
Received 25 August 2023, accepted 18 September 2023, date of publication 20 September 2023,
date of current version 26 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3317798

BERT-Based Approach for Greening Software
Requirements Engineering Through
Non-Functional Requirements
AHMAD F. SUBAHI
Department of Computer Science, University College of Al Jamoum, Umm Al-Qura University, Makkah 21421, Saudi Arabia

e-mail: afsubahi@uqu.edu.sa

ABSTRACT The incorporation of sustainability principles during the requirements engineering phase
of the development life cycle constitutes greening software requirements. This incorporation can have a
variety of effects on the software design employed in modern and cutting-edge information technology
(IT) systems. When sustainability principles are incorporated into requirements engineering, software
design priorities can change and address current design issues such as energy and resource consumption,
modularity, maintainability, and adaptability. In contrast to other green approaches that consider sustainable
development, there is a further need to investigate the relationship between software development and
the relevant green principles of sustainability during the requirements engineering phase. We present a
new mechanism for mapping software nonfunctional requirements (NFRs) to defined dimensions of green
software sustainability, consisting of two mapping steps: 1) between NFRs and sustainability dimensions;
and 2) between sustainability dimensions and two clusters of green IT aspects defined in this work.
The overall architecture of the promising approach is based on the use of the Bidirectional Encoder
Representations from Transformers (BERT) language model with an expanded dataset. We consider
transfer learning and domain-specific fine-tuning capabilities for constructing and evaluating a model
specifically tailored for developing a proof of concept of the greening software requirements engineering
task, as language models have recently emerged as a potent technique in the field of software engineering,
with numerous applications in code analysis, automated documentation, and code generation. In addition,
we test the model’s performance using an extended version of the PROMISE_exp dataset after adding a
new binary classification column for categorizing sustainability dimensions into two defined clusters: Eco-
technical and Socioeconomic, and having a selected domain expert label the raw data. Themodel’s efficiency
is evaluated using four matrices—1) accuracy; 2) precision; 3) recall; and 4) F1 score—across a variety of
epoch and batch sizes. Our numerical results demonstrate the viability of the approach in text classification
tasks via performing well in mapping NFRs to software sustainability dimensions. This acts as a proof of
concept for automating the sustainability measurement of software awareness at the early development stage.
In addition, the results emphasize the importance of domain-specific fine-tuning and transfer learning for
obtaining high performance in classification tasks in requirements engineering.

INDEX TERMS Green software engineering, requirements engineering, sustainable software system, green
IT, language model, BERT, non-functional requirements classification.

I. INTRODUCTION
Given the rapid development of technologies and the need
to manage massive amounts of data, perform multiple tasks

The associate editor coordinating the review of this manuscript and

approving it for publication was Hailong Sun .

simultaneously, and provide high levels of performance and
reliability, adopting modern information technology (IT)
systems with the appropriate information and communication
technology (ICT) infrastructure has become a necessity.
Furthermore, IT’s substantial role in several domains, such
as virtual meetings, smart transport systems, decision-support

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 103001

https://orcid.org/0000-0001-7962-6943
https://orcid.org/0000-0001-7654-5574


A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

systems, intelligent health care applications, robotics, and
smart Internet of Things systems used in smart cities,
highlights its importance to many fields. Thus, some software
is utilized in organizations for ICT realization, in which
these software play important role in service-providing and
production processes. Notably, companies that manufacture
hardware and develop software have focused on the design
and implementation of these and have largely ignored the
sustainability of the resources used to create them. This lack
of attention has resulted in a significant problem that can be
analyzed from two perspectives: 1) IT system (software); and
2) sustainability [1]. On the IT systems side, the consequence
is the exponential growth of software complexity, which
has negative effects on the owner, stakeholders, and costs.
Conversely, IT systems have negative effects on sustainabil-
ity, including in terms of the quantity of hardware; data
centers; and the energy required to operate, maintain, and
develop these systems’ processes. In addition, the negative
effects on the economic and social dimensions cannot be
overlooked [1], [2].

This increases the demand for ‘‘green and sustainable’’
software—that is, software that has a very low impact on envi-
ronment, social, and economic aspects, such as performance
level, network bandwidth, and hardware requirements that
directly lead to consuming more energy or natural resources.
To address this demand, greening software engineering
research can be a core solution to enhance the software
system sustainability from different perspectives. Sustainable
software development is a key point of view that must be
considered to achieve software with minimal impacts on the
economy, society, and the environment.

The work presented here contributes to the field of
software engineering and sustainability in the following
ways. First, by proposing a proof-of-concept approach
to greening requirements engineering, a crucial stage
of the software system development life cycle (SDLC).
Although several studies have been conducted on software
requirements classifications using various natural language
processing (NLP) and machine learning (ML) techniques,
such as [3], [4], and [5], our study extends their work
by mapping software nonfunctional requirements (NFRs) to
dimensions of green software sustainability via a defined
mechanism.

Second, our work expands the widely used PRedictOr
Models in Software Engineering (PROMESE) dataset with
a new feature representing the author-defined dimensions of
software sustainability. This dataset is utilized for training
the language model developed in this work. To the best of
our knowledge, this is the first study to demonstrate such a
correlation between NFRs and sustainability dimensions at
dataset level.

Third, we develop, use, and evaluate an efficient fine-tuned
Bidirectional Encoder Representations from Transformers
(BERT) language model for classifying different types of
NFRs into appropriate sustainability dimensions. This model
is considered a core component of our promising approach
to measure the degree of sustainability awareness and

consideration at the requirements engineering stage of the
SDLC.

Notably, various pretrained language models are utilized
in different NLP tasks, such as the Generative Pre-trained
Transformer (GPT) developed by OpenAI, which uses an
unsupervised learning approach for text generation [6];
the Text-to-Text Transfer Transformer (T5) developed by
Google, which is trained on text translation, summarization,
and other text-to-text NLP tasks using a unified framework
[7]; and the Robustly Optimized BERT Pretraining Approach
(RoBERTa) introduced by Facebook as a BERTmodification,
which uses additional training data and techniques to improve
the overall performance [8].

We use the BERT model in this study, based on the
developed mapping task from NFRs into sustainability
dimensions of software and the features of the data in
the selected dataset. BERT is considered a highly effective
pretrained language model that has been revealed to perform
well on a broad range of NLP tasks, especially in fine-grained
classification tasks aimed at classifying text into categories
[6]. Unlike other language models, the accuracy of the fine-
grained classification task gains more benefit from BERT’s
bidirectional nature and attention mechanism. In addition,
because BERT was pretrained on large amounts of data from
a variety of contexts, a strong foundation is leveraged for
transfer learning to new tasks in different contexts. This
makes BERT suitable for fine-tuning a small dataset such as
that selected in this study [6].
The remainder of this paper is organized as follows.

Section II presents the research background and a litera-
ture review. Section III describes the training dataset, the
dataset expansion and preprocessing stages, and the feature
engineering process. Section IV presents and discusses the
major characteristics of the two-step mapping approach
proposed in this study. This approach involves categorizing:
1) software NFRs into sustainability dimensions for software
systems; and 2) sustainability dimensions into green IT
factors. Section V demonstrates the experiment conducted
to evaluate the proposed for BERT model and discusses the
results. Lastly, Section VI discusses the conclusions of this
study and future research directions.

II. GUIDELINES FOR MANUSCRIPT PREPARATION
This section represents a brief discussion on the foundations
of this work, including state-of-the-art sustainability in
software engineering and the ways in which ML is utilized
for classification in requirements engineering.

