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ABSTRACT One of the most significant risks impacting crops is pests, which substantially decrease food
production. Further, prompt and precise recognition of pests can help harvesters save damage and enhance
the quality of crops by enabling them to take appropriate preventive action. The apparent resemblance
between numerous kinds of pests makes examination laborious and takes time. The limitations of physical
pest inspection are required to be addressed, and a novel deep-learning approach called the Faster-PestNet is
proposed in this work. Descriptively, an improved Faster-RCNN approach is designed using the MobileNet
as its base network and tuned on the pest samples to recognize the crop pests of various categories and
given the name of Fatser-PestNet. Initially, the MobileNet is employed for extracting a distinctive set of
sample attributes, later recognized by the 2-step locator of the improved Faster-RCNN model. We have
accomplished a huge experimentation analysis over a complicated data sample named the IP102 and acquired
an accuracy of 82.43%. Further, a local crops dataset is also collected and tested on the trained Faster-PestNet
approach to show the generalization capacity of the proposed model. We have confirmed through analysis
that the presented work can tackle numerous sample distortions like noise, blurring, light variations, and size
alterations and can accurately locate the pest along with the associated class label on the leaf of numerous
types and sizes. Both visual and stated performance values confirm the effectiveness of our model.

INDEX TERMS Classification of pest, deep learning, faster RCNN, pest detection.

I. INTRODUCTION
Many economies rely heavily on agriculture to support their
growth and maintain a high living level. Any nation’s agro-
food sector is essential since it helps to raise the caliber of
exports of agricultural products. In emerging nations, the
impact of export revenues and domestic market demand is the
main driver of the increase in the food processing conversion
rate [1]. One of the biggest problems in agriculture today
is pest infestation, which results in poor crop quality. Pests,
bacteria, and weeds cause substantial crop losses, resulting
in sluggish product markets. It is crucial to address pest
infestations that affect crop growth. Pests are the primary
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cause of declines in crop quality, leading to decreased plant
productivity. It maintains crop quality and safety in agricul-
ture, and monitoring and evaluating pest damage is essential.
As a result, farmers use a range of pesticides to improve crop
quality and storage time. Continued use of these pesticides
can cause environmental contamination as well as potentially
fatal diseases like cancer, severe respiratory and hereditary
disorders, and lethal mortality. Advanced technical technolo-
gies in agriculture are urgently required to detect pests in
their early stages and prevent the widespread application
of harmful pesticides [2]. These pests live on the sap from
different parts of plants to spread the sooty mold disease.
Farmers rely on their expertise and knowledge to identify
pest infestations as they arise. Insecticide spraying is regarded
as a quick-acting, scalable pest management strategy due to

104016
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5792-259X
https://orcid.org/0000-0003-2049-9446
https://orcid.org/0000-0002-8505-7705
https://orcid.org/0000-0002-0651-4278


F. Ali et al.: Faster-PestNet: A Lightweight DL Framework for Crop Pest Detection and Classification

a lack of expertise. However, the usage of fewer pesticides
should be encouraged due to mounting environmental and
health concerns [3], [4].

Spot application is a well-known method that can cut the
cost of applying insecticides by up to 90%, reducing pollution
and lessening the harmful impacts on beneficial pests like
bees. Such applications involve applying various Computer
Vision (CV) approaches with the help of image processing
to develop recognition systems. CV is increasingly being
utilized for various tasks, including soil and crop monitoring,
fruit sorting, plant disease detection, and pest identification.
Identification and classification of pests aremandatory before
spraying on specific areas [5]. Pest detection has tradition-
ally relied on labor and error-intensive manual approaches.
Pest and disease identification is essential to acquiring crop
growth and health data. The recent developments in computer
vision have provided much aid in precision agriculture [6].
Target identification at various stages of agricultural growth
is essential to forecast future yields, turn on astute spray-
ing systems, and manage independent insecticide spraying
robots in vast farms and gardens. However, with techno-
logical advancements, pests can now be found via picture
processing. People are increasingly interested in precision
agriculture to address these issues [7]. Global positioning sys-
tems (GPS) for tractor navigation, robotics, remote sensing,
data analytics, drones, and land vehicles are some of these
technologies [8]. The foundation of precision agriculture is
accurate pest detection. For pest detection and spot spraying,
computer vision must be used to capture and analyze visual
data [9].
Initially, conventional Machine Learning (ML) approaches

