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ABSTRACT Video frame interpolation (VFI) is a challenging yet promising task that involves synthesizing
intermediate frames from two given frames. State-of-the-art approaches have made significant progress by
directly synthesizing images using forward optical flow. However, these methods often encounter issues such
as occlusion and pixel blurring when handling large motion scenes. To address these challenges, this paper
proposes a novel approach based on the concept of local compensation. By adopting this approach, more
refined optical flow estimation can be obtained, leading to higher-quality video frame interpolation results.
Specifically, we introduce two modules, namely theComprehensiveContextual Feature Extraction (CCFE)
module andMotion-Guided Feature Fusion (MGFF) module, to enable local compensation of optical flow
estimation. The CCFE module is designed to be embedded in each layer of the image pyramid structure.
It aims to encourage the model to extract clean and sufficiently rich contextual information from the input
images. On the other hand, the MGFF can guide the multi-source features fusion based on motion features,
making the feature fusion of moving objects more precise, thus providing local compensation for optical
flow estimation. Extensive experimental results demonstrate that incorporating our proposed modules into
the baseline network significantly enhances the performance of video frame interpolation.

INDEX TERMS Video frame interpolation, comprehensive contextual feature extraction, motion-guided
feature fusion, local compensation, motion refinement network.

I. INTRODUCTION
Video frame interpolation is an application of computer
vision in the field of video enhancement, which has attracted
significant attention from scholars in recent years. The
purpose of VFI is to improve the frame rate of the
original video by inserting intermediate frames between
adjacent frames. VFI technology has versatile applications,
including the conversion of videos into higher frame rates
and the enhancement of visual effects [4]. Additionally, VFI
technology can be employed in video compression [4], video
editing [5], generating training data to learn how to synthesize
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motion blur [6], and serving as an auxiliary task for optical
flow estimation [7], [8], etc.
The most recent studies on VFI predominantly leverage

deep neural networks (DNNs) as their primary method-
ology. These studies can be divided into flow-based and
kernel-based methods. Kernel-based methods [9], [10], [11]
synthesize the target frame by predicting the interpolation
kernel for each pixel, while flow-based methods [12], [13],
[14] estimate optical flow to perform frame warping and
then synthesize the target frame. Although kernel-based
methods are effective, they are limited to interpolating frames
at a fixed time step, and their runtime increases linearly
with the expected number of output frames. Flow-based
methods establish dense correspondences between frames
and apply warping to render the intermediate pixels, which
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FIGURE 1. The ground truth Images vs. images generated by M2M-PWC.
(a) The wooden stake in front of the car is not distorted, the tennis racket
has distinct grids, and there are speckles along the edges of the racket.
(b) The wooden stake in front of the car is distorted, the tennis racquet is
blurred, and there is no obvious grid and speckles.

can effectively reduce the multi-frame interpolation time
and allow arbitrary-time interpolation. Hence, the flow-based
video frame interpolation method has emerged as the
predominant approach for arbitrary-time interpolation.

The current flow-based methods have achieved promising
results in generating images with authenticity and inter-
frame consistency. However, these methods, such as ABME
[16], QVI [13], FLAVR [15], and SoftSplat [14], often
employ increasingly complex networks, resulting in a large
number of model parameters and increased computational
complexity. In comparison, M2M-PWC [29] reaches an
outstanding accuracy for arbitrary-time interpolation with
fewer model parameters and lower computational complex-
ity. Nevertheless, there is still room for further improvement
to the M2M-PWC model. For instance, the M2M-PWC has
obvious defects when synthesizing objects in large motion
scenes. As shown in Fig. 1, comparing the ground truth
image with the one generated by M2M-PWC, several issues
can be observed. The surrounding wooden stake of the car
undergoing large motion in the ground truth image remains
undistorted, while in the image generated by M2M-PWC, the

corresponding positions of the wooden stake are distorted.
In addition, the ground truth image shows clear grid patterns
and spotted edges of the high-speed moving racket, whereas
the racket in the image generated by M2M-PWC appears
blurry. We believe that if the above issues can be improved,
the performance of video frame interpolation in large motion
scenes will also be further improved.

