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ABSTRACT This paper presents a Direct Current (DC)Microgrid with a consensus-based secondary control
strategy to efficiently manage the microgrid, ensuring precise voltage regulation and fair power distribution
among Distributed Energy Resources (DERs). The consensus approach employs a communication network
to establish a Cyber layer for DER information exchange and harmonize the entire system to achieve a
common goal. However, this cyber layer’s vulnerability could destabilize the interconnected control system
and lead to the whole system being unsynchronized. The paper explores replay attacks conducted in the path
of the communication link between interconnected Distributed Generation Units (DGUs), demonstrating
their impact on secondary control using simulations and real-time experiments. A method leveraging
Distributed Kalman Filter observers for attack detection is proposed which requires low computational
demand to suit the real-time application, while an attack mitigation technique using observer-generated
residues with the optimal condition is implemented. Validation is conducted through both MATLAB
simulations and real-time OPAL-RT emulation, confirming the proposed system’s effectiveness.

INDEX TERMS Replay attack, dc microgrid, consensus control, Kalman filter based state observer,
communication links, OPAL-RT.

NOMENCLATURE
AC Alternating Current.
CPS Cyber-Physical System.
DC Direct Current.
DCmG Direct Current microGrid.
DERs Distributed Energy Resoursces.
DGUs Distributed Generation Units.
PCC Point of Common Coupling.
SC Subsystem Controller.
SCADA Supervisory Control And Data Acquisition.
SM System Model.

I. INTRODUCTION
DC microgrids have emerged as a novel concept in mod-
ern power systems, offering a new approach to energy

The associate editor coordinating the review of this manuscript and

approving it for publication was Wonhee Kim .

distribution and management [1]. These microgrids are self-
contained, localized systems that can operate independently
or in coordination with the main grid, depending on the
circumstances [2]. They have gained significance due to their
potential to address several challenges faced by traditional
AC grids, such as energy loss during transmission, voltage
instability, and the integration of distributed energy resources
(DERs) and renewable sources [3]. The integration of
renewable energy sources, such as solar panels and wind
turbines, has become increasingly important to transition
towards a more sustainable and environmentally friendly
energy mix [4]. However, the intermittent nature of these
sources poses challenges for grid stability and reliabil-
ity [5]. Challenges and instability during PV integration
are addressed through a versatile system with five modes,
includingmicrogrid separation for sensitive loads during poor
power quality [6]. DC microgrids offer a promising solution
by allowing for better control over power flow and voltage
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regulation [7]. In DC microgrids, secondary control plays
a crucial role in regulating power sharing and maintaining
voltage stability [8]. Unlike primary control, which deals
with instantaneous power adjustments to match supply and
demand, secondary control focuses on fine-tuning power
distribution and voltage levels over slightly longer time inter-
vals [9]. This is essential for ensuring proper coordination
among different DERs and loads within the microgrid [10].
By dynamically adjusting the power output of various sources
and managing energy storage systems, secondary control
helps to avoid voltage fluctuations and imbalances [11]. This
aspect is especially critical in microgrids with a high penetra-
tion of variable renewable sources. The proper functioning of
secondary control contributes to efficient energy utilization
and enhances the overall stability of the microgrid [12], [13].
Moreover, the integration of distributed energy resources
(DERs) and renewable sources is reshaping the landscape of
power systems [4]. Traditionally dominated by centralized
fossil-fuel-based power plants, modern power systems are
now witnessing a shift towards a more decentralized and
sustainable model [14]. DERs, which include solar panels,
wind turbines, energy storage systems, and even electric
vehicles, are being installed at various points in the grid,
closer to the end-users. This not only reduces transmission
losses but also allows for a more resilient and adaptable grid
structure [15]. Renewable sources, in particular, are abundant
and environmentally friendly, but their variability poses
challenges for grid operators [16]. DC microgrids provide a
platform to effectively integrate these DERs, enabling more
efficient use of clean energy resources while ensuring grid
stability [7]. The decentralized nature of DC microgrids
offers several potential benefits, primarily centered around
enhanced energy efficiency and resilience [17]. By operating
independently or in a coordinated manner, these microgrids
can optimize power distribution based on local demand and
supply conditions. This localized decision-making reduces
the need for extensive long-distance transmission, which
is a common source of energy losses [18]. Furthermore,
the ability of DC microgrids to island themselves from the
main grid during disruptions enhances the resilience of the
energy supply, making them suitable for critical facilities like
hospitals, military bases, and remote communities. In the
face of natural disasters or grid failures, DC microgrids can
continue to provide power, thus improving overall energy
security [19].
Consensus-based secondary control is a pivotal mecha-