A. SUSTAINABILITY IN SOFTWARE ENGINEERING
IT sustainability typically involves hardware sustainabil-
ity, and software sustainability often takes the form of
‘‘greening’’ IT. ‘‘Greening IT’’ [9] refers to the research
and practice of designing, manufacturing, utilizing, and
disposing of computers, servers, and associated subsystems
efficiently while ensuring a negligible or zero impact on
the environment. Introspection is encouraged throughout the
green software development process to lessen the software’s

103002 VOLUME 11, 2023



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

ecological footprint. However, software sustainability is
rarely discussed in the software engineering domain from the
perspective of software requirements.

Software systems are the core of this new and devel-
oping technologically organized world, and their uses
vary widely—from writing a document on a computer to
controlling space rockets. Software must be sustainable
because people rely on it for daily activities. Sustainability
has been designated a primary challenge in scientific and
engineering software development as the worldmoves toward
new paradigms in research and computing infrastructures.

The Software Sustainability Institute defines ‘‘sustain-
ability’’ as ‘‘the availability of software that will continue
to be enhanced and supported into the foreseeable future’’
[10]. Although the definition is ambiguous, it suggests that
sustainability relates to software availability, extensibility,
and maintainability, and these attributes can be aligned with
the definitions provided by the Institute of Electrical and
Electronics Engineers [11]. In this regard, software devel-
opment is a complex task performed in an environment of
perpetual change and uncertainty, resulting in unsustainable
software products. Thus, designing sustainable software—
that can provide the required output and perform the required
tasksmore efficiently for a longer duration than unsustainable
software—will reduce the time, computational resources,
money, and labor invested in development.

1) WHY SUSTAINABLE SOFTWARE DEVELOPMENT?
In 2015, the UnitedNations (UN) [12] outlined 17 sustainable
development goals (SDGs) and 169 targets as a part of
the UN’s 2030 Agenda for Sustainable Development. These
cover three sustainability dimensions: 1) environmental; 2)
social; and 3) economic. Correlations between the SDGs
and ICT are discussed in [13]. For the three sustainability
dimensions, several challenges were identified in achieving
these goals in the three dimensions. Consequently, sustain-
ability becomes essential to include in software development,
and there is a demand for more attention on raising
awareness about, and how to innovate, green and sustainable
software to support achievement of the SDGs by 2030. Thus,
the identification of software development sustainability
requirements is considered a crucial topic that has been
investigated and discussed in various countries, such as Brazil
[14], [15], Pakistan [16], and Saudi Arabia [17], [18].
According to [19], [20], there is no common understanding

about the definition of sustainability in the context of
requirements engineering. It refers to the systematic pro-
cess of designing, implementing, and maintaining software
artifacts over prolonged durations. This process is expected
to exhibit efficiency, responsibility, and a flexible nature
that accommodates technological advancements and evolving
user needs. Concurrently, it should aim to mitigate adverse
repercussions on the environment, economy, and societal
structures.

The three sustainability dimensions, and more (techni-
cal and individual), have been discussed in relation to
greening the software development process, including the

requirements engineering and design and implementation
phases [21]. This exploratory study found that most software
professionals agreed that the sustainability of software is
important and beneficial, and that all sustainability dimen-
sions, not just the environmental effects, must be considered
when the impact of software systems is investigated [21].

2) DIMENSIONS OF SOFTWARE SUSTAINABILITY
The dimensions of software sustainability are based on
technical and environmental aspects. Long-lasting software
affects the economy because such software focuses on
preserving capital and financial value. It also ensures the
long-term use of software systems and their appropriate
evolution in a constantly changing execution environment.

Software-intensive systems encompass the direct support
of social communities in any domain, as well as processes
that generate indirect long-term benefits for the communities.
Environmentally, sustainability aims to enhance human
welfare while protecting natural resources. This approach
entails addressing ecological requirements, such as energy
efficiency and ecological awareness, as the resource base
expands.

• Environmental Sustainability
‘‘Environmental software sustainability’’ involves develop-
ing and maintaining software systems that minimize ecologi-
cal effects, promote resource efficiency, and ensure long-term
software viability. For instance, energy-efficient algorithms
and data storage methods reduce energy consumption [22].

• Social Sustainability
‘‘Social software sustainability’’ is the design, development,
and maintenance of software systems that promote positive
social effects, inclusivity and accessibility, and long-term
benefits to users and communities, such as a collabora-
tive platform that promotes equal access to information
and learning resources for people of all socioeconomic
backgrounds [23].

• Economic Sustainability
‘‘Economic software sustainability’’ involves the develop-
ment, deployment, and maintenance of software systems
that promote financial viability, long-term growth, and
cost-effective solutions for stakeholders. For instance, open-
source software reduces licensing costs and fosters innova-
tion through collaborative development [21].

• Technical Sustainability
‘‘Technical software sustainability’’ ensures long-term func-
tionality, adaptability, and reliability by using modular
architecture and best practices for maintainability and
extensibility in software projects [21].

3) GREEN INFORMATION TECHNOLOGY
‘‘Green IT’’ is the practice of designing, producing, utilizing,
and disposing of computers, servers, peripherals, networking
devices, and other IT-related hardware in an environmentally
responsible and sustainable manner [24]. Green IT seeks to
mitigate the negative environmental effects of technology,
reduce resource consumption, and encourage the efficient
and responsible use of technology within organizations and

VOLUME 11, 2023 103003



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

TABLE 1. Green information technology aspects and related software
sustainability concerns.

society. Table 1 presents six green IT aspects and indicates
green IT’s relevance to software sustainability concerns as
obtained from the background reading.

TABLE 1. (Continued.) Green information technology aspects and related
software sustainability concerns.

Software sustainability may boost green IT by encouraging
the development of creative, efficient, and environmentally
friendly solutions that contribute to a more sustainable future.
It affects green IT practices from different perspectives [21].
For example, environmentally sustainable software requires
less energy and resources and provides a smaller IT system
carbon footprint; economically sustainable software opti-
mizes costs and resource allocation and extends the hardware
life cycle, yielding long-term benefits for enterprises; and
socially sustainable software encourages developers, end-
users, and other stakeholders to embrace responsible software
practices that support sustainability goals [21], [22].

B. NONFUNCTIONAL REQUIREMENTS
‘‘Nonfunctional requirements’’ are essential constraints that
define the overall characteristics and behavior of a system,
ultimately determining the system’s quality, performance,
and user experience. They are not related directly to
the software functionalities but, rather, describe how well
the system performs its functions [23]. They have been
characterized in various ways depending on how they are
contextualized, instantiated, or met. NFRs serve as reasons
for design decisions and limit how the needed functionality
can be realized [24].
NFRs are classified into several types, each addressing

a different aspect of software performance, and specify a
broad range of system qualities, including: performance
requirements, which dictate response times, throughput, and
resource usage; reliability, which concerns fault tolerance
and software availability; usability, which focuses on user-
friendliness, learnability, and accessibility; maintainability,
which includes modifiability, testability, and extensibility;
and security, which targets cohesion [24], [25], [26]. Table 2
summarizes the common NFR types discussed in this
subsection.

