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ABSTRACT With the rapid advancements in artificial intelligence, particularly in machine learning and
deep learning, automated disease diagnosis is becoming increasingly feasible. Generating larger databases
is crucial for training and validating the performance of models for chronic diseases such as glaucoma and
diabetic retinopathy, which progress slowly and unnoticed. Automated procedures for retinal vessel seg-
mentation and optic cup/disk localization are preferred for large-scale screening of the public, contributing
to the early detection and treatment of eye diseases, preventing blindness, and improving public health.
This paper focuses on the challenges involved in segmenting the retinal vessels from fundus images and
presents a modified ColonSegNet model for retinal vessel segmentation that includes efficient methods
for locating the true vessels and applies data augmentation to overcome the issue of fewer graded images.
The paper uses the optimal values for the contrast enhancement of retinal fundus images using intelligent
evolution algorithms. The central vessel reflex, bifurcation, crossover, thin vessels, and lesion presence
are highlighted as significant challenges in retinal vessel segmentation. The proposed method achieves
high sensitivity, specificity, and accuracy, {0.839, 0.979, 0.966}, {0.865, 0.979, 0.971}, and {0.867, 0.981,
0.972}, segmenting retinal vessels on DRIVE, CHASE_DB, and STARE. The work is crucial in developing
automated systems for the early detection and treatment of eye diseases, thereby improving public health.

INDEX TERMS Deep learning, disease diagnosis, diabetic retinopathy, glaucoma, image classification,
retinal vessels, cup to disc ratio.

I. INTRODUCTION

The manual disease diagnosis is almost irreplaceable due to
the complications of the diseases and the satisfaction of the
patients. But for some diseases and large-scale population-
level screening programs of Governments, the automated
methods for disease diagnosis are fast, reliable, and prefer-
able. Still, the final check-up and decision about the disease
and patient could be made only based on the opinion and
suggestions of the medical expert. The automated disease
diagnosis methods aim to detect and isolate the suspected
cases for manual checks by doctors. These methods will
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not only isolate the suspected cases but will also assist the
medical expert in decision-making in many cases.

The diagnosis of various diseases using automated meth-
ods is feasible due to the unparalleled development in the
fields of machine/deep learning, big data, and image process-
ing in the last two decades. The electronic health record of the
patients along with the symptoms and different modalities of
images can easily be maintained in medical databases. Such
databases can be used for the training and testing of any
developed deep learning (DL) models, which are integrated
into automated systems for disease diagnosis/classification.

The authors in [1] proposed an automatic screening sys-
tem for diabetic retinopathy based on several steps including
image pre-processing, detection and removal of optic disc,
segmentation and removal of retinal vessel, removal of fovea,
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extraction of lesions such as hemorrhage, micro-aneurysm,
exudates etc., selection of important features and classifica-
tion. They performed simulation using DIARETDB]1 retinal
image database and validated their achieved results by com-
paring with manual grading of expert ophthalmologists. They
claimed improved evaluation metrics including specificity,
sensitivity, and accuracy.

The authors in [2] presented a framework based on SVM
and Naive-Bayes classifiers for processing the retinal image,
segmentation of retinal vessel, localization and removal of
optic disc, feature extraction and classification of the different
bright lesions. They used the publicly available image-Ret
database testing their developed framework. The image-Ret
is comprised of two sub-databases, which are DIARETDBO,
and DIARETDBI. They performed extensive simulation and
validated their approach by comparing the achieved evalua-
tion metrics with those of rivals from the literature.

The authors in [3] explored a new approach based on a
combination of artificial intelligence and image processing
for the diagnosing of diabetes retinopathy based on retinal
fundus images. They proposed automatic DR diagnosis based
on several stages, where the analysis and simulation has
been performed using MATLAB based software. They val-
idated their developed approach by comparing the achieved
results with those of expert ophthalmologists. They experi-
mented with detection of different types of lesion including
exudates, micro-aneurysms, and retinal hemorrhages, which
are the main cause of diabetic retinopathy. Their achieved
detection accuracies based on experiments works are more
than 98.80%.

Some of the well-known vision-threatening eye diseases
are diabetic retinopathy (DR), Glaucoma, and Age-Related
Macular Degeneration (AMD). Among the working-age pop-
ulation of the world, DR is one of the vision-threatening
diseases, which could be treated if detected timely. This
disease is a defect, which occurs in the retinal vasculature of
almost all patients with diabetes. Glaucoma is another eye
disease (second highest occurring eye disease), which slowly
impacts the optic nerve. Not detected and treated promptly
can lead to full or partial blindness. AMD is an eye disease
causing permanent blindness in adults in advanced countries.
This disease is linked with aging, which slowly damages the
sharp central vision.

Most eye diseases occur slowly and their symptoms are
not significant or observable in the beginning. This makes
it more challenging to accurately diagnose such diseases.
Hence, such slowly occurring diseases require us to develop
automated methods for continuous and large-scale popula-
tion screening programs. By developing and installing such
automated tools/systems at hospital facilities, the diseases of
many individuals can effectively be detected in the initial
stages.