nism in achieving coordinated power sharing and voltage
regulation in DER-based microgrids. This form of control
involves a network of intelligent devices communicating and
collaborating to make collective decisions [20]. Cooperative
control ensures that power sources and loads work in
harmony to maintain grid stability [21]. In a DC micro-
grid, consensus-based secondary control enables real-time
adjustments of power outputs based on varying conditions.
By sharing information and collectively agreeing on the

optimal operating points, DERs can effectively respond to
load changes and disturbances. This approach facilitates
smooth power sharing and minimizes voltage fluctuations,
contributing to reliable and efficientmicrogrid operation [22].
The functionality of a DC microgrid heavily relies on

the interconnection of DERs and their communication link,
forming a cyber-physical system (CPS) [20]. CPS integration
allows for real-time monitoring, control, and data exchange
between physical components and digital systems [23]. CPS-
based microgrids enable sophisticated control strategies,
predictive maintenance, and optimized energy manage-
ment [24]. However, this relationship of physical and digital
domains also introduces cybersecurity challenges. As the
communication network becomes a critical component, the
microgrid becomes susceptible to cyber threats that can
disrupt its operation [25]. The evolving landscape of cyber
threats poses a significant risk to CPS-based microgrids [26].
These threats range from cyberattacks targeting communi-
cation infrastructure to malware compromising the control
systems [27]. As CPS systems become more complex and
interconnected, the potential impact of cyberattacks becomes
more severe. A breach in the communication link could lead
to miscommunication among DERs, causing instability in
power sharing and voltage regulation [25].

Moreover, a cyberattack could manipulate the data
exchanged between physical components and control sys-
tems, leading to inaccurate decision-making and poten-
tially catastrophic consequences [28]. The vulnerabilities of
cyber-physical network (CPS) based control systems in DC
microgrids are multifaceted [29]. First, the interconnected
nature of DERs and their reliance on communication
networks exposes them to potential unauthorized access and
control [30]. Malicious actors could exploit vulnerabilities
in communication protocols or gain unauthorized access to
the control infrastructure [31]. Second, the real-time nature
of CPS requires rapid data exchange and decision-making,
leaving limited time for thorough cybersecurity checks. This
urgency can be exploited by attackers seeking to compromise
the system [32]. Third, the heterogeneity of devices and com-
munication standards in a microgrid introduces compatibility
and integration challenges, potentially leading to weak points
that attackers can exploit [33].

One specific threat that poses a significant risk to
consensus-based secondary control in CPS-based microgrids
is the replay attack [34]. A replay attack involves an
attacker intercepting valid communication between devices
and then replaying or resending those messages to deceive
the system [35]. In the context of consensus-based control,
replay attacks could lead to incorrect decisions beingmade by
the DERs [36]. For instance, if an attacker replays a message
indicating a high load demand, the DERs might increase
their output unnecessarily, leading to an imbalance in power
distribution. Similarly, voltage regulation commands could
be replayed, causing erratic voltage levels. The potential
disruption caused by replay attacks highlights the need
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for robust cybersecurity measures in microgrid control
systems [37].

The computational complexity of a Kalman filter-based
observer is lower compared to machine learning algorithms.
However, it comes with the drawback of being suitable
only for simpler models and demanding more computational
resources, potentially causing delays in real-time applications
for machine learning algorithms. When it comes to predictive
capabilities, the Kalman filter-based observer exhibits greater
strength than machine learning algorithms. Furthermore,
in terms of interpretability, the Kalman filter-based observer
surpasses machine learning algorithms, offering a higher
degree of clarity and understanding [38], [39] in attack
detection and mitigation scenarios. Several machine learn-
ing algorithms have been suggested for forecasting cyber
intrusions in microgrid networks. Nonetheless, a significant
drawback of machine learning lies in its limited adaptability,
along with its requirement for substantial computational
resources and extensive training data.