We have observed that the quality of synthesized frames
mainly relies on the synthesis of moving objects, which need
to consider two factors: one is the separation between the
boundary of moving object and the background, and the other
is pixel fusion inside moving objects. The former requires
global pixel information, while the latter necessitates local
pixel details. Therefore, it is essential to extract comprehen-
sive features from the source images, encompassing both
global and local information. Furthermore, the fusion strategy
of multi-source features not only requires effective separation
of boundary for moving object but also demands the fusion of
internal object details. To address this problem, we propose
a novel approach based on local compensation for refining
optical flow estimation and developing a corresponding VFI
algorithm. The introduced CCFE module and MGFF module
both are specifically designed for local compensation. Our
main contributions in this paper can be summarized as
follows:

• We propose a CCFE module that can be embedded in
each layer of the image pyramid structure to extract
comprehensive features, including global and local
features, from the source image.

• We propose an MGFF module, which utilizes optical
flow estimation to guide the fusion of multi-source
of features. It enables fine-grained feature fusion and
provides local compensation for optical flow estimation.

• Experimental results show that the baseline net-
work equipped with our modules can boost the VFI
performance.

II. RELATED WORK
The kernel-based methods usually generate intermediate
frame at fixed times, typically between input images, which
limit arbitrary-time interpolation and linearly increases the
processing time for multiple-frame interpolation. Flow-based
methods explicitly estimate inter-frame motion and use it
to warp between frames, aiding subsequent intermediate
frame estimation. This means that the flow-based methods
can perform arbitrary temporal interpolation and effectively
reduce runtime for multi-frame interpolation. Therefore,
most methods that support arbitrary-time interpolation are
based on optical flow estimation. In general, flow-based
methods can be divided into backward optical flow-based
methods and forward optical flow-based methods.

The motion estimation module of the former results in
backward optical flow, which does not start from the input
time but starts from the middle time. Liu et al. [17] first
used a CNN to estimate the backward optical flow and
then used the backward warping operator to synthesize
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the intermediate frame. Park et al. [18] modified the flow
design process of the optical flow estimation network
PWCNet [19] to make it suitable for solving the problem
of calculating the optical flow. Zhang et al. [21] drew on
the design of Recurrent Residual Pyramid in the optical
flow estimation field to improve the performance of the
backward optical flow estimation. Chen et al. [22] used a
multi-scale motion estimation module to improve the accu-
racy of deformation synthesis. Huang et al. [20] developed
an iteratively optimized backward optical flow estimation
module, which has the advantages of simple design and fast
speed.

The latter can be further divided into two categories.
The first category is known as the methods based on
indirect forward optical flow. The paradigm is as follows.
It first estimates the forward optical flow then calculates the
backward optical flow using the forward warping operator,
and finally synthesizes with object linear or higher-order
motion assumptions. Jiang et al. [12] was the first to use
this design for video interpolation. Under the assumption of
linear motion of objects, it can quickly calculate the optical
flow starting from any intermediate time point using the
forward warping method, thus achieving fast multi-frame
interpolation. Bao et al. [23] combined adaptive convolution
with deformation and used a backward warping operator with
adaptive weights for frame synthesis. Later, Bao et al. [24]
used the reciprocal of the depth map as the weights
combined with the forward warping operator to propose the
highly acclaimed and visually effective DAIN. In addition,
Xu et al. [13] based on the quadratic motion hypothesis,
considering the one-sidedness of the linear motion hypoth-
esis. Liu et al. [25] based on the cubic motion hypothesis.
Zhang et al. [21] fully utilized convolutional networks to
enhance nodes in the process with optimization space and
has the advantages of the convolutional synthesis method.
Sim et al. [26] focuses on solving the frame interpolation
requirements of 4K resolution videos.

The second category is referred to as the methods based
on direct forward optical flow. It directly synthesizes images
through forward optical flow. These methods have a simple
and reasonable process design, which also avoids the problem
of ghosting introduced by backward warping. However, this
type of method also needs to deeply consider the issues of
voids and conflicts caused by forward warping. Niklaus and
Liu [27] proposed a context-aware synthesis method, which
can warp the input frames and their pixel context information
and use them to interpolate high-quality intermediate frames.
Then, Niklaus and Liu [14] proposed SoftSplat to seamlessly
handle hole and conflict issues in the forward warping
results and can achieve high-performance interpolation at any
time point. Li et al. [28] solved the challenges of ‘‘lack of
texture’’ and ‘‘nonlinear and large motion’’ in a coarse-to-
fine manner. Hu et al. [29] proposed M2M-PWC based on
SoftSplat, estimated multiple bidirectional flows, which can
directly warp pixels to the desired time step and then fuse any
overlapping pixels.