On the other hand in the current setup, the medical experts
(Ophthalmologists) observe the morphological changes man-
ually, which is tired-some and requires significant time on
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a large scale. Additionally, manual assessment by doctors is
prone to error due to the huge burden. Hence, the efficacy of
the manual setup for large-scale population screening is sig-
nificantly lower compared to that of the deep learning-based
automated system.
The contributions of the work are as follows:
« Exploration of challenges involved in automated seg-
mentation of retinal vessels and optic cup/disk
« Identification of solutions adapted by researchers for
dealing with the different challenges
o Development of DL model by implementing these
strategies for the case of retinal vessels segmentation
The organization of the manuscript is as follows. Section I
presents the introduction and background knowledge of the
various eye diseases. It also presents the significance of
Al-enabled diagnostics systems for DR and Glaucoma eye
diseases. Section II provides the literature review. The details
of the frameworks for Al-enabled eye disease classification
are unfolded in Section III. The details of basic model and
enhanced model are provided in Section IV. The results
and discussion are provided in Section V. The concluding
remarks along future directions are provided in Section VI.

A. SIGNIFICANCE OF AI-ENABLED AUTOMATED
DIAGNOSTICS SYSTEM FOR EYE DISEASE CLASSIFICATION
Timely diagnosis of diabetic retinopathy and Glaucoma is
highly desired, as the suspect does not feel symptoms in the
beginning unless the disease progresses to advance stages,
where it is irreversible. This makes it more challenging to
accurately diagnose such diseases. Hence, such slowly occur-
ring diseases require us to develop automated methods for
continuous and large-scale population screening programs.
By developing and installing such automated tools/systems
at the front desk in hospital, the diseases of many individuals
can effectively be detected in the initial stages of the regular
check ups for hypertension and diabetes. In this way, the com-
plication of eye diseases in progression to advanced stages
could be avoided.

The general symptoms of these eye diseases include lesions
such as hard/soft exudates, microaneurysms (MA), intra-
retinal microvascular problems, blot/dot hemorrhages as well
as leakages. The constituents parts of the human retina and
some of these diseases are shown in Fig. 1. The lesion shown
in Fig. 1 are usually not observable in the initial stages of
the diseases until they progress to advanced stages. Mostly,
the patients are not aware while their diseases are progressing
to advanced stages. The symptoms can only be observed by
expert ophthalmologists, who need to carefully examine the
retina and grade it by counting the number and size of each
type of lesion. Additionally, they need to judge the severity
of the lesion [4].

B. GLAUCOMA AND DIABETIC RETINOPATHY
The retina contains many identifiable parts such as the iris,
macula, vessels, vitreous, optic cup/disk, pupil, and cornea.
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FIGURE 1. The constituents parts of the retina along with exudates and
micro-aneurysms.

(D): Glaucoma

(C): Advance Galucoma

FIGURE 2. The stages of Glaucoma [6].

The observable symptom of the DR is MA, which is caused
by the leakage from ruptured vessels. The MA characterizes
circular shape and red color. When the disease advances and
the walls of MA get ruptured then it results in the formation
of Hemorrhages. On the other hand, when the excretion from
the blood vessels have proteins and lipids then exudates are
created. The exudates can be soft or hard, which results in
vision loss if formed around the macula. The exudates are
bright in color and hemorrhages characterize dark color [5].
The optic nerve carries impulses, which contain information
observed at the retina to the concerned part of the brain for
further processing and decision-making.

Glaucoma advances gradually and directly damages the
optic nerve due to the pressure imposed on it, which results in
vision loss. The main reason behind Glaucoma is the failure
of the eye to excrete waste fluid. The accumulated excess
fluid generates pressure (intra-ocular) that damages the optic
nerve. This extra pressure thickens the layers of retinal nerve
fibers, which results in an increased size of the optic cup
compared to the size of the optic disk, known as “cupping”.
The Glaucoma stages are shown in Fig. 2 ([6]).
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The three stages of non-proliferative DR are shown in
Fig. 3 ([7]). The early stage of non-proliferative DR (NPDR)
is mild. In this stage of NPDR, small blood vessels are formed
inside retinal vessels, which secrets little blood that forms
micro-aneurysms (MAs). With time, the disease advances,
in which the wall of MAs is ruptured due to which fluid is
leaked into the retina. The fluid leakage leads to the formation
of exudates and hemorrhages, which is the next stage of the
DR called moderate non-proliferative DR. The third stage of
non-proliferative DR is severe, which causes the blockage of
blood supply in some retinal vessels. In this stage of NPDR,
the blood supply to some areas of the retina is affected. Such
areas of the retina exude growth factors, which lead to the
formation of new retinal blood vessels.

NPDR Grading examples

MAs and HMs are marked with
blue color

Moderate NPDR

EXs are marked with green color

Severe NPDR

Mild NPDR

FIGURE 3. The three sub-stages of non-proliferative DR.