While various studies have explored general cybersecurity
concerns in microgrids, the specific threat of replay attacks
and their potential to disrupt consensus-based control have
not been thoroughly investigated, particularly within the
context of DCMicrogrid scenarios. Notably, Dan Li et al. [40]
lack clear validation of their statistical method’s efficacy
in differentiating replay attacks from equipment faults in
SCADA systems, while also omitting scalability considera-
tions and complex system handling [41]. Similarly, another
study briefly mentions replay attacks in DC microgrids
but lacks in-depth impact analysis and practical defense
strategies, with no empirical validation or simulation results
[29]. Meanwhile, a paper utilizing recurrent neural networks
for real-time intrusion detection in AC microgrids seems dis-
connected from the focus on replay attacks in DCmicrogrids,
raising questions about the chosen model’s relevance [42].
Furthermore, a separate paper addresses microgrid cyber
threat resilience but overlooks specific analysis of replay
attacks in DC microgrids and lacks robust validation of its
proposed countermeasures [43].

Despite the growing recognition of cybersecurity chal-
lenges in CPS-based microgrids, there exists a research
gap that centers on the lack of comprehensive security
analysis of replay attacks in consensus-based secondary
control. Addressing this research gap is crucial for developing
effective countermeasures and safeguards that can protect
CPS-based DCmicrogrids from replay attacks and ensure the
reliable and secure operation of consensus-based secondary
control systems to make the whole system harmonious.

The key contributions of this paper can be summarized as
follows:

• Implementation of a consensus protocol establishes an
intelligent control system, enabling microgrid genera-
tion units to achieve proportional power sharing aligned
with their capacities.

• Introduction of a replay attack through the communica-
tion link effectively illustrates the performance of the

FIGURE 1. Flow diagram of procedure.

consensus-based control system when confronted with
attack scenarios.

• Incorporation of a state observer facilitates real-time
monitoring of diverse transient conditions, encompass-
ing load fluctuations and replay cyber attacks. Addi-
tionally, the successful integration of an attack detection
method preemptively mitigates threats, strengthening
system stability and reinforcing both resilience and
security.

The paper is structured as follows: Section II provides a
detailed overview of the system description and methodol-
ogy, which is divided into five subsections. Subsection A
covers the microgrid model, explaining its components and
functioning. Subsection B discusses consensus or cooperative
control, which is a key aspect of the proposed approach.
Subsection C focuses on the replay attack model, describing
the nature and characteristics of replay attacks in the context
of the microgrid. Subsection D introduces the state observer,
an essential component for accurate monitoring and control.
Lastly, subsection E discusses attack detection and mitigation
techniques employed in the system. In Section III, the
paper presents the results and analysis of the proposed
methodology, evaluating its performance and effectiveness.
Following this, Section IV describes the experimental
validation conducted to verify the feasibility and practicality
of the proposed approach. Finally, in Section V, the paper
concludes by summarizing the key findings and contributions
of the study.

II. METHODOLOGY
DCMicrogrid (DCmG) is defined as a network of distributed
generation units (DGUs) as depicted in Fig.1 that are
connected and controlled through current consensus loops to
ensure proper load sharing across the units. In order to achieve
this, each DGU’s line current need to be communicated
to the others. However, The central current consensus loop
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FIGURE 2. Microgrid model.

could be disrupted by attacks that introduce false information
through this communication channel. Replay attacks are one
type of such attack that involve delaying the communication
channel’s signals.

A. MICROGRID MODEL
The system involves a DC microgrid (DCmG) comprising of
two interconnected distributed generation units, which have
been modeled using DC-DC buck converter blocks(Buck
n and Buck m), as shown in Figure 2. These sources are
connected to each other via a line impedance(Rmn and Lmn)
to form an autonomous DC microgrid, where each source is
connected to a transmission line through a point of common
coupling (PCC). Additionally, each source is supplied to aDC
load. The voltage rating of the input sources is 100V, while
the buck converter rating is 48V.

