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ABSTRACT The multi-layer and multi-pass welding (MLMPW) process plays an important roll in the field
of medium-thick plate automatic welding. To solve the problem of the robot self-adapting to the deviation
of the weld position and the groove size due to the influence of the workpiece positioning and the welding
deformation in MLMPW, a novel method based on the laser vision system to correct the path deviation is
presented in this paper. Firstly, an image processing algorithmwith image defogging technology is developed
to deal with the interference problem of laser reflection on the metal surface. Then, the MLMPW path
planning is performed based on the feature points extracted from the image. Lastly, amulti-layer welding path
correction (MLWC) method is introduced to enable the robot to automatically scan the actual weld profile
information of the previous layer and correct the welding path position of the next layer. The experiments
demonstrate that the proposed MLWC method can effectively reduce scan times and eliminate the influence
of welding deformation, and improve the adaptability of industrial robots to MLMPW.

INDEX TERMS Multi-layer welding, medium-thick plate, weld path correction, image defogging.

I. INTRODUCTION
In recent years, the use of robots in industrial manufacturing
has significantly increased. Among the different industrial
robots, welding robot plays a crucial role in reducing the cost
of manual welding and improving the stability of welding
quality [1], [2]. However, the existing welding robots operate
on a ‘teach-and-playback’ mechanism [3], [4], which limits
their capability to adapt to the welding process, especially the
medium-thick plate welding.

Nowadays, medium-thick plate, which refers to the steel
plate with a thickness exceeding 4 mm, is widely used
in the domains of railway transportation, heavy machin-
ery and marine ships [5]. The weld joint of a medium-
thick plate is usually too large to weld completely at once.
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Thus, multi-layer and multi-pass welding (MLMPW) is fre-
quently utilized for medium-thick plate welding. However,
the MLMPW process [6] is complex and needs to consider
various factors including workpiece groove preparation, weld
path planning, weld seam formation and weld joint quality.
Therefore, most welding operations for medium-thick plates
are still dominated by manual welding. An effective auto-
mated system module for MLMPW can boost the adaptabil-
ity of welding robots and reduce production costs. Such a
module has important theoretical research significance and
engineering application value. Hence, the innovation and
improvement of robot MLMPW has attracted considerable
attention from various fields and is a hot spot in the field of
welding robot research.

With the rapid development of machine vision and
image processing technology, many vision sensors includ-
ing monocular vision sensors, stereo vision sensors, 3D
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vision sensors and structured-light vision sensors have been
applied in robot automatic welding. Structured-light vision is
a method of using laser-assisted measurements and has been
used widely to measure the groove geometric dimension and
track the weld seam. It has the advantages of simple structure,
compact size, stable performance, uniform laser line width,
large information and high accuracy [7].

The intelligence of the welding robots is improved when
MLMPW is combined with the structured-light vision sen-
sor. The multi-layer and multi-pass path pre-planning with
the groove geometric dimension obtained from the scanned
images can enable the welding robot to calculate and obtain
the locations of each weld pass without the need for manual
teaching [8]. The MLMPW is a complex processing pro-
cess that is affected by various factors, such as the thermal
deformation of the workpiece during the welding operation
[6], the shape error from weld beads overlapping [9] and the
cooling time of the inter-layer temperature [10], [11]. In such
situations, the MLMPW path needs to be corrected. This
problem is solved in this paper.

In a recent study on MLMPW adaptive path planning, the
authors briefly reviewed the related works from two aspects.

A. ROBOTIC MLMPW ADAPTIVE PATH PLANNING
Robotic MLMPW path planning aims to reduce the time
and cost of manual teaching. The main objective of robotic
MLMPW path planning is to obtain an accurate welding
path. Reference [12] used the scanning monocular stereo
vision to reconstruct the 3D weld bead and provided a solid
foundation for multi-layer multi-pass planning. Reference
[13] constructed a double-sided double arc welding (DSAW)
systemwith a self-designed passive vision sensor. TheDSAW
system performed the multi-pass path planning using the
extracted welding parameters and the geometry size. How-
ever, the above-mentioned methods are only pre-planned
for MLMPW paths. To resolve the issue of pre-planning
path deviation caused by the workpiece deformation during
multi-passes welding. References [14] and [15] performed
finite element computations to predict the variation in the
workpiece. However, this method is computationally heavy
and requires offline planning. Reference [16] developed an
adaptive pass adjustment scheme to address the discrepancies
between the simulated results and the actual welding depo-
sition after finishing a few layers of welding. However, the
scheme lacked accurate dimension measurement of the weld
seams and weld grooves by the visual system. References
[17] and [18] obtained theMLMPWpositions based on struc-
tured light images. However, the automation of MLMPW
path correction needs to be further improved. Reference [19]
proposed a scheme for extracting feature points of the weld
seam profile to implement automatic multi-pass route plan-
ning and guidance of the initial welding position in each
layer during Metal Active Gas (MAG) arc welding. However,
since the workpiece continuously thermally deforms during
welding, the accuracy of thewelding positionwill be affected.