The term ‘‘sustainability’’ has been infrequently used
in the software development domain until recently’ [27].
Introduced as a method to analyze software sustainability,
the Sustainability Analysis Framework aims to capture the
relevant qualities that characterize the sustainability related
to software systems, assisting in identifying how these
qualities influence each other regarding the various aspects of
sustainability. ‘‘Nonfunctional properties’’ have been defined
as software qualities. To facilitate holistic reasoning and
decision-making regarding software, hardware, and human

103004 VOLUME 11, 2023



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

TABLE 2. Types of software nonfunctional requirements and their
definitions [26], [27], [28], [29].

and system factors, various approaches to assessing the
quality of software architecture, in particular, have been
developed.

NFRs are also utilized to validate and verify the com-
pletion of the software system and its success in fulfilling
the user needs [31]. Thus, automatic analysis of NFRs
can have great influence on the software development

lifecycle. When NFRs are poorly defined, misunderstood,
or neglected during the development process, the resulting
software product can suffer in several ways, such as security
vulnerabilities, lack of scalability, poor usability, mainte-
nance difficulties, and various performance and reliability
issues [32], [33].

C. SOFTWARE QUALITY MODELS
Software quality can be divided into two categories: 1)
process; and 2) product [34]. The technology, people, tools,
and the organization all contribute to software process quality,
whereas software product quality comprises documentation
clarity and integrity, design traceability, application relia-
bility, and test integrity. Historically, in 1977, the United
States Air Force adopted McCall’s quality model [35].
Quality attributes (quality factors, criteria, and metrics) are
defined by the hierarchical factor criteria metric model
[36]. To connect consumers and software developers, the
model focuses on user- and developer-centric factors [37],
[38]. McCall’s model defined software quality as product
operation, revision, and transfer and included 11 quality
parameters [36], [38]. The criterion and quality components
in McCall’s quality model are tree style [26]. In 1978,
Boehm introduced another software quality model, which
is commonly used [38]. This quality model is considered
superior to McCall’s model, despite the models’ structural
similarities. This quality model identified 23 nonfunctional
software quality factors [35]. It prioritized users, devel-
opers, testers, and maintainers, and addressed problems
in existing quality models, which quantified software
quality [38].
Software is defined by qualities and metrics, which

has high, midrange, and primitive characteristics [38]. The
ISO/IEC JTC 1/SC 7 Software and Systems Engineering
standard is discussed in [39]. This standard provides software
rules and measurements to develop a model [36] based on
the McCall, Boehm, and functional and NFR quality models.
ISO/IEC TR 9126-4:2004 defines quality in use, internal
quality, and process quality. The model has six product qual-
ity characteristics (portability [PO], maintainability [MN],
efficiency [EF], functional [F], reliability [RE], and usability
[US]), which have been further separated [38], [39], and
21 software quality criteria [39], [40], [41].

D. MACHINE LEARNING FOR REQUIREMENTS
ENGINEERING
ML research creates computer programs to learn from
data. Several software engineering studies have employed
ML methods to identify software engineering stages in
the SDLC. In addition, requirements specifications studies
have used different ML techniques to automate require-
ments classification and reduce its challenges [10], [39],
[42], [43], [44].

In [43], a novel classification model for software require-
ments specifications (SRS) based on the BERT model is
presented. The transfer learning capabilities of BERT has

VOLUME 11, 2023 103005



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

been used to train a classifier on SRS documents, resulting
in superior performance compared with conventional ML
techniques. They demonstrate that the BERT-based model
can accurately categorize SRS text into various categories,
including functional, nonfunctional, and quality require-
ments. In [44], the nonfunctional and functional Require-
ments classification using BERT (NoRBERT) language
model’s transfer learning-based capabilities are utilized
to investigate the challenge of classifying functional and
nonfunctional SRS documents. The work concluded that
NoRBERT also significantly enhances prediction perfor-
mance compared with other deep-learning techniques.

Another keyword classification technique as an NFR
classifier is discussed in [45]. The classifier solved the
NFR classification problem by discovering a set of weighted
indicator terms for each NFR type using a training set. This
strategy restricts the NFR classifier to only recognizing and
retrieving categories for which it has been trained.

This classifier has two phases. First, indicator terms for
each NFR category are selected. This phase requires the
use of pre-classified training requirements. The training
set requirements calculate a probabilistic weight for each
potential indicator phrase for each NFR type. An indicator
term’s weight represents its requirement type. For example,
terms such as ‘‘authenticate’’ and ‘‘access’’ that appear
frequently in security requirements and rarely in other types
of requirements are strong indicators for security NFRs,
whereas terms such as ‘‘ensure’’ that appear less frequently in
security requirements or appear in various requirement types
are weaker indicators.

In the second phase, indicator terms can categorize
additional requirements and declarations. Each requirement’s
indicator terms are used to calculate a probability value for
the new requirement’s NFR type. Multiple indicator terms
of a particular NFR type classify a requirement. Unclassified
needs are functional unless they score above a threshold for
a particular NFR type. The authors in [43] set a threshold
to achieve high recall, since classification findings are only
successful if a significant proportion of target NFRs are
discovered for a certain type.

Furthermore, a sentence-based automatic requirements
document classifier has been described [46]. The classifier
was implemented using the General Architecture for Text
Engineering system [47]. A custom text-mining infrastruc-
ture was used to identify and classify candidate sentences
using ML algorithms. The presented classifier was trained
on both the PROMISE and the Concordia Requirements
Engineering (RE) corpus. In the experiments, presented in
[47], third-order polynomial support vector machines fared
best. Sentence token stem-based unigrams were used for
training. ‘‘Web-based displays of the most recent ASPERA-3
data shall be made available to the public’’ was annotated as
both a functional requirement (FR) and a design constraint.

In conclusion, unlike what is proposed in our work, the
discussed studies [43], [44], [45], [46], [47] focused on NFR
classification without considering the correlation between
NFR types and dimensions of software sustainability.

E. ENGLISH LANGUAGE PROCESSING IN PYTHON
The field of NLP has seen the development of several power-
ful Python libraries, each designed to cater to different aspects
of text processing. Among these, the Natural Language
Toolkit (NLTK) and spaCy are two of the most prominent
and widely used tools for text processing [48], [49]. NLTK
is a comprehensive library that provides extensive resources,
including corpora, lexical databases, and pretrained models,
as well as a variety of text-processing functions, such
as tokenization, stemming, lemmatization, part-of-speech
tagging, and parsing. Developed as an open-source project,
NLTK has been widely adopted in academic and educational
settings, primarily because of its ease of use and extensive
documentation. As a result, it has become an invaluable
resource for those learning and teaching NLP [45].

SpaCy [49] is a more recent NLP library that concentrates
on advanced and efficient text processing, making it ideal
for large-scale information extraction projects. Users can
promptly develop and deploy NLP applications with the
help of spaCy’s simple application programming interface
(API), quick performance, and pretrainedmodels for multiple
languages. Built with production-ready applications in mind,
spaCy prioritizes efficiency and efficacy over the NLTK
library’s comprehensiveness. As a result, spaCy has acquired
traction in the industry, becoming a popular option for
advanced and practical NLP applications [50]. While both
NLTK and spaCy provide potent tools for text processing, the
choice between the two libraries largely depends on the task’s
specific requirements, complexity, and scope.

III. TRAINING DATASET AND PREPROCESSING
We considered the expanded version of the commonly used
PROMISE corpus [54] (PROMISE_exp), presented in [50],
as a base for this research. We added different types of
software requirements after searching in requirements engi-
neering documents, available online, using the Google search
engine. In addition, experts applied a validation process
to measure the extracted requirements, before adding new
requirements to the repository. This expansion improved the
original dataset as was revealed on evaluating the new version
against the original repository using the ML techniques
of a support vector machine, decision tree learning, the
k-nearest neighbors algorithm, and the multinomial naive
Bayes algorithm.