1) GRAPH THEORY
The connectivity among N DER agents in a communication
network can be represented by a graph denoted as G = (V,
E, A). The graph consists of a set of nodes V, where each
node represents a communication agent for a DER, a set of
edges E represents communication links for data exchange
and A is the N × N weighted adjacency matrix of the graph,
with elements aij = aji ≥ 0. If the communication links are
bidirectional, denoted as (Vi,Vj) ∈ E , then it implies that
(Vi,Vj) ∈ E for all nodes i and j, making the graph undirected.
If the communication links are unidirectional, the graph is
considered directed. A graph is said to have a spanning tree
if there exists a root node from which there is a directed
path to any other node in the graph. An adjacency matrix
A =

{
aij

}
N×N can be used to represent the graph, where each

element aij in the matrix signifies the connectivity between
nodes i and j [8] and aij can be defined as

aij =

{
1, if

(
Vi,Vj

)
∈ E

0, otherwise
(1)

The time response depends on the size and topology of
the communication network. Its behavior can be analyzed
through the eigenvalues of the Laplacian matrix L, which is
defined as L=D-A.Where A is the adjacencymatrix, and D is
a diagonal matrix formed by the sum of the elements in each
row of the adjacency matrix A, i.e., D = diag

{∑N
j=1 aij

}
.

The Laplacian matrix is represented as L =
{
lij

}
N×N , and

the element lij is calculated from

lij =


−aij, i ̸= j
N∑
i=1

aij, i = j
(2)

If there exists a spanning tree rooted at node 0, it ensures
that all the eigenvalues of the matrix L have positive real
parts. Additionally, if the graph G is undirected, the matrix L
becomes symmetrical, and all its eigenvalues are positive.
Here, we denote these eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λN .

2) CONSENSUS PROTOCOL
The load sharing between the two sources has been achieved
through the use of a consensus protocol, which distributes
the load in proportion to each source’s rating. To achieve
proportional sharing of the current, the output current of
each source has been divided by its rated current to obtain
a per unit current value, which is then inputted into the
consensus protocol. A PI controller has been employed to
generate an additional voltage correction term, known as δv,
which is added to the reference voltage to calculate a new
adaptive reference point for each generation unit. Over time,
convergence has been achieved as a result of the characteristic
behavior of the consensus protocol, which facilitates the
proportional sharing of the current based on each source’s
capacity. Equation (3) can be used to express the voltage set
point for a single DGi:

Vrefnew = Vref + δvi (3)

where δvi represents the voltage correction term derived from
equation (4):

δvi = Gi(s)
(
Vref − V̄i

)
(4)

where V̄i is the local estimation obtained from the observer
given by equation (5) and Gi(s) is the PI controller for
producing the correction term of voltage restoration:

V̄i = Vi + CE

∫ t

0

∑
i∈Ni

aji
(
Īpuj − Īpui

)
dτ (5)

In equation (5), Vi is the local measurement of the voltage
at i,CE represents the voltage coupling coefficient,aji is
the adjacency matrix,Ni number of neighbors of i,Īpui
is proportional unit current at i and Īpuj is proportional
unit current at neighbor j. Proportional unit current is
defined as Proportional Unit Current =( Actual Current /
Rated Current ) at each source.

B. REPLAY ATTACK MODEL
A replay attack is a type of security attack that involves
intercepting and recording communication signals in a
system, and then later replays them to deceive the system
into believing that the recorded signals are new and authentic.
This type of attack is especially effective when the system
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is in a steady state, as it can create the illusion of normal
activity while causing significant damage or compromising
the integrity of the system. In essence, a replay attack tricks
a system into taking a particular action or providing access to
sensitive information. It involves an attacker capturing data
being sent between two parties and replaying that data back
to the system later. Replay attacks can be carried out through
various means, including intercepting wireless signals or
capturing data packets transmitted over a network. The replay
attack in this example has the following structure.

ZR(t) = Z (t) + β (t − TR) [−Z (t) + Z (t − t0)] (6)

In this case, the activation function β (t − TR) deviates the
signal Z (t) by t0 and represents the modified signal as ZR(t).

C. STATE OBSERVER
The model computes the estimates of the model states using
the following model and a linear Kalman filter.

V̇n(t) =
1
Ctn

Itn(t)−
1

CtnRnm
Vn(t)+

1
CtnRnm

Vm(t) −
1
Ctn

ILn(t)

(7)

İtn(t) = −
1
Ltn

Vn(t) −
Rtn
Ltn

Itn(t) +
1
Ltn

Vtn(t) (8)

State space models represent dynamic systems using a
collection of variables called ‘‘states’’. These states change
over time in accordance with a set of equations. The state
variables can be represented as a vector and their evolution
equations can be written in matrix form.