In summary, an effective MLMPW adaptive path planning
should meet the following points. First, a precise weld mea-
surement must be obtained to plan the MLMPW path. Sec-
ond, the robot thick plate welding should be combined with
the welding process, considering the tempering and cool-
ing time of overlapped welding seams. Third, the deviation
generated in the process of MLMPW should be efficiently
corrected.

B. STUDY ON THE IDENTIFICATION ACCURACY OF WELD
FEATURE POINTS BASED ON STRUCTURE-LIGHT
VISION SENSOR
MLMPW path planning is based on the accurate measure-
ment of the weld seam. Several studies have been conducted
for improving weld seams identification accuracy. After
obtaining the structural-light weld seam images, [20], [21]
extracted the weld feature points through image processing.
Reference [22] introduced deep learning to improve weld
recognition accuracy. Reference [23] proposed a method of
density-based clustering point cloud segmentation to acquire
the weld seam position information. However, the extraction
of laser stripe feature points would be affected by various
interferences directly during image acquisition. Before weld-
ing, a reflection is produced by the laser stripes on the metal
workpiece, which interferes with the extraction of the stripe
centerline and affects the accuracy rate of weld seam recog-
nition. In this paper, the image acquisition of line structure
light is not implemented in the welding process. Thus, this
paper only focuses on the filtering of laser metal reflec-
tion. To address this problem, some studies have adopted
the hardware optimization method combining polarization
camera and line structured light to locate weld [24]. However,
this approach increased the hardware costs. Some studies
have directly employed image processing methods to reduce
interference. These image processing methods include image
binarization [20] and a centre-line extraction algorithm based
on skeleton extraction and RANSAC [24]. Nevertheless, the
above image processing methods still need to perform further
filtering in serious reflection interference situations. This
paper proposes a novel method to filter the reflection. The
proposed method can be combined with other image process-
ing methods to further reduce the impact of interference on
weld feature extraction.

Overall, a novel method based on the structured-light
vision system is proposed to correct the path deviation and
improve the intelligent level of welding robot in medium-
thick plate welding operations. Firstly, since the scanned
images have interference from the laser reflection on the
metal surface, an image-defogging technology is developed
for reducing the reflection. Secondly, theMLMPWpath plan-
ning is constructed based on the feature points extraction from
image processing. Finally, a multi-layer welding path correc-
tion (MLWC) method is introduced that enables the robot to
automatically scan the actual weld profile information of the
previous layer and correct the welding path position of the
next layer.
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The main contributions of this work are listed as follows.

• An image processing algorithm with image defogging
technology is developed to solve the interference prob-
lem of laser reflection on the metal surface. The pro-
posed algorithm can accurately collect the feature points
of the groove and weld seams.

• A multi-layer welding path position correction method
is proposed based on inter-layer scanning to reduce the
influence of the weld groove deformation and improve
work efficiency and the adaptability of the industrial
robot to multi-layer welding. This method corrects the
welding path position of the next layer by scanning the
weld actual profile data of the previous layer.

The rest of this paper is organized as follows: Section II
describes image processing, weld path planning, and weld
path position correction method. Section III presents experi-
mental research on V-type welding with the MLWC method.
Finally, the conclusion is summarized in Section IV.

II. METHOD
The construction of a laser vision system is shown in Fig. 1,
which consists of a CCD camera, line-structured light emitter
and shell. Based on the principles of triangulation and pinhole
imaging, the line-structured light emitter projects the laser
onto the surface of the thick plate workpiece, forming a laser
stripe with geometry. The CCD camera captures the images
of welds with laser stripes and transmits them to the computer
for image processing. This laser vision system is applied to
obtain the information of weld features.

FIGURE 1. The line-structured light vision system.