II. LITERATURE REVIEW

Numerous eye diseases exist, which can be detected/
diagnosed using enhanced DL models trained/tested based on
the images in the state-of-the-art retinal image databases. The
authors in [8] conducted a review of computer-aided based
methods for automated diagnosis of eye diseases, especially
glaucoma.

Numerous publicly available retinal image datasets includ-
ing DRISHTI-GS, RIMONE, DRIVE, STARE, and CHASE-
DB are used in many studies for performance evaluation of
DNN models. These publicly available retinal image datasets
contain images along with the ground truth (gold standards)
for both cases with and without diseases. DRISHTI-GS and
RIMONE have been used for OD and OC segmentation
whereas the other three are used for retinal vessel segmen-
tation. The RIM-ONE [9] is comprised of 159 retinal images,
which are publicly available for performance evaluation of
the DNN model developed for OD and OC segmentation.
Among 159 images, 74 represent Glaucomatous eyes while
the remaining represent healthy eyes.

The Drishti-GS [10] database contains 101 retinal images.
These images were manually marked by the ophthalmologist
at Aravind Eye Clinic in India. The resolution of all these is
28961944, which are saved 9 without compression) in PNG
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format. The OD and OC are marked in these retinal fundus
images.

The DRIVE [3] dataset contains 40 retinal images, which
have a resolution of 565 x 584 pixels. The 40 images were
distributed into a test set and training set, where each have
20 retinal images. The STARE [11] dataset is comprised of
20 retinal fundus images, which have a resolution of 605 x
700 pixels. Due to very limited graded images, the STARE
does not have separate tests and training, where a leave-one-
out approach is used. According to this approach, a DNN
model is trained on n-1 samples (in this case 19 images) and
tested on the left one image. The CHASE_DB [12] database is
comprised of 28 retinal images having a resolution of 999 x
960 pixels. Among 28 retinal images, 20 retinal images are
used for training the DNN model, and the remaining 8 retinal
images are used for testing the developed DNN model.

Machine vision and image processing algorithms provide
the basis for modern ophthalmology. In the various con-
stituent parts of the eye, the blood vessels are significantly
important and are mostly used for disease diagnosis such
as DR [13]. The DR damages the retinal blood vessels of
diabetic patients. In worst cases, DR causes blindness in
diabetic patients, which can be avoided by detecting it in
the early stages and providing proper treatment. But, it is
highly challenging to correctly diagnose DR in the early
stages because of the unobservable symptoms in early stages
[14]. The DR occurs due to the variations in retinal blood
vessels that lead to retinal disorder and in the initial stages,
the patient complete losses vision.

Mainly, there are two types of DR i.e. proliferative and
non-proliferative [14], [15]. In proliferative DR (PDR) new
blood vessels are formed, which grow in the inner retinal
surface and vitreous gel. These newly created retinal vessels
are fragile, which means they are highly likely for blood
leakage into the retina. Due to blood leakage from the newly
created retinal blood vessels, different kinds of lesions are
created, which worsen further and ultimately lead to perma-
nent blindness [16].

The authors in [7] explained the three different stages
of non-proliferative DR (NPDR). The first is a mild stage
NPDR, in which small blood vessels are formed inside
retinal vessels, which secrets little blood that forms micro-
aneurysms (MAs). With time, the disease advances, in which
the wall of MAs is ruptured due to which fluid is leaked
into the retina. The fluid leakage leads to the formation of
exudates and hemorrhages, which is the next stage of the
DR called moderate non-proliferative DR. The third stage of
non-proliferative DR is severe, which causes the blockage of
blood supply in some retinal vessels. In this stage of NPDR,
the blood supply to some areas of the retina is affected. Such
areas of the retina exude growth factors, which lead to the
formation of new retinal blood vessels.

The paper [1] proposes an effective image processing
method for the detection of diabetic retinopathy diseases
from retinal fundus images. The proposed method involves
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several steps, including pre-processing, feature extraction,
and feature selection, and was evaluated on the DIARETDB1
dataset, achieving high efficiency and effectiveness in sensi-
tivity, specificity, and accuracy.

The paper [2] proposes an automated system for detecting
exudates and cotton wool spots in early stages of diabetic
retinopathy. The proposed method involves processing the
retinal image, vessel segmentation, optic disc localization and
removal, feature extraction, feature selection, and classifica-
tion using SVM and Naive-Bayes classifiers.

In [3], authors presents a new approach for detecting
diabetic retinopathy using retinal fundus images, which com-
bines image processing and artificial intelligence. The pro-
posed method involves feature extraction and classification,
and achieves high accuracy in detecting various types of dia-
betic retinopathy, including exudates, micro-aneurysms, and
retinal hemorrhages. The proposed method is evaluated using
MATLAB simulation and compared to expert ophthalmolo-
gists, demonstrating high sensitivity, specificity, and accuracy
in detecting the disease.