FIGURE 2. An overview of our plug-in modules. The details of our CCFE
module and MGFF module are further illustrated in Fig. 3 and 4,
respectively.

Overall, these above methods have advantages and disad-
vantages respectively. The main disadvantage of the methods
based on backward optical flow is that they require abundant
computation time for multi-frame interpolation. The methods
based on indirect forward optical flow can solve this problem
and achieve faster multi-frame interpolation. However, this
type of methods requires bidirectional optical flow during
the frame synthesis process, which doubles the computational
load compared to other methods that only need to calculate
unidirectional optical flow. Although these two types of
methods can avoid pixel conflict issues (such as occlusion
and blur), and achieve satisfactory performance in frame
synthesis, the high computational complexity limits their
application prospects in the real world. In contrast, methods
based on direct forward optical flow struggle to easily
achieve desirable frame synthesis results. However, due to
their efficient computational approach, they have become
one of the practical deployment solutions. Considering this,
our proposed method is developed based on direct forward
optical flow. While retaining the efficient computational
characteristics, it enhances frame synthesis performance and
holds promise for practical application. Detailed explanations
will be provided in the following sections.

III. PROPOSED METHOD
A. OVERVIEW
Given two consecutive frames I0 and I1 of a video, the goal
of VFI is to synthesize an intermediate frame It at a time
between the given input frames and the expected time step
t ∈ (0, 1). To achieve this goal, we first use existing optical
flow estimation methods to estimate the coarse forward
optical flow {F0−>1,F1−>0} between the two input frames.
Then, we utilize a refined network to improve and enhance
the original optical flow estimation via local compensation.
This process generates the refined bidirectional motion
fields

{
Fn0−>1,F

n
1−>0

}N
n=1 at full resolution, as well as

corresponding pixel reliability scores {S0, S1}.{
Fn0−>1,F

n
1−>0

}N
n=1 , {S0, S1} = φ(I0, I1,F0−>1,F1−>0)

(1)
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under the assumption of linear motion, we scale the motion
vector of each pixel according to the expected time step.

Fn0−>t (i0) = t · Fn0−>1(i0) (2)

Fn1−>t (i1) = (1 − t) · Fn1−>0(i1) (3)

here, i0 and i1 respectively indicate the i-th source pixel from
I0 and I1. Then, a source pixel is will be warped to ins−>t
by its n-th motion vector Fns−>t through a forward warping
operation ϕ.

ins−>t = ϕ(is,Fns−>t ) (4)

where s ∈ (0, 1) denotes the source frame. To address the
issues of overlap and holes, we simulate the motion of each
source pixel usingmultiple motion vectors.We useN (N > 1)
sub-motion vectors to forward warp each pixel in the source
to time, resulting in a collection of warped pixels.

Îs−>t =

N⋃
n=1

Îns−>t (5)

Finally, using the pixel warping and fusion strategy 9,
we obtain the final synthesized frame.

It = 9(Îs−>t , Ss) (6)

B. MOTION REFINEMENT NETWORK WITH LOCAL
COMPENSATION
The optical flow-based VFI algorithm generates intermediate
frames using two source frames and their corresponding
optical flow estimations. The two source frames provide
foreground and background information for the synthesized
intermediate frame [30], [31]. Typically, moving objects
between the two source frames are considered as foreground,
while relatively static objects are considered as background.
The optical flow estimation describes the relative motion
between the foreground and background. Compared to the
original optical flow estimation, the refined optical flow
estimation obtained by our proposed motion refinement
network effectively separates foreground and background
information. Furthermore, it combines multiple motion fields
in a meaningful way, resulting in accurate representations
of the motion prototypes of foreground objects. These
advances are primarily attributed to the implementation of
two modules, which will be explained in the following
section.