A. THE PROCESS OF EXTRACTING FEATURE
POINTS FROM AN IMAGE
One of the key research points in this paper is that the
laser vision system is used to capture the weld feature
points information in the robot base coordinate system.
Then these extracted feature points are used to establish the
three-dimensional model of different weld seams or grooves.
Finally, the welding path is planned or corrected. In this
paper, the feature points extraction process mainly includes
Region of Interest (ROI) area extraction, reflection removal

processing with image-defogging, image filtering and bina-
rization, area filtering, and center line extraction.

1) ROI AREA EXTRACTION
The YOLO [25], [26] was used to recognize and position the
object in ROI area extraction. The YOLO has a fast running
speed and is suitable for real-time systems.

In the ROI area prediction, YOLOv4 was used to directly
predict the relative positions of the center point of the bound-
ing box. YOLOv4 can detect the fusion features of multi-
ple scales independently, and output three feature maps: y1,
y2 and y3. The three feature map dimensions were set as
19 × 19, 38 × 38 and 76 × 76. To improve the prediction
accuracy in different feature layers, the features of the low
and high levels are integrated. The model was trained with
1421 images of laser stripe including 356 original images in
different robot poses and 1056 images after data augmenta-
tion. The extraction of the ROI area is related to the image
pixels and can be applied in the laser strip identification of
weld seams or grooves regardless of the shape of the laser
stripes. The model was constructed and trained with the pre-
trained model of YOLOv4 and the data was annotated with
the samples.

ROI area extraction includes four steps:

(1) Collect weld laser stripe images of different robot
poses as the input data, manual marking the ROI area
as the output data, and then train the YOLOv4 model
offline.

(2) Capture the original laser stripe images online.
(3) Output the weld identification results and confidence

scores by the YOLOv4 model. The output bounding
box includes confidence, center coordinates, width and
height. The coordinate information of the upper left
and lower right corners of the bounding box can be
obtained according to the output parameters.

(4) Extract the ROI region from the image with the coor-
dinate information obtained in Step 3 (Fig. 2).

The training environment consisted of windows10 64 bit,
i9 9000k CPU, NVIDIA GeForce RTX 2060 graphics card
and 16 GB memory (learning rate was set to 0.01 and the
number of training times was 10000 times).

The ROI image is shown in Fig. 2, and its size is
720× 540 pixels, which is only 30.45% of the original image.
The trained YOLOv4 model was tested with five random
groups each containing 20 images, and the ROI region images
were automatically trimmed. The overall duration was less
than 15ms.

2) IMAGE-DEFOGGING FOR REFLECTION REMOVAL
When the weld laser stripe images were captured, significant
interference data arose due to the mirror reflection of the
metal surface and bright reflective and diffuse reflection on
the workpiece surface. Hence, the images could not be used
directly. Since the quality of the weld laser stripe image
directly affects the accuracy of the weld path planning, it is
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FIGURE 2. ROI area extraction.

essential to process the images and remove the interference
data.

Here, an image-defogging algorithm is introduced to
remove the reflection. The image-defogging algorithm is an
image analysis and processing method that is designed to
meet the requirements of specific scenes by highlighting the
details of the image and enhancing the image quality. The
image-defogging algorithm can solve blurred details, low
contrast and the loss of important image information. The
reflective phenomenon on the image of the weld laser stripe
is similar to the fog (Fig. 3). Therefore, the image-defogging
algorithm is used to remove the reflective phenomenon, and
extract the clean and complete laser strips. This processing is
done after the ROI images are extracted.

FIGURE 3. The comparison of laser strip reflective image and fog image.

A physical model is usually used to describe the impact of
severe weather conditions such as haze on the image, which
includes two parts: an attenuation model and an ambient light
model. The physical model is expressed as:

H (x) = F(x)e−rd(x) + A(1 − e−rd(x)) (1)

where x represents the spatial coordinates of the image pixel,
H is the observed foggy image, F is the fog-free image to be
recovered, r represents the atmospheric scattering coefficient,
d represents the scene depth and A is the global atmospheric
light, usually assumed global constant and is independent
of the spatial coordinates (x). F(x)e−rd(x) is called a direct
decline and shows that the reflected light on the surface of
the scene is reduced by scattering when propagating in the
medium. Let L(x) = A(1 − e−rd(x)), namely ambient light,

which causes the image color and brightness offset. Then,
Eq (1) is rewritten as Eq (2).