with hand-coded features are employed to diagnose numer-
ous crop pests. It consists of four major steps: detection,
segmentation, feature extraction, and classification, and is
carried out utilizing computer vision-based quality inspec-
tion. However, it is challenging to recognize targets with such
approaches with adequate precision due to shape similarities,
complex backgrounds, target overlap due to high-density dis-
tribution, light variations in the large landscape of orchards,
and many other issues [10], [11]. Deep Neural Networks
(DNNs) are frequently utilized in computer vision applica-
tions to plot complicated relationships and perform automatic
feature extraction. Deep artificial neural networks can now be
trained more quickly and effectively with improved graphics
processing units (GPUs). DNN provides meaningful results
for classifying objects. Such approaches utilize the idea
of transfer learning in which numerous pre-learned deep
learning (DL) models are employed to execute a new task.
DL methods utilize various Convolutional Neural Networks
(CNNs) [12] for extracting effective dataset attributes that
do not need domain skills [13]. DL architectures are widely
utilized to address complex issues in a sufficient period
due to the substantial advancement of computing equip-
ment [14]. DL-based strategies have proven to be precise
and have been successfully modified to carry out various
farming activities. As improvements in DL techniques have

shown encouraging outcomes in the field of recognition
of objects, a substantial study has focused on suggesting
more complex target localization structures for enhanced
identification competence, such as Super-FAN [10] and
unsupervised multi-stage key points learning [11] etc. Addi-
tionally, several CNN-based methods, including GoogLeNet
[15], AlexNet [16], VGG [17], and residual models [18], are
tested for pest identification and classification. Some of the
latest object recognition approaches like R-CNN [19], Fast
Region-based Convolutional Network Method (Fast R-CNN)
[20], Faster Region-based Convolutional Network Method
(Faster R-CNNs) [21], and You Only Look Once (YOLO)
[22] have also exhibited improved results in various domains
of agriculture.

The DL object recognition methods listed above have
shown outstanding results in designing generic target tracking
systems, but they remain limited to a few practical uses
for Pest monitoring. Pest diagnosis has distinctive attributes
compared to current object spotting and categorization
jobs [21].
In real field photos, pests are typically little objects that

are accompanied by complicated environments; as a result,
any recognition system can be readily misled by the sur-
roundings when estimating key points. Additionally, there is
a significant variety in pest mass and positions due to the var-
ious vantage points and distances at which they are taken in
the agricultural setting, which makes correct diagnosis more
difficult. Additionally, diverse pest types frequently share
plenty of physical characteristics, and identical types can
appear in various forms, including larvae, eggs, pupae, and
adults, demonstrating significant within and inter-group dif-
ferences. In addition, the computerized recognition procedure
is made more difficult by the presence of poor illumination
and adverse conditions. In order to increase the effectiveness
regarding categorization consistency and computing expense,
a more reliable and proficient automated approach for exact
pest identification in the environment is still needed. The pro-
posed strategy’s objective is to overcome existing structures’
problems. We have accomplished this objective by intro-
ducing an improved DL model named the Faster-PestNet.
Descriptively, a customized Faster-RCNN framework is sug-
gested by using the MobileNet as its base network and tuned
on the pest samples to recognize the crop pests of various
categories and given the name of Faster-PestNet. First, the
MobileNet is applied for calculating a distinctive set of image
features later recognized by the 2-step locator of the improved
Faster-RCNN model. We have proved the robustness of our
approach by executing a huge experimental analysis over
complex pest samples.

Following are the significant contributions of our work.
• An accurate method capable of computing reliable
image features to enhance the Pest’s classification per-
formance is proposed.

• Presented such a technique that is capable of accurately
detecting and classifying the multiclass Pests due to the
high recall power of the proposed technique.
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• Avast evaluation of the proposedwork is performed on a
challenging dataset named IP102 and confirmed through
experimentation that the suggested method is able to
detect and classify numerous Pests with the presence of
several image distortions like noise, blurring, color, and
light variations, etc.

• A local crops dataset was collected, and the perfor-
mance analysis of the presented work was executed.
It captured diverse environmental settings and proved
the generalization ability of our approach to agricultural
applications.

The remaining paper is organized into the following sections:
the existing works are discussed in Section II, and the pro-
posed work in Section III. The results and conclusion are
demonstrated in Sections IV and V, respectively.

II. LITERATURE REVIEW
With the quick development of Artificial Intelligence (AI)
and to address the limitations of ML, CNNs have been
fruitfully employed in agricultural research. CNN mod-
els outperform conventional techniques when automatically
identifying and categorizing pest infestations [23]. Identify-
ing and determining certain pests in realistically obtained
images constitute pest categorization. Computer vision issues
are better handled by combining CNNs with ensemble mod-
els as feature extractors. The techniques utilized include
Single-shot multi-box detectors (SSD) [24], YOLO, Faster
R-CNNs, Region-based Convolutional Neural Networks
(R-CNNs), and Faster R-CNNs. Using it in object detection
and recognition has been effective.