In contrast to the original PROMISE repository that
has only 625 requirements, PROMISE_exp consists of
969 labeled software requirements expressed using natural
language (English). It has been used in several studies, such
as [52], [53], [54], [55], and [56], to address the problem
of software requirements classification. Both versions of the
dataset consist of three main attributes: ProjectID, Require-
mentText, and Class. The ProjectID attribute represents
the identification number of the project from which the
requirements were extracted, the RequirementText attribute
represents the actual text used to express a software
requirement in a particular project, and the Class attribute
represents the categorized type for each RequirementText.

103006 VOLUME 11, 2023



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

FIGURE 1. Dataset expansion and labelling strategy.

PROMISE_exp classifies software requirements into FRs,
and 11 types of NFRs: usability (US), portability (PO), legal
(L), maintainability (MN), scalability (SC), security (SE),
availability (A), fault tolerance (FT), look and feel (LF),
operational (O), and performance (PE).

A. EXPANDING PROMISE-EXP DATASET
To address all the quality attributes presented in the proposed
software sustainability measuring framework, and as a part
of this study’s contribution, we extended the PROMISE_exp
dataset in two stages. First, we considered three types of
NFRs—RE, EF, and accessibility (AC)—and added these
into the dataset, because these types of software NFRs can
also be used to determine the degree of sustainability of a
software system. In addition, to address more NFRs that are
not considered in the PROMISE_exp version of the dataset,
including AC, EF, interoperability (IN) and RE, we added
numerous instances to the dataset. The Unified Modeling
Language (UML) activity diagram shown in Fig. 1 illustrates
the steps taken to create the extended dataset, including the
data preprocessing steps taken to clean, transform, and label
data.

As shown in Fig. 1, some steps were performed before
adding a new NFR or FR instance into the dataset. In the
first step, publicly available documents of student graduation
projects and dissertations enrolled in a computing-related
degree or program in past years were retrieved through
an online search. Then, all retrieved dissertations and
project reports were analyzed, following which only project
and dissertation documents based on the software/system
development theme were considered and the remaining
documents discarded.

Next, the software/system requirements and analysis
chapters of the documents considered were reviewed and
requirement sentences were determined and extracted. Most
of the requirements identified from the documents were
classified according to whether they are functional or a type
of NFR. Only a few NFR sentences were manually classified
into one of the NFR types considered.

After completing this NFR extraction and classification
step, all selected NFRs, as well as FRs, were validated and
checked by a software engineer / computer scientist peer
for linguistic ambiguity and correctness. Then, all validated
software/system requirements were added to the dataset as
new instances. The expanded version of the PROMISE_exp
dataset utilized in this study consists of 1149 requirements

FIGURE 2. (a) Distribution of nonfunctional requirements in the
expanded dataset. (b) Distribution of label values in the dataset after
applying the labeling process.

distributed over 69 documents. Its composition is presented
in Fig. 2(a).

As part of the dataset expansion process, the current label
column in the dataset was considered another feature of the
dataset. The new expanded versionwas considered unlabeled,
thus a suitable labeling technique was applied, as discussed
next.

B. DATASET LABELING TECHNIQUE
Based on the nature of the expanded dataset version utilized,
the manual labeling technique was considered suitable for
annotating it. A domain expert was selected to go through
each line of the raw data and assign an appropriate label. The
labels have been used as a meaningful and informative way
to represent the context of software sustainability associated
with common green IT practices. The activity diagram
displayed in Fig. 3 demonstrates the overall labeling process.

1) LABEL IDENTIFICATION
In line with the strategy adopted to map sustainability
dimensions onto green IT aspects (discussed in Section IV-B),
two informative labels have been introduced for representing

VOLUME 11, 2023 103007



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

FIGURE 3. Labeling process in the utilized dataset.

two categories of green IT factors: Eco-technical and
Socioeconomic. These new labels were used for applying
an appropriate binary semantic text classification technique,
which classifies semantically relevant NFRs into one of these
categories.

The identification process started by asking the selected
expert to make judgments about a given unlabeled NFR
statement. The labelers was asked to label all the NFR
statements in a dataset where ‘‘does the statement indicate
or imply a direct contribution to technical or environmental
sustainability’’ is true. For instance, the statement ‘‘The
application responds in a reasonable time limit’’ contributes
to technical and environmental sustainability by not consum-
ing a large amount of power because of slow performance.
Subsection B, ‘‘Feature Engineering for Green Information
Technology Aspects,’’ discusses the direct influences of each
type of NFR on different sustainability dimensions, which
were used as guidance for the labeling process. After this task,
the labels were distributed in the expanded dataset as shown
in Fig. 2(b).

2) NONFUNCTIONAL REQUIREMENT EVALUATION
The evaluation process consisted of three manual steps,
performed by a selected domain expert: 1) evaluating the
direct influence of each NFR appearing in the expanded
dataset on a sustainability dimension; 2) evaluating the
semantic meaning of each NFR and its ability to influence
green IT; and 3) filling the newly added column with a
suitable label value.

C. FEATURE ENGINEERING FOR GREEN INFORMATION
TECHNOLOGY ASPECTS
This section proposes the systematic process of features
engineering that aims to obtain linguistic features of textual
sustainability requirements based on many NFRs and quality
attributes considered in the extended dataset. From among the
various feature engineering techniques available, the BERT
technique, provided by Google AI, was adopted. Building the
BERT model can facilitate a more precise comprehension of
the text’s word semantics and syntactic relations [5]. BERT is
pretrained utilizing two unsupervised learning goals, masked
language modelling and next sentence prediction. These
objectives allow BERT to acquire a profound comprehension
of the language structure and semantics without relying on
labeled data, making it highly adaptable for the binary text
classification required in the proposed approach [61], [62].

FIGURE 4. Bidirectional Encoder Representations from Transformers
(BERT) model development and training process.

With its transfer learning capabilities, BERT can replace
traditional pipelines in NLP-based systems [5]. With minimal
fine-tuning, BERT models can be applied to tasks other
than the one for which they were trained. Thus, developing
BERT may require less effort than performing traditional
NLP processing using a deep-learning technique, because
loading a pretrained BERT model and performing fine-
tuning tasks are all that are required. As a result of its
transformer-based architecture, the BERT paradigm provides
more efficient computation and parallelism when dealing
with long-range text dependencies. These advantages surpass
those of other techniques, including bag of words, term
frequency–inverse document frequency, word embedding,
recurrent neural networks, and long short-term memory [5].
In this study, the Python library scikit-learn (sklearn)

was used to implement the data preprocessing and feature
extraction strategy. PyTorch was also used—another pow-
erful versatile library for tensor computation in Python,
PyTorch offers a dynamic and user-friendly approach for
model deployment and dataset training.

The UML activity diagram shown in Fig. 4 demon-
strates the NLP pipeline of BERT designed in this study.
First, the dataset is converted into the PyTorch data frame,
and split up into training and validation sets. Then, the BERT
tokenizer is uploaded and used to convert each NFR text into
BERT tokens. All labels are transferred into numeric values.
After this, training and testing datasets are created. Next,
the sequence classification step is applied using the loaded
BERT model. Then, the trainer is created after determining
appropriate training arguments to fine-tune the BERT model.
Lastly, the overall BERT classifier accuracy is calculated to
be used for further predictions.