In [17], paper proposes a new pipeline technique for
the automatic diagnosis of brain cancer images from MRI,
which involves feature extraction, preprocessing, and an opti-
mal artificial neural network. The improved metaheuristic,
courtship learning-based water strider algorithm, is used for
feature selection and classification, resulting in higher effi-
ciency compared to other analyzed procedures.

In [18], the authors designed two basic modules, Patches
Convolution Attention Transformer (PCAT) and Feature
Grouping Attention Module (FGAM). Both are used to
extract refined feature maps with multi-scale feature infor-
mation. These modules work together to integrate feature
information from both, achieving complementary functions.
The PCAT-UNET approach has proven to be effective in
achieving accurate retinal vessel segmentation.

In [19], authors present Genetic U-Net, a novel automated
design method. They used an improved genetic algorithm
(GA) to identify better-performing architectures in the search
space and explore the potential of finding a superior network
architecture with fewer parameters. This method achieved
better retinal vessel segmentation with fewer parameters.

The paper [20] proposes a new DL pipeline called DR-
VNet that combines residual squeeze and excitation blocks
with residual dense net blocks. DR-VNet consists of two
cascaded sub-networks a Backbone Residual Dense network
and a Fine-tune Tail network. The Backbone Residual Dense
network and the Fine-tune Tail network are the two cascaded
sub-networks that comprise the DR-VNet. Both the thicker
and the thinner retinal vessels can be segmented more effec-
tively using this method.

llIl. THE FRAMEWORK FOR DR AND GLAUCOMA
DETECTION

In this section, we discuss the details of the databases
used along with the essential tasks required for eye disease
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classification. Initially, Pre-processing is performed for
ensuring that the dimension of all the images is consistent
and their contrast is suitable enhanced. The suitable channel
is selected and extracted for further processing. Mostly, the
researchers select the green channel of the RGB image, which
is enhanced using CLAHE. The pre-processing is performed
for removing the noise in the image and improving the qual-
ity of the image through various transformations including
brightness transformation and contrast enhancement [21].

Other than PSO based CLAHE, the well-known pre-
processing steps include contrast enhancement based on
morphological Top-Hat transformation and filtering. Usually,
CLAHE and Top-Hate transformation are applied along with
any suitable filtering, for image processing based retinal
vessel segmentation. For machine and deep learning based
approaches for retinal vessels and optic cup/disk segmenta-
tion does not require significant pre-processing. For these
approaches, cropping along with data augmentations are used
for generating large databases needed for better training and
testing of the developed models.

The image resizing is performed using cropping and a
suitable interpolation method. The cropping is performed
based on the size of the diameter of the field of view (FoV),
which in our case is the retina. The contrast enhancement
is performed for highlighting the important features in the
images. A suitable method mostly selected by the researchers
for contrast enhancement of retinal fundus images is CLAHE.
The contrast enhancement of retinal fundus images is a basic
pre-processing operation, for which the CLAHE has been
used with its default parameters in the past [22], [23], [24].

The issue with the default parameters of CLAHE is that
it may lead to non-optimal contrast enhancement for some
fundus images of any database. The non-optimal contrast
enhancement due to default parameters of CLAHE leads
to difficulty in accurate segmentation of vascular structure
and Optic Cup/Disk in retinal fundus images. In our most
recent work in [21], we exhaustively evaluated the impact
of CLAHE parameters optimization on the contrast enhance-
ment of retinal fundus images. An advanced version of the
optimization process, which we applied in [21] is shown in
Fig. 4 that can be applied to any other image database. The
researchers may apply any other optimization algorithm other
than particle swarm optimization (PSO), which may produce
better results or may also reduce the execution time.

An illustrative example of the impact of the optimization
process of CLAHE parameters on the contrast enhancement
of retinal fundus images is shown in Fig. 5. It is evident
from Fig. 5 that the parameter optimization of CLAHE has
a significant impact on contrast enhancement of the retinal
fundus images. So, it is highly recommended to choose any
evolution algorithm for parameter optimization of CLAHE
as a pre-processing step before training and testing of any
developed DL model.

The retinal blood vessel segmentation and the demar-
cation of their morphological features including width,
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length, tortuosity, and branching angles/pattern are impor-
tant attributes, which can be used for the classification of
numerous diseases such as DR, cardiovascular, arterioscle-
rosis, choroidal neovascularization, and hypertension [25].
Accurate retinal vessel segmentation is a challenging task,
which affects the diagnosis of the above-mentioned diseases.

In our recent work in [21], we exhaustively investigated
all possible scenarios for the parameters of CLAHE and
evaluated its impact on the accuracy of retinal vessel seg-
mentation. We concluded that for accurate retinal vessel
segmentation, we need to intelligently explore the optimum
parameter values for the contextual region and clip limit of
CLAHE. Besides contrast enhancement of fundus images,
there are numerous other challenges, which limit the perfor-
mance of both supervised and unsupervised machine/deep
learning models for retinal vessel segmentation.