Several scholars have conducted recent studies on object
detection methods for pest detection. Setiawan et al. [25]
performed training on a CNN algorithm for pest detection and
used the IP102 dataset as a baseline. This study employed
dynamic learning rate, freezing layers, and sparse regular-
ization in conjunction with CutMix augmentation to opti-
mize small MobileNetV2 models. The maximum accuracy,
71.32%, was achieved by amalgamating those procedures
throughout training. Nanni et al. [26] utilized the IP102 and
a small dataset to spot and identify pest images. The author
utilized CNN methods AlexNet, GoogLeNet, ShuffleNet,
MobileNetv2, and DenseNet201 along with saliency meth-
ods Graph-Based Visual Saliency (GBVS), Cluster-based
Saliency Detection (COS), and Spectral Residual (SPE). This
work reported a maximum accuracy of 92.43% on the smaller
dataset, while on the IP102 dataset, it was 61.93%. To catego-
rize crop pests, Setiawan et al. [25] used theNBAIR,Xiel, and
Xie2 insect datasets with 40, 24, and 40 classes, respectively.
In their experiments on datasets, they used AlexNet, ResNet-
50, ResNet-101, VGG-16, and VGG-19. For the insects’
dataset mentioned earlier, the proposed CNNmodel achieved
the highest classification accuracy of 96.75%, 97.47%, and
95.97%. To use convolutional neural networks for crop pest
recognition in innate situations, Liu et al. [27] manually col-
lected datasets of 10 pests (Gryllotalpa, Leafhopper, locust,

Oriental fruit fly, Pieris rapae Linnaeus, Snail, Spodoptera
Litura, Stinkbug, Cydia Pomonella, Weevil). Pre-trained
models called VGG-16, VGG-19, ResNet50, ResNet152,
and GoogLeNet were employed in this experiment. The
accuracy of ResNet50 was 91.74%, ResNet152 was 92.9%,
GoogleLeNet was 93.29%, VGG-16 was 91.44%, VGG-19
was 92.26%, and ResNet50 was 91.74%. Liu et al. [27]
used the anchor-free region convolutional neural network
(AF-RCNN) technique to detect agricultural pests in many
categories. On a dataset with 24 classes of pests, this approach
achieved 56.4% mean Average Precision (mAP) and 85.1%
recall.

For an effective CNN-based pest localization and recog-
nition, Li et al. [28] implemented data augmentation in the
training phase, test time augmentation (TTA) approach, and
region proposal network (RPN) techniques. The mAP for this
model was 83.23%. To retrieve depth and spatial attention
across many stages of the pyramid network, Liu et al. [29]
manually collected dataset and implemented Global Acti-
vated Feature Pyramid Network (GaFPN). Next, a Locally
Activated Region Proposal Network (LaRPN), an upgraded
pest localization module, was put out to find the exact
locations of the pest objects. In the end, a ResNet50 back-
bone was used, achieving an accuracy of 86.9%. Images
were physically gathered from two greenhouse locations in
Belgium by Nieuwenhuizen et al. [30]. After that, yellow
sticky traps were utilized for insect detection and counting
using Faster R-CNN with ResNet-v2 as its foundation. This
approach had an accuracy rate of 87.4%. For large-scale
multiclass pest detection and classification, Wang et al. [31]
used the PestNet technique, which comprises three phases:
pest feature extraction (a CNN backbone), pest areas search,
and pest prediction (fuse RPN and PSSM). They achieved
75.46% mAP. The transfer learning (AlexNet) model was
implemented by Dawei et al. [32]. The model’s accuracy in
identifying pests was 93.84%. Further, a pest dataset was
created by Xia et al. [33] using manually gathered photos
from search engines like Baidu andGoogle. The authors com-
bined VGG19 and RPN models and obtained 89.22% insect
detection and classification accuracy. Li et al. [34] used the
transfer learning (DenseNet169) technique to classify pests in
tomato plants. The collection includes 859 photos of tomato
pests divided into 10 classifications, and 88.83% accuracy
was attained by DenseNet-169. The IP102 dataset was reor-
ganized by Li et al. [34] and given the name IP_RicePests.
VGGNet, ResNet, and MobileNet networks were used to
train the model. The experiment results demonstrate that all
three classification networks, when pairedwith transfer learn-
ing, have good recognition precision, with the IP_RicePests
dataset providing the best classification accuracy to careful
adjustment of the ResNet50 network’s parameters. ResNet50
had an accuracy of 87.41%, MobileNet had an accuracy of
86.44%, and VGG16 had an accuracy of 88.68%.