H (x) = F(x)(1 −
L(x)
A

) + L(x) (2)

The ambient light L(x) and the global atmospheric light
A are estimated from the image H (x) to restore a clear fog-
free image F(x). Liu et al. [27] estimated the ambient and
global atmospheric lights using mean filtering. In the process
of removing the reflection, the laser vision system captured
the weld laser stripe images in the form of single-channel
gray maps. Hence, the gray value of each pixel is directly
assigned instead of obtaining the minimum value correspond-
ing to 3 channels for each pixel by traversal. The original
formula M (x) = min(H c(x)) is changed into M (x) = H (x).
In the estimated transmission rate t(x), estimated transmissiv-
ity after mean filtering can reflect the general trend of t(x).
However, there is a deviation from the true value. There-
fore, the result of the mean filter compensates for an offset
value. Here, the proportional coefficient of the compensation
δ(0 ≤ δ ≤ 1) is calculated from the reference [27]. When
the value of δ is smaller, the final image has more residual
reflective noise, leading to an overall brighter appearance.
Conversely, with a larger value of δ, the final image controls
the reflection obviously, resulting in a darker overall appear-
ance. The values of δ are altered for comparing the different
removal effects of reflection in Fig. 4.

Since a larger δ value results in a darker image and better
corresponding removal effects of reflection, δ = 0.9 is
chosen. Moreover, since the dark image will be binarized in
the subsequent steps, the rest of interference can be ignored.

3) IMAGE FILTERING AND BINARIZATION
The image is affected by the external environment and noise
interference. Thus, image filtering is used to remove the noise
and retain the maximum information of weld laser stripes.
The median filtering mode is selected for image noise reduc-
tion processing (Fig. 5a). The median filtering method is a
nonlinear smoothing technique that replaces the gray value
of each pixel with the median gray value of all neighboring
pixels. This image filtering mode has the characteristics of
eliminating isolated noise points and protecting the laser
stripe edge from being blurred.

After median filtering, the grayscale of the weld image is
converted by binarization. During the binarization process,
pixel values exceeding the predetermined threshold are set
to 255, while values below the threshold are set to 0. This
operation converts the image into a binary form, displaying
only two grayscale levels: black and white (Fig. 5b).

4) AREA FILTERING
The outline of the laser stripe is obtained in the binarization
image, but some indelible interferences are contained in the
images due to laser line reflection. This part of the interfer-
ence region is generally small and mostly unconnected with
the laser stripe. Each connected region’s area is detected and
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FIGURE 4. Different values of δ on reflective removal effect.

FIGURE 5. The process of removing interference from the images.

FIGURE 6. The principle of the row-by-row (column) search method.

the connected regions with an area less than the threshold (set
value of 150) are removed as the interference points (Fig. 5c).

When the interference noises are on the laser stripes, the
method of fitting function is adopted to accurately isolate
and eliminate noises for extracting the feature points. Again,
the fitting function method is applied in a weld 3D model
establishing to effectively remove the feature points affected
by noise.

5) CENTER LINE EXTRACTION
After binarization and area filtering, the image pixels are
searched row-by-row (column) from left to right (from top to
bottom). In each row (column) of the pixel’s search, the pixel
point with the first gray value of 255 is recorded as point A
having pixel coordinates (x0, y0). The pixel point with the last
gray value of 255 is recorded as point Bwith pixel coordinates
(x1, y1) (Fig. 6).

In the current pixels search row (column), the laser stripe’s
center coordinates are extracted as ( x0+x12 ,

y0+y1
2 ). The cen-

ter coordinates of the rows (columns) are iterated over to
finally extract the laser stripe’s center line in the whole
image (Fig. 7).

6) WELD FEATURE POINT EXTRACTION
The weld groove information can make suitable welding pro-
cess and welding path planning, which includes weld center
feature point, reference point and weld width.

On the V-type butt weld workpiece (Fig. 8), the image’s
certain characteristic information is formed by the line struc-
ture light of the laser vision system. The geometric character-
istics of the special point on the center line are significantly
different from the others. The feature points are obtained from
special points such as extreme points and end points. Then the
appropriate welding process and welding path planning can
be formulated according to these feature points.

FIGURE 7. Laser stripe’s center line extraction.

Assuming N and M are the start and end points on the
center line of the laser stripe, respectively (Fig. 9). A certain
amount of pixel points is selected from the beginning to the
end on line NM. Here the amount is set as 70. Then the
coordinates of the pixels are used to fit the line NM by least
squares:

x + 0.03249y− 150.36971 = 0 (3)
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FIGURE 8. The feature points of the butt V-shaped weld.

FIGURE 9. V-type groove feature point extraction.

The distance between the pixels on the laser stripe center
line and the fitted line NM is calculated and the laser stripe
center line is divided into two parts: straight line NM and
broken line BAC.