IV. PROPOSED APPROACH
Prior to an in-depth discussion of the mapping stages of the
suggested approach, a concise overview of the methodology
utilized in this work is necessary. The method is novel
in that it addresses the problem of linkage between NFRs
and the defined green IT aspects by employing well-
known sustainability dimensions and the subsequent steps:
1) identifying the mapping between the four sustainability
dimensions and NFRs; 2) identifying the mapping between
the four sustainability dimensions and green IT aspects,
which are the defined (clustered) sustainability dimensions
presented in this work; 3) developing and training the BERT

103008 VOLUME 11, 2023



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

model; and (4) expanding and labeling the dataset with an
additional green IT characteristic.

Moreover, to the best of our knowledge, there is no dataset
containing sustainability features correlated with NFRs, nor
is there a comparable approach with which to compare our
method. This is a further advantage of the proposed method.

A. MAPPING NFRs TO SUSTAINABILITY DIMENSIONS
As described earlier, software NFRs have a significant
relationship with overall green sustainability, because they
can influence the environmental impact of a software system
directly and indirectly. By considering the direct influence of
NFRs on software sustainability via its variant dimensions,
more sustainable and environmentally friendly software can
be developed. The following sections discuss the mapping of
each software sustainability dimension to each NFR type that
has only direct influence on the overall sustainability. We are
aware of the other types of NFRs that have less influence,
or indirect effects, on sustainability, but do not include these
in the tables presented in this paper.

1) MAPPING ENVIRONMENTAL SOFTWARE SUSTAINABILITY
TO RELEVANT NONFUNCTIONAL REQUIREMENTS
The environmental sustainability of software systems is
highly dependent on NFRs, or the so-called software quality
attributes, such as performance, security, and scalability.
As the use of environmental software applications for mon-
itoring, predicting, and managing environmental processes
increases, ensuring that these systems are resource and
energy efficient becomes essential. Moreover, performance
optimization can also lead to reduced computational require-
ments and energy consumption, contributing to a smaller
environmental footprint for these applications. In this study,
we develop a detailed mapping between NFR types and
environmental software sustainability after evaluating the
definition of the environmental sustainability of software
against the definition of each NFR type. Only NFR types
that have direct influence on environmental sustainability are
considered (see summaries in Table 3).

2) MAPPING TECHNICAL SOFTWARE SUSTAINABILITY TO
RELEVANT NONFUNCTIONAL REQUIREMENTS
NFRs are essential to the technical viability of software.
As software systems and applications become increasingly
complex and embedded in multiple domains, ensuring
their long-term technical viability is crucial. This involves
enabling systems to adapt to changing requirements and
evolve over time, while mitigating the risk of technical
obsolescence. Focusing on the capacity of software systems
to adjust to new technologies, platforms, and environments
is considered vital to maintaining technical relevance in a
rapidly changing technological landscape. In addition, pro-
moting the reuse of existing resources ultimately contributes
to the technical sustainability of software and systems [59],
[60]. Table 4 shows the detailed mapping between NFR types
and the technical sustainability of software after evaluating
the definition of technical sustainability of software against

TABLE 3. Types of nonfunctional requirements and their direct influence
on the environmental sustainability of software.

FIGURE 5. The defined groups of the common four sustainability of
software dimensions used for training the developed BERT model.

the definition of each NFR type. Only NFR types that have
direct influence on technical sustainability are considered in
the proposed approach.

B. MAPPING SOFTWARE SUSTAINABILITY DIMENSIONS
INTO GREEN IT ASPECTS
As mentioned earlier, the various dimensions of sustainable
software have a significant impact on the general green IT
practices from different viewpoints. In the proposedmapping,
the four dimensions of software sustainability are clustered
into two groups (illustrated in Fig. 5): 1) the Eco-technical
factor combines the technical and environmental (ecological)
dimensions of sustainability—this factor emphasizes the
effective efficient development and application of technology
in a way that promotes the environmental sustainability and
efficiency of software; and 2) the Socioeconomic factor,
which combines the social and economic dimensions of
sustainability, and refers to the interrelationship between
social and economic factors at the individual and community
levels, emphasizing the connection between the two in
various contexts and considerations, as well as its effects on
user behavior and organizations.

VOLUME 11, 2023 103009



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

TABLE 4. Types of nonfunctional requirements and their direct influence
on the technical sustainability of software.

V. MODEL EVALUATION AND RESULTS DISCUSSION
In this section, we discuss the process we undertook to
evaluate the performance of the BERT model, developed
in this study for binary text classification. We followed
a strategy of fine-tuning the developed BERT model on
the dataset, which consisted of examples of NFR phrases
classified into two green IT factor classes: Socioeconomic
and Eco-technical. The dataset we used in our experiment
was imbalanced. It comprised 608 instances of NFR textual
phrases, of which 419 were labeled Socioeconomic and 189
Eco-technical.

A. EXPERIMENT OVERVIEW
To evaluate the proposed proof of concept, our experiment
was designed to investigate the feasibility and measure the
ability of our BERTmodel developed for binary classification
in classifying the defined two classes of software green
sustainability. This can be achieved by reaching the highest

possible scores in different performance metrics. Notably,
we were aiming to validate our proof-of-concept approach
rather than to find the best language model.

For the evaluation experiment, the dataset was divided
into training (70%) and testing (30%) datasets. A hyper-
parameter tuning strategy was considered to optimize the
performance of the developed BERTmodel using two critical
parameters—number of epochs and batch size. The model
was trained overmultiple epoch numbers, ranging from 1 to 5,
8 and 12, two batch sizes (8 and 16), and Adam optimization
in the training process. ‘‘Batch size’’ refers to the number
of training samples used in a single update in the training
process, which influences the model performance.

To quantify the model performance and its ability to
provide correct predictions from different aspects, four
common metrics—accuracy, precision, recall, and F1 score
on the validation set—were considered in monitoring and
examining the performance of the developed BERT model.
To avoid the overfitting problem, we controlled the ran-
domness split of training and testing data using a specific
random_state value to ensure that the split is reproducible.

B. ANALYSIS AND INTERPRETATION OF RESULTS
A confusion matrix was utilized to describe the performance
of the classification model developed in this work. As shown
in Fig. 6, we chose the Socioeconomic label as the negative
and the Eco-technical label as the positive. With 8 epochs
and a batch size of 8, the matrix shows that 120 instances
of Socioeconomic were accurately detected, while 11 cases
were predicted as Eco-technical but were Socioeconomic.
Furthermore, 35 instances of Eco-technical were correctly
identified, while 19 instances were predicted as Socioeco-
nomic but were Eco-technical [Fig. 6(a)]. However, with
8 epochs and a batch size of 16, the matrix shows that
121 instances of Socioeconomic were correctly identified
as Socioeconomic, whereas 10 Socioeconomic instances
were misidentified as Eco-technical. Moreover, 13 Eco-
technical instances were wrongly identified as Socioeco-
nomic, while 39 Eco-technical instances were correctly
identified [Fig. 6 (b)].

Tables 5 and 6 represent the performance metrics of the
developed BERT model for multiple epoch numbers and two
batch sizes (8 and 16). The tables reveal that the model
performance improved overall, as shown by the increase in
accuracy, precision, recall, and F1 score, as the number of
epochs increases (from 1 to 12), for both batch sizes. In the
case of a batch size of 8, the best recorded performancemetric
results were achieved with 8 epochs. The accuracy increases
from 72.6% to 84.70% as the number of epochs increases,
reflecting the improvement in the model’s ability to correctly
predict both green IT factor classes accurately. This is a good
accuracy rate, but accuracy can sometimes be misleading,
especially if the classes are imbalanced.