To recognize nine different types of diseases and pests
on tomato plants, Sabanci et al. [35] integrated R-CNN,
faster R-CNN, and SSD deep learning meta-learning with
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a visual geometry group network (VGG) and residual
network [36]. A quick, precise, fine-grained object recog-
nition model based on the YOLOv4 deep neural network
was proposed by Roy et al. [37]. The proposed model’s
detection rate and mAP were 70.19 FPS and 96.29%,
respectively. For the categorization of pests and diseases,
Liu et al. [38] devised a self-supervised transformer-based
pre-training technique employing Feature Relationship Con-
ditional Filtering (FRCF) and Latent Semantic Masking
Auto-Encoder (LSMAE). The accuracy rates for this study’s
utilization of the IP102, CPB, and Plant Village datasets were
74.69%, 76.99%, and 99.93%, respectively. Zhang et al. [40]
employed the IP102 dataset to identify pests. The incep-
tionv3 model was used in this investigation, and the accu-
racy was 67.88%. On six classes of the IP102 dataset,
Deepika and Arthi [39] constructed the Improved Mask
Faster Region-Based Convolutional Neural Network (IMFR-
CNN) model. The author has attained 99.2% accuracy in
this investigation. Further, 20 classes from the IP102 dataset
were used by Zhang et al. [40] for pest recognition. This
research used the 97.8% accuracy on the Faster and Exten-
sible Vision Transformer (FE-VIT) model. The Improved
YOLO-X model was employed by Huang et al. [41] to spot
forest pests. A precision of 53.6% was reached in this inves-
tigation using the IP102 dataset. Li et al. [42] implemented
the Mask-RCNN ResNet50, Faster-RCNN ResNet101, and
Yolov5 Darknet53 models for pest recognition. These meth-
ods each reached accuracy levels of 99.6%, 99.4%, and
97.6%. ResNeXt-50 (32 4d) model was used by Sang-
havi et al. [43] to classify pest images using a residual neural
network based on transfer learning using the IP102 dataset.
This study had an accuracy rate of 86.90%. A manually
compiled dataset was produced by Vishakha et al. [44] for
the recognition and classification of crop pests using transfer
learning. This study used the hunger games search-based
deep convolutional neural network (HGS-DCNN)model with
99% accuracy. When used in intricate settings to spot numer-
ous plant diseases, the model yields effective and efficient
outcomes. For detecting pests, several researchers have inves-
tigated object identification methods based on DL [45], [46].
But none of this research covered the topic of identifying
scale insect to preserve beneficial insects. Pest control is still
not done in a way that is successful. Existing approaches
lack to recognize huge classes of crop pests and unable to
execute well with the presence of several image distortions
like noise, blurring, color and light variations, etc. Therefore,
there remains a need for a more effective approach to over-
come the issues of existing works.

III. METHODOLOGY
This work proposed a model called the Faster-PestNet for
the localization and division of numerous crop pests. Hence,
we have altered the conventional Faster-RCNN approach by
utilizing MobileNet as the base network, tuned on the pest
samples to recognize the crop pests of various categories, and

given the name Faster-PestNet. Real-time object identifica-
tion onmobile devices is a good fit forMobileNet, an efficient
CNN approach designed for mobile devices with a smaller
footprint than conventional CNNs. Therefore, initially, the
MobileNet is applied for calculating a distinctive set of image
characteristics, later optimized and divided by the 2-step
locator of the improved Faster-RCNN model and took the
following actions:

IP 102 dataset, which contains the images of pests that
belong to 102 classes, is used, and the local collected crops
dataset is also used. We have used an annotated dataset to
train a Faster-PestNet model using MobileNet as its founda-
tion. The annotated photos are fed into the model, and the
parameters are changed to reduce the discrepancy between
the anticipated and actual bounding boxes.

After training the model, we used it to detect pests in
new images by inputting them into the model and applying
a threshold to the predicted bounding boxes to remove false
positives.

The flow of the presented work is defined in Figure 1.

A. FASTER R-CNN
The object detection algorithm Faster R-CNN expands on the
fundamental design of R-CNN and Fast R-CNN. A Region
Proposal Network (RPN) and a Fast R-CNN detector com-
prise its primary parts. An image is sent into the RPN, a fully
convolutional network, and outputs a list of object recommen-
dations, each reflected by a bounding box and an objectness
score.

The RPN can recognize things of various sizes since it
operates across an image pyramid of various proportions. The
RPN is trained to maximize two loss functions: a regression
loss for forecasting the bounding box’s coordinates and a
classification loss for forecasting the objectness score of each
proposal.

A proposal comprises an object or not is indicated by the
objectness score, a binary classification score. This is how it
is explained:

pi =
1

1 + e−wTxi
(1)

The feature vector of the proposal is represented by xi, and
the weight vector of the classification layer is i and w.
The RPN generates a collection of ‘k’ proposals for every

image and sends them to the Fast R-CNN detector for addi-
tional processing. The Fast R-CNN detector is a region-based
detector that uses a Region of Interest (RoI) pooling layer
to extract features from the RPN’s proposal outputs. A fully
connected network for classification and regression can be
used once the RoI pooling layer has generated fixed-size
feature maps for every set of rectangular RoIs.

B. FASTER-PestNet
The backbone network in the Faster R-CNN algorithm plays
a critical role in extracting features from input images, which
the RPN and classifier then utilize to detect objects. In this
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FIGURE 1. Architectural explanation of the Faster-PestNet technique.

project, we have utilized MobileNet as the backbone of the
architecture to achieve this goal. The lightweight CNN archi-
tecture, MobileNet, is frequently utilized as the foundation
for object detection algorithms due to its great efficiency and
accuracy.