The adjacent pixel points B and C are found, they are the
largest distance on the line NM. Then, point A of the largest
distance is determined by iterating over the vertical distances
from each pixel point on the broken line BAC to the straight-
line NM.

The flowchart of image processing is shown in Fig. 10.

B. WELDING PATH PLANNING
After all the workpiece feature points of multiple images are
obtained, a weld 3D model is constructed by establishing the
feature point projection model and fitting the lines with the
least squares method. Next, the trapezoidal and parallelogram
weld path-filling strategies and the equal height-filling strat-
egy are adopted to realize the planning of the V-type groove
welding path. The coordinate system of the multi-layer multi-
pass weld model is shown in Fig. 11.

FIGURE 10. The flowchart of image processing.

FIGURE 11. V-shaped weld cross section and coordinate system.

The first layer of bottom welding is simplified to a trian-
gular weld path for the planning of welding torch position
and posture. The arrangement of each weld pass follows the
arithmetic progression. The weld path is planed with n weld
passes (n > 1) in the n-th welding layer. A trapezoidal
weld path is used as the last weld pass of each layer. The
parallelogram weld path is applied for filling with remaining
weld passes [16]. The primary goal of welding path planning
is to achieve precise control over the profile size of the welds
being formed. This control is accomplished by aligning the
weld path sizes with the cross-sectional area of theweld seam.

C. MULTI-LAYER WELDING PATH POSITION CORRECTION
To eliminate the deformation effect after welding and the
height change of each layer, the torch gun’s start and end
positions on the next layer are obtained by scanning and
building the weld seam 3D information of the current weld.
To improve the efficiency of the thicker workpiece welding,
a strategy can be employed where every 2 or 3 weld layers
can be scanned simultaneously, and the deviation of the 2 or
3 weld layers can be eliminated by correcting the next layer
welding position.

1) THE RESCANNED WELD SEAM IMAGE
FEATURE EXTRACTION
After each layer is welded, the weld images of V-type are
roughly trapezoidal (Fig. 12). The feature points A1, A2, B
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and C of the weld seam profile are acquired from the welding
pass image feature information.

The feature points, the edge points of the weld groove
(points B and C) and the width edge points of the welding
path (points A1 and A2), are extracted from the weld image
of each layer as shown in Fig. 13.

FIGURE 12. The rescanned image 3D model of a V-type weld seam.

FIGURE 13. Weld image after rescanning.

The skeleton line (Fig. 14) is obtained after extracting the
image ROI area, denoising and binarization (using the image
processing method described in Section A).

FIGURE 14. The skeleton line of the weld image.

The skeleton line is divided into straight segment NM and
fold line segment B-A1-A2-C. The pixel points B and C,
the largest line gap, are obtained by comparing the distance
difference between every two adjacent pixels on the line NM
(Fig. 15).

FIGURE 15. The skeleton line for the threshold segmentation.

The fold line segment B-A1-A2-C is divided into left and
right, which are processed with Hough line detection and
K-means clustering respectively. The contained straight lines
are detected by the Hough transform. The K-means cluster

FIGURE 16. A straight-line fitting process based on K-means clustering.

category K is set as 2 and the K-means clustering dataset
input is set as the line detection of straight slope k , intercept
b, the start and end points. Two classes of cluster points are
obtained, and then the lines of cluster points are fit using the
least squares method. The intersection of the two lines is the
weld feature points A1 and A2 (Fig. 16).

2) WELD PATH POSITION CORRECTION
Under the robot base coordinate system, the coordinates
of the corresponding feature points are obtained by build-
ing 3D conversion and the projection, as follows: A1i =

(x1i, y1i, z1i), A2i = (x2i, y2i, z2i), Bi = (x3i, y3i, z3i), Ci =

(x4i, y4i, z4i). Weld path position corrections are mainly
divided into two classes including left-right offset ‘offset1’
and the up-down offset ‘offset2’ and the combination of the
two as shown in Fig. 17.
For the docked V-type multi-layer multi-pass weld model,

the corresponding weld width of layer i is Wdi and the
starting point coordinate of the first pass of the layer is Pi1.
The distance between the point A1i to the line BiCi is
marked as ti:

Wd ′
i =

∣∣∣−−−→
A1iA2i

∣∣∣ (4)