Ak =[−1/(Rnm ∗ Ck ), 1/Ck ; −1/Lk , −Rk/Lk ];
Bk =[θ; 1/Lk ]; Mk = [−1/Ck; 0];
Pk =

[
1 0

]
; Bm = [1/(Rnm ∗ Ck ); 0]; Bjl = [−1/Ck ; 0];

StateSpace Matrix = ss(Ak , [Bk ,Bm,Bjl],Hk , θ);

The ss function can be used to convert a system represented
by matrices into state space form

D. ATTACK DETECTION AND MITIGATION
The Kalman filter is a recursive estimation algorithm used
to estimate the state of a dynamic system based on noisy
measurements. It operates on the principles of Bayesian
filtering and combines the system dynamics model with the
measurements to produce an optimal estimate of the true
state. The state space representation of the Kalman filter
describes the mathematical equations that define the evolu-
tion of the system’s state and the estimation process [44].
The state space model for the Kalman filter can be

expressed as follows:
State Transition Equation:

x(k) = A ∗ x(k − 1) + B ∗ u(k) + w(k) (9)

In this equation 7, x(k) represents the system state at time
t, A is the state transition matrix that describes the evolution
of the system state over time, x(k-1) is the previous state, B is
the input control matrix, u(k) is the input control vector, and

w(k) is the process noise that accounts for uncertainties in the
system dynamics.

Measurement Equation:

z(k) = H(k) ∗ x(k) + v(k) (10)

here, z(k) represents the measurement obtained from the
system at time k, H(k) is the measurement matrix that
maps the system state to the measurement space, and v(k)
is the measurement noise that captures the measurement
inaccuracies. Initial State and Covariance:

x(0) ∼ N (m(0),P(0)) (11)

This equation represents the initial state distribution, where
x(0) is the initial state vector, m(0) is the mean of the initial
state, and P(0) is the covariance matrix that describes the
uncertainty in the initial state.

State Prediction:

X (̂k) = A ∗ X (̂k − 1) + B ∗ u(k) (12)

In this equation, X (̂k) represents the predicted state
estimate at time t, X (̂k − 1) is the previous state estimate, A is
the state transition matrix, B is the input control matrix, and
u(k) is the input control vector.

Covariance Prediction:

P(k) = F(k) ∗ P(k − 1) ∗ F(k)∧T + Q(k) (13)

here, P(k) is the predicted state covariance matrix at time t,
P(k-1) is the previous state covariance matrix, A is the state
transition matrix, and Q(k) is the process noise covariance
matrix that accounts for the uncertainties in the process
model.

Kalman Gain:

K = P(k) ∗ H (k)∧T ∗
(
H (k) ∗ P(k) ∗ H (k)∧T + R(k)

)∧
− 1
(14)

In this equation, K represents the Kalman gain at time
t, P(k) is the predicted state covariance matrix, H(k) is the
measurement matrix, and R(k) is the measurement noise
covariance matrix.

Covariance Update:

P(k) = (I − K ∗ H (k)) ∗ P(k) (15)

In this equation, P(k) is the updated state covariance matrix,
I is the identity matrix, K is the Kalman gain, and H(k) is the
measurement matrix.

By iteratively applying these equations, the Kalman filter
recursively estimates the true state of the system based
on the available measurements. At each time step, the
filter predicts the system state and its covariance using the
state transition matrix and the process noise covariance.
Then, it incorporates the measurement information using the
measurement matrix, measurement noise covariance, and the
predicted state estimate.

TheKalman filter as in Figure 3 can also be used as a replay
attack detection tool in microgrids. A replay attack involves
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FIGURE 3. Kalman filter process steps for state estimation and error prediction.

an attacker recording legitimate signals or messages and then
replaying them later to deceive the system. The Kalman filter
can detect these attacks by comparing the received signals to
the expected signals based on the system model. If there is
a significant difference between the expected and received
signals, the Kalman filter can raise an alarm to indicate a
possible replay attack. The filter can be a useful tool for
enhancing the security of microgrids against replay attacks.