In this study, the ResNet backbone networks are swapped
out for MobileNet backbone networks to serve as the Faster
R-CNN algorithm’s backbone. The major intuition for alter-
ing the base network of the conventional Faster-RCNN
approach is that the ResNet approach is computationally
more complex and unable to tackle the complicated sam-
ple transformational changes. To overwhelm the problems
of the traditional model, we have employed the MobileNet
approach as its feature extractor. The depth-wise separa-
ble convolutions used in the MobileNet design considerably
lessen the number of specifications in the network while
retaining good precision.

The Faster-PestNet algorithm’s MobileNet backbone net-
work can be characterized as follows:

1) MOBILENET BACKBONE
The MobileNet backbone network is made up of a number
of fully connected (FC) layers after numerous depth-wise
separable convolution layers. A size-related image acts as
the input to the MobileNet backbone network, as given in
Equation 2.

ImageSize = H ×W × 3 (2)

where the number of color channels is 3, and the image’s
height and width are H and W, respectively.

2) DEPTH-WISE SEPARABLE CONVOLUTION
There are two components to the depth-wise separable con-
volution layer: (i) depth-wise convolution and (ii) pointwise
convolution. A 1 × 1 convolution is applied by pointwise
convolution to aggregate the output of the depth-wise con-
volution, while the depth-wise convolution applies a single
convolution filter to each input channel autonomously.

3) FULLY CONNECTED LAYERS
The output from depthwise separable convolution layers is
mapped to a fixed-size feature map by the fully connected
layers in the MobileNet backbone network, which the RPN
and classifier can then use. The number of fully connected
layers and their criteria can be adjusted based on the specific
application.

C. OUTPUT FEATURE MAP
The MobileNet backbone network’s output feature map is
H/32 × W/32 × D, where D is the number of feature chan-
nels. It identifies objects in the image, and the RPN and
classifier use this feature map as input.

D. RoI POOLING
The output featuremap from themobilenet backbone network
is subjected to RoI pooling to take out a fixed-size feature
vector for each region proposal after the RPN creates a series
of region proposals. Each of the rectangular regions of the
feature map corresponding to the region suggestions receives
a max-pooling operation as part of the roi pooling operation.

E. FULLY CONNECTED LAYERS FOR CLASSIFICATION
AND REGRESSION
After the RoI pooling layer’s output, two distinct and com-
pletely connected layers for classification and regression are
used. The object in the region proposal is classified using the
classification layer, and the bounding box’s coordinates are
refined using the regression layer. The following can be used
to represent the classification and regression layer equation:

fccls = ReLU (Wcls ∗ hpool + bcls) (3)

The weight matrix Wcls, the bias vector bcls, the output of
the RoI pooling layer hpool , and the rectified linear unit
activation function ReLU are all present. Equation 3 is for
the classification layer, and Equation 4 is shown below for
the regression layer:

fcreg = Wreg ∗ hpool + breg (4)
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where Wreg is the weight matrix, and breg is the bias
vector.

F. LOSS FUNCTION
The loss function is used to train the faster-pestnet
algorithm. The faster-pestnet model is calculated from the
output of the classification and regression layers. A Classi-
fication And Regression Loss Term Are Combined To Form
The Loss Function. Equations 5 and 6 represent the classifi-
cation and regression loss terms, respectively.

Lcls (p, p∗) = −log (p∗) if p∗ > 0 else− log (1 − p∗) (5)

where the predicted probability of the object class is p, the
ground truth probability of the object class is p∗, and log is
the natural logarithm.

Lreg(t, t∗) = SmoothL1(t − t∗) (6)

where t is the predicted bounding box offset, t∗ is the ground
truth bounding box offset, and SmoothL1 is the smooth L1
loss function defined as:

smoothL1 (x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(7)

A succession of depth-wise separable convolution layers,
fully connected layers, RoI pooling, and finally, distinct fully
connected layers for classification and regression make up
the MobileNet backbone of the Faster-PestNet method. The
model is trained to precisely identify items in a picture using
the loss function.

IV. EXPERIMENT DETAILS AND RESULTS
The details of execution and the evaluations performed to
assess the results of the proposed approach are elaborated in
this part. To thoroughly show the effectiveness of the Faster-
PestNet model, we calculated pest recognition and division
results via numerous experiments and correlated them with
other models.