1) COMPREHENSIVE CONTEXTUAL FEATURE EXTRACTION
MODULE
The CCFE module is highly modular, as shown in Fig. 2,
which can be embedded after each down-sampling layer of
the image pyramid to enhance the extraction of contextual
features. Its details are shown in Fig. 3. It includes a
multi-scale feature aggregation mechanism and a channel
attention mechanism. The multi-scale feature aggregation
mechanism enables the network to capture large motion
information, accurately capturing both global and local

FIGURE 3. An illustration of CCFE module. (a) The multi-scale feature
aggregation mechanism is mainly composed of four dilated convolution
branches with different dilation rates. Their dilation rates are 1, 3, 5,
and 7, respectively. (b) The channel attention is mainly used for feature
recalibration.

information about moving objects. However, the extracted
source frame information usually contains noise. To mitigate
this noise interference, the channel attention mechanism is
employed to guide the model to learn important information
and suppress the noise information.

a: MULTI-SCALE FEATURE AGGREGATION MECHANISM
As shown in Fig. 3 (a), the multi-scale feature aggregation
mechanism is mainly composed of four dilated convolution
branches with different dilation rates. This structure can
receive information from different receptive fields, thereby
extending features to different scale-spaces. Define the input
feature map of l-th layer as ul ∈ RC×H×W , where C
represents the number of channels and H × W represents
the size of the input feature map. First, the feature map ul
is simultaneously sent to four different branches to generate
new feature maps. Then, we concatenate these features
generated by different branches along the channel dimension
and pass them through the ReLU activation function to obtain
multi-scale information rl .

The dilation rates of the four convolutions are 1, 3, 5,
and 7, respectively. As a result of the smaller dilation rates can
make the convolution kernel focus on local patterns, while
larger dilation rates allow the convolution kernel to ‘‘see’’
larger areas of the input image. In this way, the model can
capture not only the global information of the source frame
but also the local information, which is essential for local
compensation of refining optical flow estimation in large
motion scenes.

b: CHANNEL ATTENTION MECHANISM
Generally, the feature map extracted by convolutional neural
network will contain a certain amount of noise. Therefore,
to suppress noise interference and select useful features for
synthesizing intermediate frames, we apply channel attention
to recalibrate the features after each multi-scale feature
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FIGURE 4. An illustration of motion-guided feature fusion module. el , ql ,
and fl are branch features, pyramid features, and optical flow estimation
features, respectively. Down denotes the downsampling function
implemented by 2D convolution, and Up denotes the upsampling function
implemented by bilinear interpolation.

aggregation mechanism. As shown in Fig. 3 (b), the channel
attention mainly consists of a global average pooling, two
convolutional layers, and a product operation.

Assuming rl ∈ RC×H×W is the feature of l-th layer
obtained throughmulti-scale feature aggregation mechanism.
Firstly, the mechanism performs the 2D global average pool-
ing operation to compress the feature map along the spatial
dimension into a feature vector, which theoretically has the
global receptive field with input characteristics. Secondly, the
feature vector will be transformed into learnable parameters
vl through convolutional computation. vl is the learned
coefficient, which represents the importance of each channel.
Finally, the product operation is performed by weighting
the original feature with the learned importance coefficient
for each corresponding feature channel, thus achieving the
rescaling of the original feature: ql = vl · rl

2) MOTION-GUIDED FEATURE FUSION MODULE
The MGFF module utilizes motion features to dynamically
guide the fusion of source frame features and branch features.
It enables the obtained fusion features to effectively fuse
source frame information, branch mixed information, and
motion information. As a result, more accurate optical flow
estimation vectors can be obtained.

As shown in Fig. 2, the features on the branch are mixed
features that fuse information from two input frames and
original optical flow estimation. The image pyramid features
are down-sampled features of the input image. To handle the
fusion of the two under different motion patterns, we propose
to fuse branch features and image pyramid features under
the guidance of corresponding motion features. That is the
motion-guided feature fusion module, which replaces the
LFM module in M2M-PWC.

The structure of MGFF is shown in Fig. 4. MGFF
dynamically fuses the features el on the branches and the
image pyramid features ql based on the motion pyramid
features fl of l-th layer, where l = 4. Firstly, MGFF obtains
three types of multi-scale weighted features:

w1 = Fl1([el, ql, fl]) (7)

w2 = Fl2([D2(el),D2(ql),D2(fl)]) (8)

w3 = Fl3([D4(el),D4(ql),D4(fl)]) (9)

where F(·) is the linear layer, [·] represents concat features
with channel dimension, D(·)x represents the downsampling
function implemented by 2D convolution with stride 2, and
x is the downsampling ratio. Then the weighted features are
fused:

w4 = w2 + U2(w3) (10)

wo = σ (Fl4(w1 + U2(w4))) (11)

where U(·)x is the upsampling function implemented by
bilinear interpolation, x is the upsampling factor. Finally,
we obtain the fused feature by:

el = el · wo + ql · (1 − wo) (12)