Regarding the model’s ability to correctly predict the Eco-
technical class, which is considered the positive label with a
value of 1 in the label probability, the performance improves
slightly as the number of epochs increases, as revealed by the

103010 VOLUME 11, 2023



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

FIGURE 6. Confusion matrices representing the performance of the BERT
model with different configuration of No. of epochs and batch sizes.

TABLE 5. Performance metrics with multiple epoch numbers and a batch
size of eight.

improvement of the precision ratio from 80.23% to 84.32%.
Furthermore, the model identifies the Eco-technical class
correctly 84.70% of the time. This percentage reflects the
ratio of sensitivity metric (recall).

As the performance scores for the accuracy metric could
be misleading when using an imbalanced dataset, the F1
score can be considered a better metric and is also used

TABLE 6. Performance metrics with multiple epoch numbers and a batch
size of 16.

in evaluations as it is the harmonic mean of both precision
and recall [64]. Remarkable improvement of the F1 ratio
can be observed (from 7.41% to 71.43%) in Table 5, which
reflects the model’s ability to identify Eco-technical samples
accurately with a low false positive rate [64]. This score is
considered reasonably good but indicates theremight be some
imbalance between precision and recall.

Similarly, the best recorded performance metric results
are achieved with 8 epochs for a batch size of 16. The
accuracy ratio increases from 71.58% to 87.43% as the
number of epochs increases, reflecting the improvement
in the model’s ability to categorize both green IT factors
accurately. Furthermore, the precision and F1 scores increase
extraordinarily, as both scores grow from about 51.24% to
87.26% and from 0% to 77.23%, respectively, indicating that
the performance of the developed model is satisfactory.

Summarizing, in the second scenario, with a larger batch
size, all performance metric scores are improved. Specifi-
cally, the F1 ratio increases from 71.43% to 77.23%. This
suggests that the model’s performance in classifying both
Socioeconomic and Eco-technical instances is improved.

Regarding the confusion matrices, the second scenario
has fewer misclassifications. The number of false positives
(instances incorrectly predicted as Eco-technical) slightly
decreases from 11 to 10, and the number of false negatives
(instances incorrectly predicted as Socioeconomic) decreases
from 17 to 13.

C. MAIN FINDINGS
• The augmentation of the batch size from 8 to 16 leads
to enhanced model performance, as evidenced by the
improvement in all evaluation metrics.

• The model’s capacity to correctly classify Socioeco-
nomic and Eco-technical instances improves in the
second scenario, with a larger batch size.

• The decrease in both false positives and false negatives
in the second scenario indicates that the model improved
its ability to make accurate predictions and avoid
incorrect ones.

• In both scenarios, the number of false negatives is higher
than the number of false positives. This indicates that
the model is more likely to misclassify Eco-technical
instances as Socioeconomic than the opposite.

• In both scenarios, the F1 ratios are slightly lower than
the other metrics, which means there could be an
opportunity for improvement by optimizing the model
further to achieve a higher F1 score.

VOLUME 11, 2023 103011



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

VI. CONCLUSION
In this study, we presented a novel two-step proof-of-
concept approach of mapping software NFRs into factors that
influence green IT practices. Unlike the traditionalML classi-
fication approaches used to categorize software requirements,
our investigation demonstrated that the proposed mapping
approach is a significant step toward understanding the
semantics of NFR phrases and interpreting the corresponding
sustainability purposes. Two labels that refer to green IT
factors, Socioeconomic and Eco-technical factors, were
defined and added to the expanded dataset to support the
binary text classification task.

In addition, a pretrained fine-tuned BERT model, with
its transfer learning capabilities, was developed for binary
NFR classification based on the semantics of NFR state-
ments in the greening requirements engineering approach
discussed in this study. The performance of the model
was monitored, analyzed, and interpreted to evaluate its
capabilities for the classification process. Our evaluation
experiments yielded substantial insights and outcomes. The
initial model configuration, consisting of 8 training epochs
and 8 batches, yielded promising results. The confusion
matrix revealed a satisfactory level of accurate predictions for
both Socioeconomic and Eco-technical instances.

However, to optimize the model, we experimented with
a larger group size of 16 while maintaining the same
number of epochs. This modification led to an improvement
across all performance metrics. In addition, the confusion
matrix revealed a reduction in both false positives and false
negatives, indicating an enhanced capacity for prediction.

Although these results demonstrate the potential of the
refined BERT model, attaining an optimal balance between
precision and recall, as highlighted by the F1 score, remains
a fundamental challenge. Depending on the significance of
each metric in a particular application, additional model
tuning may be required.

REFERENCES
[1] E. Kern, M. Dick, S. Naumann, A. Guldner, and T. Johann, ‘‘Green

software and green software engineering–definitions, measurements, and
quality aspects,’’ in Proc. ICTS, Zurich, Switzerland, 2013, pp. 87–91.

[2] C. Calero and M. Piattini, ‘‘From requirements engineering to green
requirements engineering,’’ in Green in Software Engineering. New York,
NY, USA. Cham, Switzerland: Springer, 2015, pp. 157–186.

[3] E. D. Canedo and B. C. Mendes, ‘‘Software requirements classification
using machine learning algorithms,’’ Entropy, vol. 22, no. 9, p. 1057,
Sep. 2020.

[4] G. Y. Quba, H. Al Qaisi, A. Althunibat, and S. Al Zu’bi, ‘‘Software
requirements classification using machine learning algorithm’s,’’ in Proc.
Int. Conf. Inf. Technol. (ICIT), Amman, Jordan, Jul. 2021, pp. 685–690.

[5] T. Hey, J. Keim, A. Koziolek, andW. F. Tichy, ‘‘NoRBERT: Transfer learn-
ing for requirements classification,’’ in Proc. IEEE 28th Int. Requirements
Eng. Conf. (RE), Zurich, Switzerland, Aug. 2020, pp. 169–179.

[6] R. Qasim, W. H. Bangyal, M. A. Alqarni, and A. A. Almazroi, ‘‘A fine-
tuned BERT-based transfer learning approach for text classification,’’
J. Healthcare Eng., vol. 2022, pp. 1–17, Jan. 2022.

[7] K. Pipalia, R. Bhadja, and M. Shukla, ‘‘Comparative analysis of different
transformer based architectures used in sentiment analysis,’’ in Proc. 9th
Int. Conf. Syst. Modeling Advancement Res. Trends (SMART), Moradabad,
India, Dec. 2020, pp. 411–415.

[8] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized BERT
pretraining approach,’’ 2019, pp. 1–13, arXiv:1907.11692.

[9] S. Murugesan, ‘‘Harnessing green IT: Principles and practices,’’ IT Prof.,
vol. 10, no. 1, pp. 24–33, 2008.

[10] B. Penzenstadler, ‘‘Towards a definition of sustainability in and for
software engineering,’’ in Proc. 28th Annu. ACM Symp. Appl. Comput.,
Salamanca, Spain, Mar. 2013, pp. 1183–1185.

[11] M. N. Malik and H. H. Khan, ‘‘Investigating software standards: A lens
of sustainability for software crowdsourcing,’’ IEEE Access, vol. 6, no. 1,
pp. 5139–5150, 2018.