A. DATASET
For model tuning and testing, we have employed the IP102
dataset, which is a large-scale benchmark dataset for pest
image classification and recognition tasks, consisting of
102 categories of crop pests commonly found in field areas.
The IP102 dataset is challenging for picture categorization
tasks. Dataset photos contain a broad range of perspective,
scale, orientation, and illumination changes. The dataset has
been utilized in several computer vision andmachine learning
research papers. Each of the 102 categories in the IP102
dataset has a different number of photos. More than 75,000
photos from 102 categories of pests are included in the
dataset. The photos in the collection are RGB images with
a resolution of 224 × 224 pixels. The pictures were gathered
from online resources, including Google Images and Flickr.
A training set, a validation set, and a test set are each divided
into separate portions of the dataset. These collections each

FIGURE 2. Samples from the IP102 dataset.

contain 56,846, 8,047, and 11,955 photos. Then, human
specialists manually add object-level labels to the photos
by hand, identifying one or more pests in the image. The
IP102 dataset is a difficult benchmark for object recognition
and detection tasks due to several distinctive features. These
consist of:

• Diverse types of pests: The 102 categories in the IP102
dataset are diverse in nature.

• Occlusion and clutter: Many of the images in the IP102
dataset contain occlusions and clutter, such as multiple
objects in the scene or objects partially obscured by other
objects.

• Imbalanced class distribution: The number of images per
category in the IP102 dataset varies broadly, with some
categories having only a few images and others having
thousands of images.

A few samples from the IP102 are given in Figure 2.

B. IMPLEMENTATION DETAILS
The Keras library is used in TensorFlow to implement the
suggested framework. The Faster-PestNet model’s final train-
ing parameters are detailed in Table 1. To create the final
optimized model in our study, we varied the epochs, batch,
and learning rate for themodel’s hyperparameters. The exper-
iment used the Stochastic Gradient Descent (SGD) training
optimizer amidst model learning rates of 0.0015. The epoch
and batch size were 200 and 32. The input picture dimensions
were set at 320 × 320, and the data were split into training
authentication and test sets at random. 70% of the samples
were utilized for training, 15% for validation, and 15% for
examination.

C. EVALUATION PARAMETERS
Wehave employed a variety of quantitative indicators, includ-
ing precision (P), recall (R), accuracy (Acc), and mAP,
to assess the efficacy of the proposed approach. Following
is how these metrics are computed:

P = TP/(TP+ FP) (8)

R = TP/(TP+ FN ) (9)

Acc = (TP+ TN )/(TP+ TN + FP+ FN ) (10)

True positive, true negative, false positive, and false neg-
ative situations are denoted by the letters TP, TN, FP, and
FN. The pest in the image is regarded as TP if accurately
identified; otherwise, it is regarded as FN. If the categoriza-
tion is incorrect, the that is not visible in the photograph
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TABLE 1. Training parameters for the proposed model.

is categorized as TN; otherwise, it is classified as FP. The
calculation for the mAP is displayed in Eq. (11), in which AP
shows the average accuracy of every group, t is the examined
image, and T denotes total test pictures.

mAP :=

∑T

i=0
AP(t)/T (11)

D. PEST LOCALIZATION RESULTS
The accurate localization of pests is crucial for creating a
successful automated pest recognition approach. So, we pro-
duced an experiment to evaluate how well the suggested
framework can perform the localization of pests from the test
samples.

We used all of the test photos from the IP102 database for
the analysis, and the visual findings are given in Figure 3.
We can deduct from the results that the suggested procedure
Moreover, our method successfully finds pests despite chal-
lenging backdrop conditions, lighting, orientation shifts, and
varied acquisition angles effectively finds pests of various
sizes, shapes, and colors.

The suggested framework’s capacity to localize by using
key points estimate enables it to distinguish and detect pests
of different types accurately and effectively. We calculated
the mAP to quantitatively estimate the localization and recog-
nition for a number of pest categories. Specifically, we have
attained a mAP of 0.8243, indicating our approach’s robust-
ness in recognizing the pests from such a complex data
sample due to its high recall ability.

E. PEST CLASSIFICATION RESULTS
It is crucial to accurately classify different pests to show that
a model is reliable. Depending on the crop category, several
different sorts of pests may be in a crop-growing region.
In order to assess the effectiveness of the suggested procedure
for categorizing pests based on numerous hierarchical crop
groups, we experimented.

The trained Faster-PestNet framework is evaluated for each
test picture from the IP102 data sample to complete this
task. Figures 4, 5, 6, and 7 display the precision, recall,
F1 score, and accuracy results for the suggested method in
crop-based pest classification. The findings show that the pro-
posed framework achieves precision, recall, and F1 scores,
with 83%, 81%, 82%, and 82.43% accuracy for all crop-
specific classes.

The efficacy of the applied key points computing approach,
which accurately and reliably depicts each pest class, is the
cause of the strong pest categorization presentation of the

FIGURE 3. Localization visuals attained for the Faster-PestNet.

FIGURE 4. Precision values for the Faster-PestNet.

FIGURE 5. Recall values for the Faster-PestNet.

suggested model. Consequently, it is not wrong to say that
Faster-PestNet executes well for crop-wise pest identifica-
tion, proving the value of the suggested approach.