Wd ′

i+1 =

∣∣∣−−→BiCi∣∣∣
ti

· h (5)

where Wd′

i+1 is the weld width of layer i + 1 after welding
layer i−1 and h is the height of each layer of the weld during
pre-planning. The weld width of the i and i+1 layers areWd′

i
and Wd′

i+1, respectively.
The positions of welding start and end points are replanned

according to the equal height layer strategy and the filling
strategy of n welding passes in the n-th welding layer. The
equal area design method of inter-layer welding pass is used
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to divide the width wij of each i-layer welding pass.
wij = 0 i = 1

wij =
Wd ′

i +Wd ′

i+1

2i
i ̸= j

wij = Wd ′
i −

(i− 1)
(
Wd ′

i +Wd ′

i+1

)
2i

i = j

(6)

Under the ideal model of a multi-layer multi-pass weld, the
coordinates of the new weld point pij of the j weld pass in i
layer are:

pij =
−→
A + (i− 1) ·

−→
AB
n

+ (j− 1) · wij ·
−→
BC∣∣∣−→BC∣∣∣ j < i (7)

The coordinates of the start point pij of the last trapezoidal
path of i weld layer are:

pij = pij−1 +

[
wij−1 +

wij
2

]
·

−→
BC∣∣∣−→BC∣∣∣ i = j (8)

Similarly, the weld point coordinates of each weld path in
the i-layer are obtained. The welding path is planned with the
straight-line interpolation method.

FIGURE 17. The welding model offset.

For V-type multi-layer single-pass weld path (Fig. 18),
the corresponding midpoint coordinates Mi and Ni on lines
A1iA2i and BiCi are determined after completing the i-1 layer
welding, respectively. The coordinates of the welding layer
start point pi and endpoint qi are:

pi =
−→
A +

−−→
AMi + 0.5h ·

−−→
MiNi∣∣∣−−→MiNi

∣∣∣ (9)

qi =
−→
A +

−→
AD+

−−→
AMi + 0.5h ·

−−→
MiNi∣∣∣−−→MiNi

∣∣∣ (10)

The weaving widthWweave of i layer is changed to:

Wweave = 0.5h

∣∣∣−−→BiMi

∣∣∣∣∣∣−−→MiNi
∣∣∣ (11)

Fig. 19 shows the system framework of the medium-thick
plate welding with theMLWCmethod. Firstly, the workpiece
groove is scanned by the line-structured light vision system
before welding. Secondly, the scanned images are processed
using the image-defogging algorithm to solve the problem
of metal reflection. Thirdly, the welding path is pre-planned

FIGURE 18. Multi-layer single-pass weld path calculation.

according to the extracted weld feature points information
from the image. Then, theworkpiece is welded by thewelding
robot under the welding parameters settings. After welding
operation of each layer is completed, the weld inter-layer
profile images are re-scanned by the robot. The welding path
position of the next layer is corrected according to the pre-
planning path and the new weld profile feature information,
to reduce the effect of the weld groove deformation. The
next layer is welded with the re-planed welding path posi-
tion considering the cooling time required for the inter-layer
temperature [10], [11]. Finally, the welding is finished when
the last layer is completed.

The MLWC system was developed using C++ language
based on Visual Studio 2017, OpenCV 3.4.1, and MFC. The
communication between the system and the digital welding
machine was based on the DeviceNet protocol. The indepen-
dently developed welding robot control system can achieve
collaborative control of robot motion and welding machine.

III. EXPERIMENTAL RESULTS
A. EXPERIMENT SETUP
The experimental platform consists of a welding robot and
visual system: a six-axis robot body, digital welding machine,
welding shield gas, wire feeder, welding torch, laser visual
system and a flexible welding platform (Fig. 20).

To verify the MLWC method, a series of test experiments
were designed, including the accuracy test, the V-type multi-
layer single-pass welding experiment, and the V-type multi-
layer multi-pass welding experiment.

B. THE LASER VISION SYSTEM ACCURACY TEST
To demonstrate the accuracy of the coordinates obtained by
the laser vision system, the reference points were measured
on the precision V-type groove, and the accuracy of the refer-
ence points was verified by theoretical calculation and actual
position measurement (Table 1). The errors of coordinates
X, Y and Z directions of the reference points were less than
0.8 mm, and the RootMean Square Error (RMSE) is less than
0.674 mm, meeting the actual welding requirements.

C. V-TYPE MULTI-LAYER SINGLE-PASS
WELDING EXPERIMENT
A V-type multi-layer single-pass welding (the material was
Q235-A carbon structural steel, the thickness of the work-
piece plate was 20 mm, and the weld groove width was
22 mm) was used as an experiment to verify the effectiveness
of the weld pass position correction algorithm (Fig. 21). Each
welded layer was rescanned, then the welding positions were
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FIGURE 19. The system framework of the MLWC method.