[12] United Nation. Department of Economic and Social Affairs, the 17 Goals.
Accessed: Jul. 2, 2023. [Online]. Available: https://sdgs.un.org/goals

[13] J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, ‘‘Information and
communications technologies for sustainable development goals: State-of-
the-art, needs and perspectives,’’ IEEE Commun. Surveys Tuts., vol. 20,
no. 3, pp. 2389–2406, 3rd Quart., 2018.

[14] L. Karita, B. C. Mourão, L. A. Martins, L. R. Soares, and I.
Machado, ‘‘Software industry awareness on sustainable software engineer-
ing: A Brazilian perspective,’’ J. Softw. Eng. Res. Develop., vol. 9, no. 2,
pp. 2–15, 2021.

[15] L. Karita, B. C. Mourão, and I. Machado, ‘‘Software industry awareness
on green and sustainable software engineering: A state-of-the-practice
survey,’’ in Proc. 33rd Brazilian Symp. Softw. Eng., Salvador, Brazil,
Sep. 2019, pp. 501–510.

[16] A. Javeed, M. Y. Khan, M. Rehman, and A. Khurshid, ‘‘Tracking
sustainable development goals—A case study of Pakistan,’’ J. Cultural
Heritage Manag. Sustain. Develop., vol. 12, no. 4, pp. 478–496, 2021.

[17] S. Aljarallah and R. Lock, ‘‘An exploratory study of software sustainability
dimensions and characteristics: End user perspectives in the kingdom of
Saudi Arabia (KSA),’’ in Proc. 12th ACM/IEEE Int. Symp. Empirical
Softw. Eng. Meas., Oulu, Finland, Oct. 2018, pp. 1–10.

[18] S. Aljarallah and R. Lock, ‘‘Software sustainability from a user perspective
a case study of a developing country (Kingdom of Saudi Arabia),’’ in
Proc. Int. Conf. Comput., Electron. Commun. Eng. (iCCECE), Aug. 2018,
pp. 1–6.

[19] P. Bambazek, I. Groher, and N. Seyff, ‘‘Requirements engineering for
sustainable software systems: A systematic mapping study,’’ Requirements
Eng., no. 28, pp. 481–505, Jun. 2023.

[20] V. Bevanda, C. Silveira, and M. Reis, ‘‘Sustainability in software
engineering: A design science research approach,’’ in Proc. ERAZ, Prague,
Czech Republic, May 2022, pp. 317–323.

[21] B. Penzenstadler, V. Bauer, C. Calero, and X. Franch, ‘‘Sustainability in
software engineering: A systematic literature review,’’ in Proc. 16th Int.
Conf. Eval. Assessment Softw. Eng. (EASE), Toulon, France, 2012, pp. 1–4.

[22] H. Noman, N. A. Mahoto, S. Bhatti, H. A. Abosaq, M. S. AlReshan, and
A. Shaikh, ‘‘An exploratory study of software sustainability at early stages
of software development,’’ Sustainability, vol. 14, no. 14, pp. 1–23, 2022.

[23] E. Kren, M. Dick, S. Naumann, A. Guldner, and T. Johann, ‘‘Green soft-
ware and green IT: An end users perspective,’’ in Green IT Engineering:
Concepts, Models, Complex Systems Architectures. Heidelberg, Germany:
Springer, 2011, pp. 31–54.

[24] B. Penzenstadler, V. Bauer, C. Calero, and X. Franch, ‘‘Sustainability in
software engineering: A systematic literature review,’’ in Proc. 16th Int.
Conf. Eval. Assessment Softw. Eng. (EASE), London, U.K., May 2012,
pp. 32–41.

[25] D. Ameller, X. Franch, C. Gómez, S. Martínez-Fernández, J. Araújo,
S. Biffl, J. Cabot, V. Cortellessa, D.M. Fernández, A.Moreira, H. Muccini,
A. Vallecillo, M. Wimmer, V. Amaral, W. Böhm, H. Bruneliere,
L. Burgueño, M. Goulão, S. Teufl, and L. Berardinelli, ‘‘Dealing with non-
functional requirements in model-driven development: A survey,’’ IEEE
Trans. Softw. Eng., vol. 47, no. 4, pp. 818–835, Apr. 2021.

[26] A. Jarzebowicz and P. Weichbroth, ‘‘A qualitative study on non-functional
requirements in agile software development,’’ IEEE Access, vol. 9,
pp. 40458–40475, 2021.

[27] M. S. Kumar, A. Harika, C. Sushama, and P. Neelima, ‘‘Automated extrac-
tion of non-functional requirements from text files: A supervised learning
approach,’’ in Handbook of Intelligent Computing and Optimization for
Sustainable Development, 2022, pp. 149–170.

[28] N. Afreen, A. Khatoon, and M. Sadiq, ‘‘A taxonomy of software’s non-
functional requirements,’’ in Proc. ICT, New Delhi, India. New York, NY,
USA: Wiley, vol. 1, 2016, pp. 47–53.

[29] P. Lago, S. A. Koçak, I. Crnkovic, and B. Penzenstadler, ‘‘Framing
sustainability as a property of software quality,’’ Commun. ACM, vol. 58,
no. 10, pp. 70–78, Sep. 2015.

103012 VOLUME 11, 2023



A. F. Subahi: BERT-Based Approach for Greening Software Requirements Engineering

[30] C. Baker, L. Deng, S. Chakraborty, and J. Dehlinger, ‘‘Automatic multi-
class non-functional software requirements classification using neural
networks,’’ in Proc. IEEE 43rd Annu. Comput. Softw. Appl. Conf.
(COMPSAC), Milwaukee, WI, USA, vol. 2, Jul. 2019, pp. 610–615.

[31] B. Li and X. Nong, ‘‘Automatically classifying non-functional require-
ments using deep neural network,’’ Pattern Recognit., vol. 132, Dec. 2022,
Art. no. 108948.

[32] S. Kopczyńska, M. Ochodek, and J. Nawrocki, ‘‘On importance of
non-functional requirements in agile software projects—A survey,’’ in
Integrating Research and Practice in Software Engineering. Heidelberg,
Germany: Springer, 2020, pp. 145–158.

[33] B. Gezici and A. K. Tarhan, ‘‘Systematic literature review on software
quality for AI-based software,’’ Empirical Softw. Eng., vol. 27, no. 3, 2022,
Art. no. 66.

[34] M. W. Suman and M. D. U. Rohtak, ‘‘A comparative study of software
quality models,’’ Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 4,
pp. 5634–5638, 2014.

[35] T. Davuluru, J. Medida, and V. S. K. Reddy, ‘‘A study of software quality
models,’’ in Proc. Int. Conf. Adv. Eng. Technol. Res. (ICAETR), Unnao,
India, Aug. 2014, pp. 1–8.

[36] K. M. Adams, Non-Functional Requirements in Systems Analysis and
Design, vol. 28. Cham, Switzerland: Springer, 2015.

[37] S. Yadav and B. Kishan, ‘‘Analysis and assessment of existing software
quality models to predict the reliability of component-based software,’’ Int.
J. Emerg. Trends Eng. Res., vol. 8, no. 6, pp. 2824–2840, Jun. 2020.

[38] A. M. Abdullahi, N. K. Yap, A. A. Ghani, H. Zulzalil, N. I. Admodisastro,
and A. A. Najafabadi, ‘‘A systematic mapping of quality models for AI
systems, software and components,’’ Appl. Sci., vol. 12, no. 17, pp. 1–19,
2022.