This design prompts the network to automatically adjust
the weights based on the optical flow features, thereby
dynamically fusing the mixed features obtained from the
previous layer and the image features. As shown in Fig. 2,
after this process, the decoder can be applied to obtain the
enhanced optical flow estimation and its pixel reliability
scores. Fig. 5 illustrates a compelling comparison between
the optical flow estimations before and after incorporating
local compensation. This visualization depicts that the optical
flow estimation post-local compensation offers a more
intricate and detailed depiction of motion.

C. PIXEL WARPING AND FUSION
We finally synthesize the intermediate frame based on{
Fn0−>1,F

n
1−>0

}N
n=1 and {S0, S1} obtained above through

forward warping. Since the synthesis strategy proposed in
[30] directly operates on the pixel color domain based on the
framework of multi-frame pixel fusion and learning-based
pixel reliability scores, building upon the work of [14].
As a result, this model can efficiently synthesize high-quality
intermediate frames. Therefore, this paper adopts its synthe-
sis strategy as the subsequent synthesis method.

IV. EXPERIMENTS
A. TRAINING SETTINGS AND DETAILS
1) COMPARISON METHODS
We conducted comparative analysis to our proposed
method and several recent approaches, including QVI [13],
FLAVR [15], ABME [16], DAIN [17], SepConv [9],
RIFE [20], SoftSplat [14], and M2M-PWC [29]. To ensure
fairness, we reproduced the official publicly available codes
of QVI, FLAVR, ABME, DAIN, SepConv, RIFE, and M2M-
PWC. Although we encountered difficulties in accessing the
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FIGURE 5. Visualization of optical flow estimation before and after refinement. (a) The original frame input into the model. (b) The raw optical flow
estimation obtained through PWC-Net. (c) The refined optical flow estimation obtained by our proposed method.

code for SoftSplat, we made every effort to replicate it and
compare its experimental results directly with those of our
proposed method.

2) DATASETS
We adopted the same dataset partitioning approach as [29],
where we trained our model on triplets extracted from
the Vimeo90K [40] dataset. Subsequently, we evaluated
the performance of our model on various datasets, which
include:

• Vimeo90K: This dataset comprises 3782 triplets, with
each image having a resolution of 448 × 256.

• UCF101 [32]: Derived from a collection of human
action videos, this dataset has been organized by [33]
and consists of 379 triplets. Each image in this dataset
has a resolution of 256 × 256.

• ATD12K [33]: This dataset contains 2000 triplets
extracted from various animated videos. The images in
this dataset have a resolution of 960 × 480.

• DAVIS [39]: Originating from a dynamic video, the
Davis dataset consists of 92 different scenes, comprising
a total of 6208 images. Each image has a resolution of
either 854 × 480 or 910 × 480.

• X-TEST [26]: Extracted from the X4K1000FPS dataset,
X-TEST contains 15 scenes from 4K videos captured
at 1000 FPS. The original resolution of this dataset
is denoted as X-TEST(4K), while a downscaled ver-
sion obtained through downsampling is referred to as
X-TEST(2K) [26].

3) METRICS
We utilize the SSIM [34] and PSNR [35] metrics widely
used in most VFI work to evaluate the performance of our
proposed method. SSIM assesses image similarity based
on brightness, contrast, and structural aspects. PSNR is the
peak signal-to-noise ratio, which describes the relationship
between the maximum signal and background noise. The
higher the values of SSIM and PSNR, the better the quality
of the synthesized image.

4) IMPLEMENT DETAILS
All experiments presented in this study were conducted using
the PyTorch [36] framework and executed on an NVIDIA
A100 Tensor Core GPU. For optimization, we employed the
Adam optimizer with a weight decay of 1e-4. The model
was trained for 400,000 iterations, utilizing a batch size of
64. The training dataset comprised 51,312 triplets extracted
from theVimeo90K dataset and involved various random data
augmentations, including spatial and temporal flipping, color
jittering, and random cropping of 256 × 256 patches. End-
to-end supervised training was performed using Charbonnier
loss [37] and census loss [38].