During a cyber attack detected by the state observer, the
secondary controllers in each Distributed Generation (DG)
unit will be deactivated. This is achieved by temporarily
deactivating the communication links that support secondary
control. If the communication links are affected, the con-
sensus control becomes unstable and cannot converge to a
common point, and the secondary controller is deactivated
once the error exceeds a predefined threshold. Once the
secondary controllers are deactivated, the primary controllers
in each DG unit work independently to supply the load.
Once the communication links are restored, normal operation
will resume. This approach helps to mitigate the effects of
cyber-attacks and ensures that the DG units can continue to
operate even in the presence of such attacks.

III. RESULT AND ANALYSIS
A. LOAD CHANGE AND NO ATTACK SCENARIO
In the normal scenario, shown in Figure 4, the initial load
current is distributed between two generators, DG1 and DG2,
in proportion to their capacity. DG1 supplies 3A and DG2
supplies 6A. At t=1s, the load at DG1 is reduced from
3A to 2A. The consensus control protocol ensures that load
changes at one bus affect the generation of both DG units.
Thus, both generators share the current proportionally based
on their capacity. After 1s, DG1 and DG2 share the current
such that the current sharing amounts become 2.3A and 4.7A,
respectively. This current sharing ratio is approximately 1:2,

FIGURE 4. Current at DG1 and DG2 under normal scenario.

indicating that the consensus control protocol is effective
in ensuring that the generators share the current according
to their capacity. At t=3.5s, the load at DG2 is further
reduced from 6A to 4.5A. The consensus control algorithm
continues to operate and ensures that both generators share
the current proportionally based on their capacity. The new
current sharing amounts are calculated by the consensus
control algorithm, and the current sharing ratio is maintained
at approximately 1:2.

In Figure 5, the voltage is maintained at a reference voltage
of 48V, regardless of any changes in the load or current
sharing ratio. This shows that the consensus control algorithm
not only ensures proportional current sharing among the
generators but also maintains the voltage at a stable and
desired level.

B. ATTACK SCENARIO
However, in the Replay attack scenario shown in
Figures 6 and 7, When the load changes, this attack exhibits
unwanted behavior. Due to the communication channel delay
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FIGURE 5. Voltage at DG1 and DG2 under normal scenario.

FIGURE 6. Current at DG1 under attack scenario.

FIGURE 7. Current at DG2 under attack scenario.

implemented by the replay attack, the current consensus
control is unable to detect changes in the line current. The
attack begins at t = 3s, but it goes undetected while the
system is in a steady state. As soon as the load changes at t =
3.5s, the incorrect measurements at the consensus controller
result in an unstable system. Within a millisecond of the
load change, the line currents go uncontrolled, as depicted
in Figures 6 and 7, exceeding the rated capacity which
creates a significant risk of harm to the local DGU and
other machinery. Figures 8 and 9 show that the current
consensus control has failed, leading to uncontrolled current
sharing among DG units. This results in the reference voltage

FIGURE 8. Voltage at DG1 under attack scenario.

FIGURE 9. Voltage at DG2 under attack scenario.

deviating from the predefined values, causing it to exceed
the 48V limit. As a result, the entire system becomes
unstable and uncontrollable. The residual plots, as shown
in Figures 10 and 11, provide insight into the response of
the system to the attack that occurred at t = 3s. Specifically,
these plots show the difference between the observed voltage
and line currents and their expected values. Figure 10 reveals
that the observed line currents in both DGUs differ from
their expected values, and this difference crosses specified
thresholds within 4 milliseconds. The attack was directed
at the signals from DGU 1, as evidenced by Figure 11 that
DGU 2’s voltage residueÂ is zero. Figure 11 shows that the
observed voltage in DGU 1 differs from its expected value,
with the difference crossing a specified threshold within
4 milliseconds.

C. ATTACK MITIGATION SCENARIO
Figures 12 and 13 demonstrate the normal operation of the
microgrid without secondary control, where each DG unit
serves its individual load. When a load change occurs in
one DG unit, the load change is addressed by that particular
unit only while the other unit is unaffected as the secondary
control of each unit is deactivated due to the deactivation of
the communication link. The system stability and security are
maintained by ensuring that the current flowing in each DG
unit is within the control limit. This highlights the importance
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FIGURE 10. Current residue at observer under attack scenario.

FIGURE 11. Voltage residue at observer under attack scenario.

FIGURE 12. Current at DG1 and DG2 under attack recovery scenario.

of controlling and monitoring the current flow to prevent any
overloading or instability in the system.