[39] J. P. Miguel, D. Mauricio, and G. Rodríguez, ‘‘A review of software quality
models for the evaluation of software products,’’ Int. J. Softw. Eng. Appl.,
vol. 5, no. 6, pp. 31–53, Nov. 2014.

[40] A. Kaur, ‘‘A systematic literature review on empirical analysis of the
relationship between code smells and software quality attributes,’’ Arch.
Comput. Methods Eng., vol. 27, no. 4, pp. 1267–1296, Sep. 2020.

[41] M. Al Hinai and R. Chitchyan, ‘‘Engineering requirements for social
sustainability,’’ in Proc. ICT Sustainability, Amsterdam, The Netherlands,
2016, pp. 79–88.

[42] D. Kici, G. Malik, M. Cevik, D. Parikh, and A. Basar, ‘‘A BERT-based
transfer learning approach to text classification on software requirements
specifications,’’ inProc. 34th Can. Conf. AI, Vancouver, BC, Canada, 2021,
pp. 1–13.

[43] T. Hey, J. Keim, A. Koziolek, andW. F. Tichy, ‘‘NoRBERT: Transfer learn-
ing for requirements classification,’’ in Proc. IEEE 28th Int. Requirements
Eng. Conf. (RE), Zurich, Switzerland, Aug. 2020, pp. 169–179.

[44] D. St-Louis and W. Suryn, ‘‘Enhancing ISO/IEC 25021 quality measure
elements for wider application within ISO 25000 series,’’ in Proc. 38th
Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Montreal, QC, Canada,
Oct. 2012, pp. 3120–3125.

[45] M. Binkhonain and L. Zhao, ‘‘WITHDRAWN: A review of machine
learning algorithms for identification and classification of non-functional
requirements,’’ Expert Syst. Appl., vol. 1, Feb. 2019, Art. no. 1000001.

[46] A. Rashwan, O. Ormandjieva, and R. Witte, ‘‘Ontology-based classifi-
cation of non-functional requirements in software specifications: A new
corpus and SVM-based classifier,’’ in Proc. IEEE 37th Annu. Comput.
Softw. Appl. Conf., Washington, DC, USA, Jul. 2013, pp. 381–386.

[47] J. Ding, Y. Li, H. Ni, and Z. Yang, ‘‘Generative text summary based on
enhanced semantic attention and gain-benefit gate,’’ IEEE Access, vol. 8,
no. 1, pp. 92659–92668, 2020.

[48] S. Bird, E. Klein, and E. Loper,Natural Language ProcessingWith Python:
Analyzing Text With the Natural Language Toolkit. Sebastopol, CA, USA:
O’Reilly Media, 2009.

[49] M. Honnibal and I. Montani, ‘‘spaCy 2: Natural language understanding
with Bloom embeddings,’’ Convolutional Neural Netw. Incremental
Parsing, vol. 7, no. 1, pp. 411–420, 2017.

[50] M. Lima, V. Valle, E. Costa, F. Lira, and B. Gadelha, ‘‘Software engi-
neering repositories: Expanding the PROMISE database,’’ in Proc. 33rd
Brazilian Symp. Softw. Eng., Salvador, Brazil, Sep. 2019, pp. 427–436.

[51] T. Iqbal, P. Elahidoost, and L. Lúcio, ‘‘A bird’s eye view on requirements
engineering and machine learning,’’ in Proc. 25th Asia–Pacific Softw. Eng.
Conf. (APSEC), Nara, Japan, Dec. 2018, pp. 11–20.

[52] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider,
‘‘What works better? A study of classifying requirements,’’ in Proc. IEEE
25th Int. Requirements Eng. Conf. (RE), Lisbon, Portugal, Sep. 2017,
pp. 496–501.

[53] A. Casamayor, D. Godoy, and M. Campo, ‘‘Semi-supervised classification
of non-functional requirements: An empirical analysis,’’ Inteligencia
Artif., Revista Iberoamericana de Inteligencia Artificial, vol. 13, no. 44,
pp. 35–44, Jan. 2010.

[54] R. Navarro-Almanza, R. Juarez-Ramirez, and G. Licea, ‘‘Towards
supporting software engineering using deep learning: A case of software
requirements classification,’’ in Proc. 5th Int. Conf. Softw. Eng. Res. Innov.
(CONISOFT), Mérida, Mexico, Oct. 2017, pp. 116–120.

[55] Z. Kurtanovic and W. Maalej, ‘‘Automatically classifying functional and
non-functional requirements using supervised machine learning,’’ in Proc.
IEEE 25th Int. Requirements Eng. Conf. (RE), Lisbon, Portugal, Sep. 2017,
pp. 490–495.

[56] R. Jindal, R. Malhotra, and A. Jain, ‘‘Automated classification of security
requirements,’’ in Proc. Int. Conf. Adv. Comput., Commun. Informat.
(ICACCI), Jaipur, India, Sep. 2016, pp. 2027–2033.

[57] A. T. Peterson, S. Knapp, R. Guralnick, J. Soberón, and M. T. Holder,
‘‘The importance of data quality for generating reliable distribution models
for rare, elusive, and cryptic species,’’ PLoS ONE, vol. 4, no. 6, 2019.

[58] N. Condori-Fernandez and P. Lago, ‘‘Characterizing the contribution of
quality requirements to software sustainability,’’ J. Syst. Softw., vol. 137,
pp. 289–305, Mar. 2018.

[59] X. Chen, N. Hong, A. Choudhary, R. White, and J. Rudi, ‘‘The importance
of software sustainability in open source computational science and
engineering,’’ Comput. Sci. Eng., vol. 6, no. 1, pp. 21–28, 2018.

[60] C. C. Venters, C. Jay, L. M. Lau, M. K. Griffiths, V. Holmes, R. R. Ward,
J. Austin, C. E. Dibsdale, and J. Xu, ‘‘Software sustainability: The
modern tower of Babel,’’ in Proc. 3rd RESuSy, Karlskrona, Sweden, 2014,
pp. 7–12.

[61] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[62] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 5998–6008.

[63] J. G. Gaudreault, P. Branco, and J. Gama, ‘‘An analysis of performance
metrics for imbalanced classification,’’ in Proc. ICDS, Halifax, NS,
Canada. Cham, Switzerland: Springer, 2021, pp. 67–77.

[64] I. Ul Hassan, R. H. Ali, Z. Ul Abideen, T. A. Khan, and R. Kouatly,
‘‘Significance of machine learning for detection of malicious websites on
an unbalanced dataset,’’ Digital, vol. 2, no. 4, pp. 501–509, 2022.

AHMAD F. SUBAHI received the B.Sc. degree
in computer science from King Abdulaziz Uni-
versity (KAU), Jeddah, Saudi Arabia, in 2002,
the M.Sc. degree in information technology form
the Queensland University of Technology (QUT),
Brisbane, Australia, in 2008, and the M.Sc. degree
in advanced computer science and the Ph.D.
degree in computer science from the University
of Sheffield, U.K., in 2010 and 2015, respectively.
He is currently an Associate Professor in software

engineering with the Computer Science Department, University College of
Al Jamoum (JUC), UmmAl-QuraUniversity (UQU),Makkah, Saudi Arabia.
His research interests include automated software development, model-
driven engineering, domain specific (modeling) languages, model trans-
formations, code generation and programming languages design, software
systems architecture and design, (graph) database systems, the secure IoT
systems engineering, and the application of AI/ NLP techniques in software
engineering domain.

VOLUME 11, 2023 103013