B. QUANTITATIVE ANALYSIS
1) ×2 FRAME INTERPOLATION
Table 1 presents a comparison of the performance between
our proposed method and the other methods for ×2 frame
interpolation across multiple datasets. The methods are
categorized into two groups based on their capability for
arbitrary-time interpolation, where the upper half of the
table represents methods that do not support arbitrary-time
interpolation, while the lower half includes methods that
do. To provide a holistic evaluation, we also include the
corresponding parameter sizes and inference speeds for each
method. The inference speed is calculated based on images
from the Davis dataset, with each image cropped to a
resolution of 480×854. Notably, the text in bold font indicates
that the method achieved the best results in the respective
dataset, while the text with an underline indicates the second-
best result.

In terms of the PSNR metric, the non-arbitrary-time
interpolation methods generally demonstrate slightly better
performance compared to the arbitrary-time interpolation
methods. However, when considering the SSIM metric,
the performance between these two categories is compa-
rable. Upon comparing our proposed model with other
arbitrary-time interpolation methods, we found that it
achieved suboptimal results on the Vimeo90K, UCF101,
and ATD12K datasets, while obtaining the best performance
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TABLE 1. Quantitative comparisons of our proposed model with state-of-the-art VFI models.

on the Davis and X-TEST datasets. These five datasets
encompass diverse resolutions and FPSs, indicating that our
proposed model can adapt effectively to various real-world
scenarios and exhibit strong generalization abilities.

Notably, among the arbitrary-time interpolation methods,
SoftSplat performs well, achieving the best results on
the Vimeo90K and UCF101 datasets. However, this high
performance comes at the cost of a larger parameter size and
slower inference speed. Specifically, the parameter size of
SoftSplat is approximately 1.59 times that of M2M-PWC,
and its inference speed is roughly 3.7 times slower than
M2M-PWC. In contrast, our proposed model only incurs
a modest increase of 0.33 M parameters compared to
M2M-PWC, resulting in a 5 ms slowdown in inference speed.
It can be seen that our proposed model is still lightweight,
retaining the advantages of direct forward optical flow-based
methods while better addressing the issues of existing VFI,
thereby further improving frame synthesis performance.

2) ×8 FRAME INTERPOLATION
Arbitrary-time VFI is important in frame-rate conversion.
We present the performance of our proposed method and
the comparison methods for ×8 frame interpolation in
Table 2. In this experiment, we specifically focused on high-
resolution datasets, namely X-TEST (2K) and X-TEST (4K),
which pose more significant challenges compared to low-
resolution datasets. The reported inference speed in Table 2
was obtained by training the model on the Vimeo90K dataset
and testing it on the X-TEST (2K) dataset. Specifically,
the model takes two frames with a resolution of 1080 ×

2048 from the X-TEST (2K) dataset as input and generates
7 intermediate frames. It is evident that our proposed method
has significant speed advantages and outperforms other
comparison methods on the X-TEST (2K) and X-TEST (4K)
datasets. Although M2M-PWC demonstrates slightly faster
speed than our proposed model, its PSNR and SSIM metrics
are not as impressive. On the X-TEST (2K) dataset, these
two metrics are 0.31 and 0.018 lower than our proposed
model, respectively, while on the X-TEST (4K) dataset,
they are 0.04 and 0.025 lower than our proposed model,
respectively. And this disadvantage can also be apparently
reflected in visualization, which will be shown in the next
subsection. On the other hand, QVI achieves comparable

TABLE 2. Quantitative analysis results for ×8 frame interpolation on the
X-TEST dataset. The inference speed was obtained by testing models on
the X-TEST (2K) dataset.

SSIM performance to our model but at the expense of being
6.4 times slower in terms of speed. In contrast, our model
achieves an acceptable trade-off between accuracy and speed
in the arbitrary-time frame interpolation task through the two
proposed modules.

3) INTERPOLATION WITH DIFFERENT TIME STEPS
We assessed the robustness of our proposed model by
expanding the ×8 frame interpolation experiments and
evaluating its interpolation performance with different time
steps. The experiments were conducted on the X-TEST (2K)
dataset, and the PSNR values of all models were calculated
when inserting frames at various time steps. Fig. 6 illustrates
the experimental results, indicating that our proposed method
achieves optimal performance at each time step.