Input Image

7 o ‘-\‘
Evolution Algorithm ’ CLAHE ‘
\ /
N ~— Evaluation Metric o
3

= T i "Dptlmi!ed S
~<_ Parameters >
“.Obtained .~

L Yes
Apply the Optimized

Parameters to
Enhance the Image

FIGURE 4. Optimization of CLAHE parameters for contrast enhancement
of retinal fundus images.

CLAHE with Default
Parameters

CLAHE with Best
Parameters

FIGURE 5. The impact of CLAHE parameters optimization on contrast
enhancement of retinal image.

In the medical community, it is a widely accepted notion
that the automatic segmentation of retinal blood vessels is
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a very important step for the development of an automated
eye disease classification system. Many eminent researchers
have developed state-of-the-art algorithms and machine/deep
learning models for accurate and reliable segmentation of
retinal blood vessels in the last two decades. But there are
numerous problems and challenges that need to be addressed
by the research community. The various challenges in retinal
vessel segmentation are mentioned below [26].

The central vessel reflex is one of the main challenges
which hinders accurate retinal vessel segmentation. The
bifurcation and crossover are also big challenges, which
affect the segmentation accuracy of retinal vessels. The merg-
ing point of two or more vessels also affects the segmentation
accuracy. The segmentation of thin vessels is also difficult.
The presence of various kinds of lesions also has negative
impact on segmentation accuracy.

The crossover and bifurcation issues are highlighted graph-
ically in Fig. 6. We have recently explored supervised and
unsupervised approaches for accurate retinal vessel segmen-
tation [21], [23], [24], [27]. Some other eminent researchers
have also targeted the above mention challenges during reti-
nal vessel segmentation [7], [22], [26].

Despite the better evaluation metrics of the unsupervised
and supervised techniques, different issues still require the
proper focus of the research community.

The optic cup and disk segmentation is a challenging task,
where significantly high accuracy is needed for the diag-
nosis of Glaucoma. Before the development, training, and
assessment of the DL model for accurate optic and optic disk
segmentation, we need to explore an efficient strategy for
contrast enhancement of the fundus images of the desired
databases. The general flow diagram for OD/OC and retinal
vessel segmentation using any developed DL model is shown
in Fig. 7. One of the major issues with OD detection is
the presence of vessels inside it, which hinders its accurate
segmentation. The presence of vessels inside OD is shown
graphically in Fig. 8 [28].

Furthermore, the post-processing and pre-processing tasks
are based on heuristic algorithms, due to which their adjust-
ment to noises and different pathologies is needed. Another
issue is the higher computational time and memory require-
ment of the previously explored DL methods. The higher
execution time required for the training of DNN and the
tuning of its hyper-parameter limits their deployment for
population scale monitoring.

The segmentation of retinal vessels using a lightweight
deep neural network model is the primary objective of the
present study. Researchers have characterized the segmen-
tation of retinal vessels in retinal fundus images as a chal-
lenging task of semantic segmentation, where the individual
pixels are identified using a pixel-by-pixel approach.

By carefully examining the earlier studies, it is clear that
the missed identification of the tiny vessels in retinal fun had
a significant effect on the sensitivity of the previous methods.
For segmenting retinal vessels, we currently present a DL
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model termed RC-DNN. The focus has been on effectively
detecting thin vessels in addition to thick blood vessels, which
significantly enhances the accuracy of the models.

Most of the previous works on retinal vessel segmentations
attribute higher computational complexity and some of them
even require some pre and post-processing steps [1], [2],
[31, [71, [81, [9], [101, [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27]. Addi-
tionally, these previous works attribute higher computational
complexity to the DL model. Recently, we applied the Colon-
SegNet [29] model for retinal vessel segmentation, which
is lightweight and also achieved significantly lower compu-
tational complexity compared to previous attempts for the
same task of retinal vessel segmentation. In the current work,
we further optimized ColonSegNet Model and achieved even
improved results without compromising on the evaluation
metrics of the developed model.

B Cross QOver

B Bifurcation

FIGURE 6. Crossover and bifurcation issues.
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FIGURE 7. The general flow diagram for OD/OC detection and retinal
vessels segmentation.

All these challenges, specifically the damage caused by
different lesions hinders accurate vessel segmentation. For
accurate and reliable vessel segmentation, it is recommended
to select suitable pre and post-processing operations, which
are faster and assist the developed learning model in achiev-
ing better evaluation metrics.

There are numerous challenges in developing Al-based
automated solutions for eye disease classification. Accu-
rate retinal vascular segmentation is hampered by a number
of issues, one of which is the central vessel reflex. The
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TABLE 1. Performance comparison of various models for retinal vessels segmentation on three databases.