The residual plot shown in Figures 14 and 15 further
demonstrates that the system is operating normally during
attacks or unusual conditions. These findings provide valu-
able guidance for designing and managing microgrids in the
future.

IV. REAL-TIME VALIDATION
The real-time validation setup using OPAL-RT, MATLAB,
and Simulink involves configuring a host PC with MATLAB
2021b and RT-LAB 2023 as in depicted in Figure 16. The

FIGURE 13. Voltage at DG1 and DG2 under attack recovery scenario.

FIGURE 14. Current residue at observer under attack recovery scenario.

FIGURE 15. Voltage residue at observer under attack recovery scenario.

Simulink model is developed on the host PC, comprising SM
(System Model) and SC (Subsystem Controller) subsystems.
Next, the RT-LAB software is installed on the host PC. This
software allows for real-time simulation of the Simulink
models. The experimental setup is connected to an OP5700
OPAL-RT target, which is a hardware device designed
for emulating real-time simulations. The Simulink model,
including the SM and SC subsystems, is then loaded onto the
OP5700 OPAL-RT target. This step transfers the simulation
model from the host PC to the real-time hardware for
execution. Once the setup is loaded onto the OPAL-RT
target, the simulation is executed in real-time. The control
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FIGURE 16. Real time validation setup by OPAL-RT.

FIGURE 17. Load change with consensus secondary control.

algorithms and system dynamics defined in the Simulink
model are now executed on the OPAL-RT target. To capture
real-time data for validation, an OPAL board connected
to the OPAL-RT target is used to configure a LeCroy
oscilloscope. This configuration enables the oscilloscope to
capture real-time data from the experimental setup. During
the execution of the simulation, the oscilloscope captures
real-time data, which can be used for reference and validation.
This data allows for comparing the simulated results with the
actual behavior of the system.

In Figure 17, the functionality of secondary consensus
control for two DG units under load variation is depicted.
When one unit experiences a load reduction, the secondary
consensus controller ensures that the load in the other
unit is proportionately reduced based on their respective
capacity. Similarly, if there is an increase in load demand
in one unit, the controller increases the load current in
the other unit to achieve cooperative control of the entire
system. This approach enables the DG units to work together
and maintain system stability and balance. Moving on to
Figure 18, it illustrates a normal scenario followed by a
replay attack in the communication channel. The system
becomes immediately unstable after the attack is initiated.
The current flowing through the line becomes excessively
high, posing a risk of damaging electrical equipment beyond
its rated capacity. Figure 19 demonstrates the residual output
under the attack scenario, obtained using a Kalman filter. The
local measurements are compared with the predicted values
based on the system configuration. The residual value is then
utilized to initiate a mitigation plan to restore system stability
before it worsens.

In Figure 20, a load change scenario is shown after
recovering from the attack. The load changes are depicted

FIGURE 18. Normal scenario followed by attack.

FIGURE 19. Residual increment after attack.

FIGURE 20. Load change at attack recovery scenario.

FIGURE 21. Residual at attack recovery scenario.

separately in both DGs, and the system operates well
without one unit’s load change significantly impacting the
other unit. Figure 21 displays the residual scenario after
recovering the system from the attack. The absence of residue
indicates that the system is under control and the effects of
the attack have been mitigated. Overall, the figures depict
various aspects of the system’s behavior and response in
different scenarios, highlighting the importance of secondary
consensus control, the impact of attacks, the effectiveness of
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mitigation measures, and the system’s ability to recover and
maintain stability.

V. CONCLUSION
In conclusion, our findings confirm that a reduction in
load on a particular bus connected to one DG unit leads
to a proportional decrease in generation from other DG
units, thus validating the effectiveness of consensus control.
Furthermore, this paper shows that a Replay attack, when
introduced into the communication link, remains dormant
until alterations occur in the system information, typically
triggered by load changes. Once activated, this attack disrupts
the system’s ability to maintain a stable voltage setpoint
for reliable operation. Moreover, the line current exhibited
a surge of over a hundredfold when compared to its typical
value. We identify the attack by observing a rise in residue,
and we consider it resolved when the residue returns to zero.
Additionally, we propose that future research should extend
its horizons by considering diverse attack scenarios and
communication network structures, including AC microgrids
with multiple generation units that incorporate delays and
quality-of-service requirements.
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