TABLE 1. Accuracy test of the laser vision system.

FIGURE 20. Welding robot experimental platform.

fine-adjusted and a new path for the V-type welding was
planned. CO2 was used as the protective gas. The gas flow
was 18 L/min, and the welding wire diameter was 1.2 mm.

The number of welding layers was set as 4 layers. To achieve
a satisfactory fusion between the welding wire and the side
wall of the base material during the welding process, the tri-
angle swing arc welding technique was applied to each layer.
Specifically, the residence time on both sides of the inclined
triangle swing arc was increased to 0.3 second. Table 2
shows the planning of the welding process for each layer of
the weld.

To verify the correctness of the welding pass correction
algorithm, the laser vision system was applied to contin-
uously scan the welding layer profile information, and an
approach similar to the 3D model was employed to construct
the virtual welding seam profile of each layer. The test steps
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FIGURE 21. Multi-layer single-pass welding of thick plate.

are as follows. (1) The start and end coordinates of the robot
TCP for the first laser sensor scan were determined. Then
each scan of the robot followed this path with a constant
speed. (2) The weld images were captured and then the three-
dimensional position information of the laser stripe in the
robot base coordinates was calculated through image pro-
cessing and the triangle projection theorem. (3) This series
of images were combined to establish complete weld profile
information, and the average height variation of the weld
was calculated by taking 10 points on the weld profile. This
method can visualize the acquired data and has the advantages
of high accuracywithout requiring physical contact compared
with the traditional weld height measurement techniques. It is
essential to ensure that the hand-eye calibration error remains
below 0.5 mm for optimal results.

TABLE 2. Multi-layer single-pass welding process planning.

D. V-TYPE MULTI-LAYER MULTI-PASS WELDING
EXPERIMENT
To further validate the proposed MLWC method, a multi-
layer multi-pass welding comparison experiment was
performed. Two contrasting experiments were set up.
Experiment A served as the control group. A docked V-type
weld workpiece groove model was established with laser
vision system scanning for pre-planning the welding path,
and welding was performed directly along the pre-planned
welding path. Based on experiment A, experiment B used the
MLWC method to weld. The material conditions of the two
experiments were consistent, the base material was Q235-A
carbon structural steel, the protective gas was CO2, the gas
flow rate was 18 L/min, and the diameter of the welding

TABLE 3. Multi-layer multi-pass welding process planning.

wire was 1.2 mm. The thickness of the workpiece plate
was 20 mm, the width of the weld groove was 22 mm,
and the number of welding layers was set as 5 layers. The
welding process plan of each layer of the workpiece is shown
in Table 3.

E. RESULTS AND DISCUSSION
1) EFFECTIVENESS ANALYSIS OF THE MLWC METHOD
In the V-type multi-layer single-pass welding experiment, the
MLWC method was utilized to adjust the welding path once
each welding layer was completed. The offsets of the pre-
planned and actual starting points(MLWCmethod) are shown
in Fig. 22.

Fig. 23 illustrates that the workpiece’s upper surface height
(z-axis) gradually increased with the number of welding
layers, starting from 245 mm at the beginning and reach-
ing 247 mm after welding. Meanwhile, the weld gap width
decreased from 22 mm to 20 mm after welding. The reason
for this phenomenon is that the workpiece was unevenly
and temporarily heated by the welding heat source during
welding. In this process, the weld seam melting caused com-
pressive plastic deformation from thermal expansion when
the material temperature rose in the near-seam area, and the
expansion process was constrained by the low-temperature
material around it. While cooling, the materials undergoing
compressive plastic deformation were confined by the sur-
rounding cold materials, restricting their ability to contract
freely. Simultaneously, the cooling shrinkage of the weld
seam was constrained as the melting pool solidified, leading
to tensile stress and deformation.

The average height of the first welding layer 3D profile
(Fig. 23b) was about 6.5 mm, and the ME between actual
weld seam and pre-planned weld path reached 1.5 mm. The
welding layer was higher in the middle and lower on both
sides, and the range reached 1 mm. The average height of
the weld in the 3D profile of the second layer (Fig. 23c) was
about 6 mm, while the MLWC method strictly controlled the
ME within 1 mm. Due to the residence time being added on
both sides of the swing arc in the second layer of welding,
the height of the weld seam’s edges became higher than the
middle, which was contrary to the first layer. In the third
layer 3D profile (Fig. 23d), the average height of the weld
was about 4 mm, and the ME was still controlled within
1 mm. In the 3D profile of the fourth layer (Fig. 23e), the
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FIGURE 22. The offsets of the pre-planned starting points and actual starting points (MLWC method).