F. EVALUATION OF FASTER RCNN MOBILENET MODEL
An accurate and nominative set of features is required
for effective target recognition. We analyzed to compare
the proposed Faster-PestNet model to other deep feature
extraction frameworks to compare pest detection and classi-
fication results against them. We evaluated our values with
several base models, including Alexnet [47], GoogleNet [48],

104022 VOLUME 11, 2023



F. Ali et al.: Faster-PestNet: A Lightweight DL Framework for Crop Pest Detection and Classification

FIGURE 6. F1-score values for the Faster-PestNet.

FIGURE 7. Accuracy values for the Faster-PestNet.

VGGNet [49], ResNet-50 [50], ResNet-101 [50], Inception
V4 [51], HourGlass104 [52], EfficientNet [53]. Additionally,
the network complexities of all frameworks are also discussed
to check the efficiency of the approaches as well. The results,
in terms of accuracy and the model parameters, are given in
Table 2.
The values in Table 2 show that we perform better than

all other DL frameworks, with the highest accuracy value
of 82.43%. Moreover, the proposed approach contains fewer
parameters than all other approaches, giving an edge to the
Faster-PestNet in terms of model complexity. We acquire
better results than all other DLmodels because of the model’s
capacity to extract the visual attributes of the input samples
finely which enhances the recognition power of the Faster-
PestNet model.

G. RESULTS ANALYSIS WITH OBJECT IDENTIFICATION
METHODS
We equate the suggested model’s conduct to various
cutting-edge methods for identifying pest objects. Precise
pest recognition is essential since a cluttered background
could fool the predictor when the target is not immediately
visible. The presence of numerous s could make detection
quite challenging. Proper localization can enhance precision
to a greater extent by minimizing unnecessary background
information. We examined a number of one-stage object
identification models, which have been demonstrated to be
effective on the COCO dataset [54], including SSD [50],
YOLOv3 [55], RefineDet [56], and CornerNet [57]. Other
two-stage detectors, such as Fast R- CNN [18] and Faster
R- CNN [58], were also examined. We tested these mod-
els’ performance on the IP102 dataset to see how well they
could localize pests in various challenging situations, such as

TABLE 2. Faster-PestNet performance comparison with other deep
learning models.

when complicated environmental noise, brightness, hue, size,
and contour variations were present. We calculated the mAP
measure, a typical metric used in object identification tasks,
to conduct the performance study.We have also generated test
times to assess the computational complexity of each model.
The performance of numerous object detection techniques
with different backbones for identifying pests is compared in
Table 3 in terms of mAP and inference time.

Table 3 shows that the suggested method for identifying
pests outperforms the alternative. 2-step object identifiers
like Fast R-CNN and Faster R-CNN perform worse. These
methods are computationally expensive because they use
anchor boxes to pinpoint the possible area of interest before
performing division and regression to pick the appropriate
box. In contrast, the 1-stage models RefineDet, SSD, and
YOLO-v3 perform better since they determine the location
and category of the item directly. However, when the initial
applications of these technologies are evaluated in this work,
they are found to be insufficient for locating and identifying
pests in settings with drastic changes in lighting. Further-
more, it is shown that one-stage detectors compute more
quickly than two-stage detector models.

Our model, Faster-PestNet, successfully overcomes
the disadvantage of previous methodologies by utilizing
MobileNet as its backbone network. TheMobilenet backbone
enables the improved Faster RCN to learn more represen-
tative qualities such as noise, luminance, and diversity in
color, size, and form. It allows for improved localization and
classification of pests into distinct groups. We calculated the
mAP measure, a typical metric used in object recognition
tasks, to conduct the performance study. We have also gen-
erated test times to assess the computational complexity of
each model. So, based on Table 3 findings, we can conclude
that the suggested method for identifying pests outperforms
the alternative in terms of pest recognition and inference
time.

H. PERFORMANCE COMPARISON WITH EXISTING
APPROACHES
The following part compares the classification performance
of our technique with findings from other studies [25], [26],
[27], [58], [59], [60], [61], [62], [63] using the same Dataset,

VOLUME 11, 2023 104023



F. Ali et al.: Faster-PestNet: A Lightweight DL Framework for Crop Pest Detection and Classification

TABLE 3. Faster-PestNet comparison with other object locators.

IP102. Based on their average accuracy, the results of the
pest classification are contrasted with current techniques in
Table 4.