DRIVE CHASE DBI1 STARE
Methods
Se Sp Acc Se Sp Acc Se Sp Acc
Marin et al.[36] 0.7067 | 0.9801 | 0.9452 | N.A N.A N.A 0.6944 | 0.9819 | 0.9526
Fraz et al.[25] 0.7406 | 0.9807 | 0.9480 | 0.7224 | 0.9711 | 0.9569 | 0.7548 | 0.9763 | 0.9534
Cheng et al.[37] 0.7252 | 0.9798 | 0.9474 | N.A N.A N.A N.A N.A N.A
Azzopardi et 0.7655 | 0.9704 | 0.9442 | 0.7585 | 0.9587 | 0.9387 | 0.7716 | 0.9701 | 0.9497
al.[38]
Roychowdhury et | 0.7395 | 0.9782 | 0.9494 | 0.7615 | 0.9575 | 0.9467 | 0.7317 | 0.9842 | 0.9560
al.[39]
Zhang et al.[40] 0.7743 | 0.9725 | 0.9476 | 0.7626 | 0.9661 | 0.9452 | 0.7791 | 0.9758 | 0.9554
Li et al.[41] 0.7569 | 0.9816 | 0.9527 | 0.7507 | 0.9793 | 0.9581 | 0.7726 | 0.9844 | 0.9628
Yan et al.[42] 0.7653 | 0.9818 | 0.9542 | 0.7633 | 0.9809 | 0.961 N.A N.A N.A
Jiang et al.[43] 0.7839 | 0.9890 | 0.9709 | 0.7839 | 0.9894 | 0.9721 N.A N.A N.A
Adapa et al.[44] 0.6994 | 0.9811 | 0.945 N.A N.A N.A N.A N.A N.A
SS without MPSO- | 0.8252 | 0.9787 | 0.9649 | N.A N.A N.A 0.8397 | 0.9792 | 0.9659
CLAHE |[21]
SS with MPSO- 0.8315 | 0.9750 | 0.9620 | N.A N.A N.A 0.8433 | 0.9760 | 0.9645
CLAHE |[21]
PCAT-UNet[18] 0.8576 | 0.9932 | 0.9622 | 0.8493 | 0.9966 | 0.9812 | 0.8703 | 0.9937 | 0.9796
Genetic U-Net[19] | 0.8300 | 0.9758 | 0.9577 | 0.8463 | 0.9818 | 0.9667 | 0.8658 | 0.9846 | 0.9719
DR-VNet[20] 0.8512 | 0.9795 | 0.9682 | 0.9120 | 0.9733 | 0.9694 | 0.8572 | 0.9841 | 0.9744
ColonSegNet [29] | 0.8491 | 0.9774 | 0.9659 | 0.8607 | 0.9806 | 0.9731 | 0.8573 | 0.9813 | 0.9719
ColonSegNet V2 0.8391 | 0.9794 | 0.9669 | 0.8655 | 0.9792 | 0.97199 | 0.8671 | 0.9812 | 0.9723
(Proposed)
TABLE 2. Performance of various deep learning models for OD and OC segmentation using DRISHTI-GS.
References Year OC oD
F1 JC | Sens | Spec F1 JC Sens | Spec
Sedai et al.[42] 2016| 85 - - - 95 - - -
Sevastopolsky et al.[45] | 2017 | 85.21 | 75.15 | 84.76 | 98.81 | 90.43 | 83.5 |91.56 | 99.69
Zilly et al.[46] 2017| 87.1 85 - - 97.3 91.4 - -
Fu et al.[47] 2018 | 86.18 | 77.3 | 88.22 1 98.62 | 96.78 | 93.86 | 97.11 | 99.91
Son et al.[48] 2019 | 86.43 | 77.48 | 85.39 1 99.07 | 95.27 | 91.85 | 97.47 | 99.77
Xu et al.[49] 2019 89.2 | 82.30 - - 97.8 94.9 - -
Gao et al.[32] 2020 | 90.58 - - - 97.87 - - -
Tabassum et al.[33] 2020 92.4 |86.32|95.67|99.81| 9597 | 91.83 | 97.54 | 99.73
Liu et al.[34] 2021 | 91.2 84.4 - - 97.8 95.7 - -

contrast enhancement of retinal fundus images is the first step
required to improve the images. Another significant problem
influencing the segmentation accuracy of retinal vessels is
the bifurcation and crossing over. The performance of the
segmentation algorithm is also influenced by the point at
which two or more vessels join. Tiny vessel segmentation is
also troublesome. Accurate segmentation is also negatively

VOLUME 11, 2023

impacted by the presence of numerous red pathologies that
exists in images of the diseased retina.

One of the main issues is the computation time of
the post-processing and pre-processing operation, which
increases the computational complexity of the overall system.
Furthermore, the DL model for retinal vessel segmenta-
tion attributes a significant number of hidden layers, which
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TABLE 3. Performance of various deep learning models for OD and OC segmentation using RIM-ONE.