FIGURE 23. 3D profile of the multi-layer single-pass welding.

average height of the weld was about 4.5 mm, and the ME
was 0.5 mm. Finally, the ME between the last weld layer and
the workpiece surface was controlled within 2 mm.

Previously, He et al. [19] used the feature point extraction
method to implement the positioning of the welding torch
in each layer and multi-pass route planning during robotic

104530 VOLUME 11, 2023



Y. Lei et al.: Multi-Layer Welding Path Correction of Medium-Thick Plate Based on Vision System

TABLE 4. The experimental results of one to four welding layers.

MAG arc welding. However, this method simply locates the
welding torch on the weld seam profile line, without effec-
tively combining welding path planning. Hence, it would
affect the overall geometric size of the weld joint. In this
work, the MLWC method considers both the weld seam’s
cross-sectional area and the welding parameters of the next
weld pass, This comprehensive consideration allows it to
effectively control the geometric dimension deviation of the
weld profile during multi-layer welding.

F. RESULTS AND ANALYSIS OF WELD SURFACE FORMED
BY MLWC METHOD IN MULTI-LAYER
MULTI-PASS WELDING
Experiment A (Table 4) performed direct welding according
to the pre-planning welding path model. The visible angular
deformation was produced during welding as the number of
welding filling layers increased on the workpiece groove.
Thus, the pre-planned welding path model was unable to
adapt to the actual welding, which was most evident in the
cover surface layer. The first welding pass of the fifth layer
was more tended to the center line of the weld, and could not
effectively fuse with theweld sidewall. On the other hand, the
fifth welding pass of the fifth layer was almost welded on the
base metal plane, and the ME between the actual weld seam
and the pre-planned weld path reached 3 mm. This deviation
caused arc striking failure at the arcing point and resulted in
excessively high weld height (Fig. 24).

FIGURE 24. The fifth layer weld seam image.

The primary reason for the angular deformation was the
uneven distribution of the material transverse contraction
in the direction of the thick plate, which could result in
transverse stress near the weld. The angular deformation
was reflected in the workpiece, causing the two sides of the
workpiece groove to bend upward with the weld as the center.
As a result, both sides of the groove rose higher and the width
of the weld became narrower.

In experiment B, theMLWCmethod was employed, which
allowed the actual deformation to be adaptively adjusted by
correcting the welding path. The weld joint was completely
filled in the workpiece groove. The resulting welding surface
matched the expected outcome precisely, meeting the desired
effect as intended.
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Yang et al. [28] used the method of scanning each weld
pass and adjusting the next weld pass position, to correct the
multi-layer weld path. However, it needed to scan every weld
pass profile, which affected the efficiency. In the proposed
MLWC method, the welding seam scanning was changed
from weld pass to weld layer, and the number of scan-
ning was reduced from 14 times to 4 times. This indicates
the MLWC method can effectively improve the adaptabil-
ity and efficiency of multi-layer and multi-pass automatic
welding.

IV. CONCLUSION
An effective automated system module for Multi-Layer
Multi-Pass Welding (MLMPW) can boost the adaptability of
welding robots and reduce production costs. This paper pro-
poses a method of multi-layer welding path correction, which
involves adjusting the actual welding position to accommo-
date workpiece groove deformation during welding. Addi-
tionally, the paper resolves the issue of interference from
metal surface reflection by employing the image-defogging
technology processing algorithm. The experimental results
demonstrate that the proposed MLWC method outperforms
the traditional method without path correction in multi-layer
automatic welding. The mean error (ME) between the last
welding layer and the workpiece surface was controlled
within 2 mm, and the number of scanning was reduced from
14 times to 4 times. The proposed method improves the
adaptability and efficiency of industrial robots in multi-layer
welding of the medium-thick plate.

The proposed multi-layer and multi-pass welding path
planning and correction approach can be further enhanced
by extending the MLWC method to be adaptable for vari-
ous joint configurations, such as T-type joints, K-type joints
and other joints. Further MLMPW experiments with weld
beads overlapping model are essential to minimize the shape
error. In addition to planning the welding path, incorporating
the welding parameters such as welding speed, voltage and
current, would significantly enhance the intelligence of the
robotic MLPLW system.
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