When writers in [58] trained various deep learning models
to classify pest species, they discovered that this approach
had the highest overall average accuracy of 57.08% with
InceptionNetV3. The authormanually resized and augmented
the dataset before training this network. Ayan et al. [59] com-
bined CCNs with ensemble methods, particularly GAEnsem-
ble, to improve the division presentation. Like [26], the
writers merge CNN and the saliency approach to make
an ensemble of predictors at the output layer using the
fusion-sum methodology. However, the ensemble weights
computation used by both approaches [26], [59] resulted in
a poor calculating time that cost them an accuracy of 61.93%
and 67.13%, respectively. The EquisiteNetmodel with double
fusion, squeeze and excitation, and max-feature expansion
blocks was employed by Zhou and Su [60]. The accuracy of
themodel was 52.32%. Themethods in [27] and [61] included
feature reuse and feature fusion procedures in addition to
the modified Resnet block for efficient feature calculation.
They were accurate to a respective degree of 55.24% and
55.43%. Using the IP102 dataset [62] also attempted sev-
eral tests. ResNet-50, RAN (Residual Attention Network),
FPN (Feature Pyramid Network), and MMAL-NET were all
used in these investigations. The ensemble of all models
was run, and the best results with a precision of 74.13%
were obtained. The author [25] suggests an effective training
method that takes advantage of CutMix augmentation, freez-
ing layers, and sparse regularization to optimize small-sized
MobileNetV2 models. The maximum accuracy, 71.32%,
was achieved by amalgamating those techniques through-
out training. An effective and lightweight pest classification
model called PCNet was proposed in [63]. To improve
the depiction of pest keypoints in complicated and com-
parable backgrounds and pay closer heed to pest details,
PCNet is an improved approach based on EfficientNet v2
that integrates the attention mechanism. Additionally, PCNet
takes advantage of the keypoints fusion unit to minimize

TABLE 4. Faster-PestNet comparison with existing approaches.

FIGURE 8. Faster-PestNet visual results on the local crops dataset.

the loss of pest information when multiple depth layers are
down-sampled.

These data clearly show that the proposed Faster-PestNet
outperforms past studies, with an average accuracy of
82.43%. The result from previous layers as input to all
following layers effectively computes feature maps with
MobileNet’s improved performance results from linking. The
Faster-PestNet architecture locates and classifies the pests
using calculated features. Consequently, the proposed ver-
sion performs much finer for challenging Dataset IP102
regarding pest recognition and classification. In addition,
our technique is computationally competent and trustwor-
thy enough to recognize s with better precision than others.
As a result, we may conclude that our method has enor-
mous promise for using drones to classify target pests in the
field.
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FIGURE 9. Faster-PestNet confusion matrix on the local crops dataset.

FIGURE 10. Faster-PestNet performance analysis on the local crops
dataset.

I. GENERALIZATION ABILITY TESTING
To further show the robustness of the proposed Faster-PestNet
approach. We have collected a local crops dataset comprising
a total of 1950 images from various site areas and labeled
them into six classes with the help of domain experts. These
classes are named ‘Bug’, ‘Pupa Borer’, ‘Root Borer’, ‘Bee-
tle’, ‘Fall Army Bug’, and ‘Army Worm’.

We tuned the Faster-PestNet on this data sample using the
80-20% division mechanism for model learning and evalua-
tion. Figure 8 shows visuals attained and clearly shows that
our approach can diagnose the Pest of numerous types from
real-world examples under complicated background settings.

Further, the confusion matrix for this locally crops dataset
is reported in Figure 9 to show the recognition ability of our
approach. The values in Figure 9 prove that the Faster-PestNet
approach is proficient in recognizing all classes of pests
with a high recall rate. We have also measured other per-
formance measures like precision, recall, F1, and accuracy
metrics, and attained values are given in Figure 10. We have
obtained 95.24%, 95.26%, 95.23%, and 95.24% for this local

crops dataset’s precision, recall, F1-score, and accuracy met-
rics. Based on the conducted analysis, it can be concluded
that the presented Faster-PestNet approach is proficient in
recognizing all classes of pests due to its high generalization
power and capability to overwhelm the model over-fitting
problem.

V. CONCLUSION
In this study, we have provided a cost-effective DL sys-
tem for the automated spotting and division of crop pests.
Specifically, a model named the Faster-PestNet is proposed
in which the MobileNet approach is used as a core net-
work for collecting dense features. We tested our method
using the IP102 dataset collection, representing an extensive
and challenging standard collection for pest identification
made up of in-field collected photos. We have demonstrated
the viability of our method for practical pest surveillance
tasks through considerable experiments. The results indi-
cated that our system could reliably localize and categorize
pests of various types, even in the context of complicated
backgrounds and fluctuations in different pest forms, hues,
dimensions, positions, and luminance. Further, we have a
local crop dataset and evaluated our approach to show better
generalization capability. All reported numeric and picto-
rial evaluations have proved our approach’s effectiveness in
recognizing huge pests. As a future consideration, we are
willing to design a further enhanced DL approach to improve
the classification results by taking into account other strate-
gies like feature fusion, etc. Further, we are motivated to
evaluate the proposed technique in other agriculture-related
applications, such as recognizing the crop diseases caused
by pests.
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