearly sepa-
rated. This assumption supports the view that the
modified feature space well-separates fault situations.
A small dataset may lead to incorrect sample estimates
and poor model performance. Resampling or class
weighted KFDA may be needed due to imbalanced
class distributions [64].

It is important to note that these strategies include inher-
ent limits and are based on certain assumptions. In the
field of industrial defect detection and diagnosis, the inte-
gration of these techniques with other approaches, such as
domain-specific information and additional multivariate sta-
tistical methods, has the potential to enhance the reliability
and precision of the constructed models. We carried out
statistical tests for the T 2 analysis of feed loss (stream 1)
for TEP and substrate concentration for the PFP process. The
statistical results in terms of mean, maximum, minimum, and
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standard deviation are summarized in Table 4. The compar-
ative analysis shows that residual signal for KFDA is better
than PCA and FDA as the standard deviation is less so results
are more accurate for fault isolation. Similarly, the mean is
less in the case of KFDA which shows that the error signal is
much more accurate.

E. CONTROLLING PARAMETERS
The main performance indexes for controlling the proposed
method are FAR, MDR, FDR and TD which should be up
to the appropriate level [65]. For the selection of optimal
controlling parameters in PCA for threshold computation
confidence interval of F-distribution is set to 99%. Moreover,
cβ is set between -5 to 10. In addition, a number of principal
components (PC’s) are 16 which controls the value of T 2 and
T 2 threshold statistics. It should be noted that the criteria for
selecting the number of PCs are on the basis of Cumulative
Percentage Variance (CPV) [66]. In FDA, major principal
components are fewer than PCA based on the solution of
generalized eigenvector solution. KFDA includes variable
kernel functions such as Polyplus, linear, Gaussian, RBK
kernel, Laplacian kernel etc. which take dot product with
eigenvectors in the higher dimension and cause isolation of
faults by use of various transformation matrices.

The comparative methods are robust as faults are detected
by maintaining a FAR less than 2% [67]. Table 1 shows that
TEP and PFP case studies with T 2 statistics simulations show
that FAR is lower than 2 % which shows that the system
is able to withstand uncertainties in the presence of faults.
Moreover, Tables 1 and 3 show the comparison of our result
with other research work present in the literature. The compu-
tational complexity of approaches for TEP process and PFP
process is summarized in Table 5. Moreover, run times for
both case studies are shown in Table 5. It is noted by a com-
parative analysis that PCA is recommendable considering its
low computational complexity while KFDA has the highest
computational complexity. To sum up, it is observed that the
cost-effectiveness of PCA is higher as compared to other
techniques.

In this article, four techniques are compared for fault
diagnosis including fault detection, fault isolation, and fault
identification. To make the comparisons fair, we let the num-
bers of nonzero loading vectors (PC’s) same among the four
methods and compare the differences in transformation vec-
tors for different methods. It is observed that the results of
simulation for detection and isolation are different due to the
difference in the transformation matrix.

VII. CONCLUSION
In conclusion, this study has provided a comprehensive anal-
ysis of three data-driven design schemes, namely PCA, FDA,
KFDA, and SQP for fault detection and isolation in indus-
trial applications. Our findings highlight the strengths and
limitations of each method, shedding light on their respec-
tive advantages and areas for improvement. Both PCA and
FDA demonstrate their effectiveness in fault detection, while

KFDA excels in fault isolation. Specifically, FDA exhibits a
notable reduction in the FAR compared to PCA. However,
it is important to note that FDA also shows a slightly higher
MDR in comparison. On the other hand, KFDA receives
high acclaim for its fault isolation approach, showcasing
its potential for accurately pinpointing faults in industrial
processes. Additionally, we observe that both PCA and FDA
achieve FDR exceeding 97%, underscoring their robustness
and reliability in detecting faults. These results highlight the
efficacy of data-driven design schemes in enhancing fault
diagnosis in complex industrial systems. Building upon these
findings, several future directions can be explored. Firstly,
further research can focus on refining FDA to strike a bet-
ter balance between FAR and MDR, potentially through
the incorporation of advanced classification techniques or
algorithmic enhancements. Secondly, investigations can be
pursued to optimize KFDA for fault detection, potentially by
leveraging the strengths of other machine learning algorithms
or exploring novel feature extraction methods. By leverag-
ing the power of mathematical optimization, this approach
enables efficient and accurate fault detection, leading to
reduced downtime and increased system reliability. The use
of SQP optimization also aids in minimizing false alarms,
ensuring that operators can focus their attention on critical
issues, enhancing overall operational efficiency. Overall, SQP
optimization proves to be a valuable tool in optimizing fault
detection and alarm systems as compared to FDA and KFDA,
contributing to improved performance and maintenance in
TEP.

Moreover, future studies may explore the integration of
multiple data-driven design schemes to harness the collective
power of different methods, leading to improved overall fault
detection and isolation performance. Additionally, the appli-
cation of these schemes to different industrial processes and
the utilization of real-time data can be further investigated to
enhance the accuracy and timeliness of fault diagnosis.
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