References Year oC oD

F1 JC | Sens | Spec F1 JC Sens | Spec

Sevastopolsky et al.[45] [2017| 82 69 |7545199.76 95 89 95.02 | 99.73
Arnay et al.[50] 2017 - 75.7 - - - - - -
Zilly et al.[46] 2017 82.4 | 80.2 - - 94.2 89 - -

Fu et al. [47] 2018 | 83.48 73 | 81.46199.67 | 95.26 | 91.14 | 94.81 | 99.86

Son et al.[48] 2019 | 82.5 |71.65(81.42|99.65| 95.32 | 91.22 | 94.57 | 99.87
Wang et al.[51] 2019 | 78.7 - - - 86.5 - - -

Xu et al.[49] 2019 | 85.64 | 75.86 | 85.15|99.71 | 95.61 | 91.72 | 95.21 | 99.87

Tabassum et al.[33] 2020 | 86.22 | 75.32195.17199.81 | 95.82 | 91.01 |97.34]99.73

FIGURE 8. The challenges in OD and OC detection.
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FIGURE 9. ColonSegNet block diagram [30].

characterizes the significantly higher computational com-
plexity of the DL model. Unless properly addressed, these
issues will have a negative impact on the deployment of
automated Al-based eye disease diagnostics systems.

The contribution of our current work mainly focuses on
reducing the computational complexity of the developed
model (RV-SegNet) without compromising on its segmenta-
tion performance.
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FIGURE 10. Number of filters of ColonSegNet V2.

IV. METHOD

A. DETAILS OF THE BASIC MODEL ARCHITECTURE

We recently [29] developed an accurate and lightweight
model for retinal vessel segmentation based on ColonSeg-
Net [30]. ColonSegNet [30] is a real-time polyp segmen-
tation Encoder-Decoder architecture. This architecture uses
a residual block with a squeeze and excitation network.
The architecture comprises two encoder blocks and two
decoder blocks. Each encoder block consists of a 3 x
3 strided convolution between the residual blocks. Similarly,
each decoder block contains transpose convolution and skip
connections from the encoder block. The architecture of
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K. Aurangzeb et al.: Systematic Development of Al-Enabled Diagnostic Systems I E EEACCGSS

447

Horizontal flip l 20 images
447

l 20 images

(20 original) + (20) + (20) = Total 60 images

447

,,,,,,,,,,

20 original
| images |

....................

Vertical flip

(@)
447
60 images 3
from — : 120 images
: : Translation Flip (‘No”)
i stage-1 | :
(X=10, Y=-10 ) + Resize
447
- ! 240 images
Translation Flip ( ‘Vertical’)
(X=15,Y=15 ) + Resize
147
P ; 480 images
Translation Flip ( ‘Horizontal" ) g
(X=20,Y=-20 ) + Resize
480 images
Translation Flip ( ‘No”) g
(X=-10, Y=10 ) + Resize
447
480
WHIeEEs - 480 images
from Translation Flip ( “Vertical’ )
stage-2 (X=-15,Y=15 ) + Resize
447
3
o I 480 images
Translation Flip ( ‘Horizontal' ) g
(X=-20, Y=20 ) + Resize
(480) From stage-2 + (480) + (480) + (480) = Total 1920 images
FIGURE 11. The various data augmentation strategies for generating a large number of images.
ColonSegNet [30] is depicted in the block diagram in Fig. 9. complexity and a low number of trainable parameters, making

This model is advantageous due to its low computational it well-suited for low-end devices.
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FIGURE 12. The qualitative performance comparison between
colonSegNet [29] and RV-SegNet. First row presents three test images 2,
9, and 17 from DRIVE database. The second column indicates GT for all
three samples. The third and fourth rows show the output of ColonSegNet
[29] and ColonSegNet V2 respectively.

FIGURE 13. The analysis of vessels segmentation for image number 3, 4,
and 5 from CHASE_DB1 dataset. The second column indicates GT for all
three samples. The columns 3 and 4 indicate the output of ColonSegNet
[29] and RV-SegNet.

B. DETAILS OF THE ENHANCED MODEL
This work aims to optimize an Encoder-Decoder-based
architecture to reduce the computational complexity of the

105078

FIGURE 14. The analysis of vessels segmentation for image number
im0163 and im0139 from the STARE dataset. The second column indicates
GT for all three samples. The columns 3 and 4 indicate the output of
ColonSegNet [29] and RV-SegNet.

developed model without compromising on its segmentation
performance. In the experiment, we examined how adjusting
the number of convolution kernels impacted the model’s
standard evaluation metrics. It is important to mention that
the number of filters can really affect how well the model
performs and how many parameters it ends up with. This
experiment aimed at reducing the computational complexity
of the developed model (termed as RV-SegNet) while ensur-
ing that its segmentation performance remains unaffected. As
shown in Fig. 10, the number of filters was fixed by 64 filters
in all blocks of the Encoder parts and the blocks of the first
part of the Decoder. However, in all of the blocks in the
second part of the Decoder, only 32 filters were used.

V. RESULTS ANALYSIS
For the performance improvement of the DL model, one
of the ideas is to explore the optimal values for clip limit
and contextual region of CLAHE using intelligent evolution
algorithms. After optimal contrast enhancement, it is rec-
ommended to apply some intelligent method for efficiently
locating the optic cup and optic disk in the enhanced images
using any of the suitable methods [31]. Both the contrast
enhancement and cup/disk detection significantly improve
the performance of the developed DL model. Numerous stud-
ies applied DL approaches for OD and OC segmentation in
retinal fundus images [32], [33], [34].

It seems that the ColonSegNet V2 has been able to achieve
a significant improvement in performance while still main-
taining a lower level of computational complexity compared
to other existing technologies. According to the proposed
work, there has been a reduction in the number of parame-
ters used from 5.00M to 982,177, compared with our recent
work [29].

A. QUANTITATIVE PERFORMANCE COMPARISON

The performance of DL models for retinal vessel segmenta-
tion is summarized in Tab. 1 while the performance of DL
models for OD and OC segmentation of numerous notable
works on DRISHTI-GS and RIM-ONE databases is presented
in Tab. 2 and Tab. 3 respectively.
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Another challenging issue is the availability of fewer
graded images in publicly available retinal image databases.
Data augmentation is a generally applied solution for solving
this problem. Generally, the researchers apply various kinds
of data augmentation, for generating enough images for better
training of their developed DL model. The data augmentation
assists in overcoming the over-fitting issue in the training of
the developed DL model.

The authors in [35], elaborated some techniques for arti-
ficially generating enough images using data augmentation
techniques, which is required for optimal training of any
developed DL model. They applied various data augmenta-
tion strategies on the twenty images and the corresponding
gold standards of the DRIVE database. They graphically pre-
sented the various data augmentation steps including flipping
(vertical/horizontal) and translation with crop-resize (nearest-
neighbor interpolation), which we have shown in Fig. 11 [35].

They performed the data augmentation in three stages i.e.
flipping, translation with recursive flip/resize, and translation
without flip/resize. In the first stage of their data augmenta-
tion, they generated twenty images using the horizontal flip
operation and additional twenty images using the vertical
flip operation. So, the flipping operation produced 40 images
shown in Fig. 11 (a). In the second stage of the data augmenta-
tion, the available 60 images were used for translation in both
vertical and horizontal directions, in addition to flipping and
resizing recursively, which produced 480 images as shown in
Fig. 11 (b). In the final stage, the obtained 480 images were
separately translated in both vertical and horizontal direc-
tions, in addition to flipping and resizing non-recursively,
which produced 480 + 480 + 480 = 1440 images shown
in Fig. 11 (¢).

Furthermore, it is highly recommended to perform rotation
and mirroring for obtaining a sufficiently large database of
images, which will help solve the class imbalance issue,
in addition to solving the over-fitting issue of the DL model.

B. THE QUALITATIVE PERFORMANCE COMPARISON OF
OUR PROPOSED MODEL

The qualitative performance comparison of our proposed
model ColonSegNet V2 is shown in Fig. 12, Fig. 13, and
Fig. 14. The first row in Fig. 12 presents three test images
from the DRIVE database, 2, 9, and 17. The second column
indicates GT for all three samples. The third and fourth rows
show the output of our recent work [29] and RV-SegNet,
respectively.

The first row in Fig. 13 presents Image numbers 3, 4,
and 5 from the CHASE_DB1 dataset. The second column
indicates GT for all three samples. Columns 3 and 4 indi-
cate the output of our recent work [29] and RV-SegNet.
Fig. 14 presents Image numbers im0163 and im0139 from the
STARE dataset. The third and fourth rows show the output
of our recent work [29] and RV-SegNet, respectively. From
our observation of these results, we can say that the proposed
model can detect the vessels better than [29].
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VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS
This work highlights the various challenges faced by
researchers and developers in designing and developing auto-
mated systems for disease diagnosis, specifically for eye
diseases. The limited number of images in publicly available
retinal image databases leads to under-fitting and over-fitting
issues of deep learning models. To overcome this, data aug-
mentation procedures are recommended for generating a
large number of images. Furthermore, pre-processing tech-
niques such as contrast enhancement and noise removal are
necessary before training/testing deep learning models. The
trade-off between computational complexity and evaluation
metrics should also be considered to enable deployment for
large-scale population screening. Strategies and solutions for
addressing challenges in retinal vessels and OD/OC segmen-
tation are presented, which will assist in developing state-of-
the-art deep-learning models for eye disease classification,
including Glaucoma and Diabetic Retinopathy.

One limitation of this work is that the proposed deep
learning models may struggle to accurately detect very thin
vessels in retinal images, which can be a critical factor in the
diagnosis of certain eye diseases.

Future research should focus on developing more advanced
segmentation techniques that can effectively detect and seg-
ment these very thin vessels, potentially through the incorpo-
ration of additional features or information beyond what is
currently used in the proposed models.
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