Furthermore, in general, all models tend to exhibit better
frame interpolation performance at the edge time steps,
while demonstrating relatively inferior performance at the
middle time step. Compared with models represented by
tortuous curves such as ABME and DAIN, the curves related
to our method are smooth. So to speak, our model stably
delivers excellent frame interpolation performance across
different time steps, showcasing its temporal consistency and
reliability.

C. QUALITATIVE ANALYSIS
1) HANDLING OF OCCLUSION ISSUE
Fig. 7 provides a visualization comparison between
M2M-PWC and our proposed model. As previously
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FIGURE 6. Evaluating multi-frame interpolation. Per-frame accuracy for
×8 interpolation on X-TEXT(2K). Best viewed in red color.

mentioned, M2M-PWC is currently recognized as one of the
best VFI methods with arbitrary-time interpolation, exhibit-
ing an overall good performance in VFI. However, upon
closer examination of the comparison details, differences can
be observed in the handling of occlusion between the two
models. In the second row of Fig. 7, the images synthesized
by M2M-PWC distort the originally undistorted wooden
stake. This is a typical occlusion problem that exists in the
methods based on direct forward optical flow. In contrast,
the image (c) synthesized by our proposed model closely
resembles the source frame, with the wooden stake in
corresponding positions remaining undistorted. Similarly,
in the synthesized image by M2M-PWC in the fourth row
of Fig. 7, the white stake that the car is about to pass through
is distorted, while the white stake we synthesized remains
undistorted.

Based on these observations, we can conclude that our
proposed model accurately captures pixel movement details
between frames through local compensation, resulting in
refined optical flow estimation. This enables our model to
better handle occlusion issues and achieve high-quality video
interpolation.

2) HANDLING OF PIXEL BLUR ISSUE
As mentioned earlier, methods based on direct forward
optical flow, although efficient in achieving multi-frame
interpolation, often encounter the issue of blur. Solving this
blur problem through algorithm design has been a continuous
research focus. As shown in Fig. 8, we demonstrate the
performance of ourmodel in handling this problemwith some
challenging pixel synthesis examples.

Fig. 8 (a) is the source frame, in which a man is holding
a Tennis racquet for a large movement with large pixel
displacement. The original tennis racquet has square patterns,
and the edge of the racquet exhibits white speckles. Fig. 8 (b)
is the image generated by M2M-PWC. It is apparent that
the edges and squares of the tennis racquet appear blurred
and lack clarity. However, in Fig. 8 (c), generated by our
proposed model, the squares and edge speckles of the tennis
racquet are well-preserved. It is apparent that synthesizing
complex-shaped objects in scenes with large motion remains
a challenge for methods based on direct forward optical

FIGURE 7. Comparison between M2M-PWC and our model in handling
occlusion issue. Our proposed model exhibits superior performance in
accurately separating large motion objects from the background. The
images generated by our model show no distortion in both the wooden
stake and the white stake.

FIGURE 8. Comparison between M2M-PWC and our model in handling
pixel blur issue. The images generated by our model retain some of the
grid patterns and speckles of the tennis racket, whereas M2M-PWC does
not.

flow. Our proposed model, however, has made further
improvements based on the base model. This improvement
can be attributed to the inclusion of the MGFF and CCFE
modules in our proposed model. These modules effectively
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TABLE 3. Results of ablation experiment.

address the issue of pixel blur, resulting in the generation of
frames with more realistic details.

D. ABLATION EXPERIMENT
To investigate the contributions of the CCFE module and
MGFF module to our model, we conducted ablation exper-
iments, and the results are presented in Table 3. In the table,
#1 represents the model with the CCFE module removed and
the MGFF module replaced with a convolution operation,
#2 represents the model with the CCFE module removed,
and #3 represents the model with the MGFF module replaced
with a convolution operation. The experiments conducted on
five datasets demonstrate that both the CCFE and MGFF
modules contribute to the performance indicators of our
proposed model. Specifically, the average contributions of
CCFE+MGFF to PSNR and SSIM across the five datasets
are 1.79 and 0.29, respectively. Furthermore, from the last
three rows of the table, it can be observed that the CCFE
module enhances the two indicators of the model by 0.45 and
0.008, respectively, while the MGFF module improves the
two indicators by 0.32 and 0.005, respectively. These results
highlight the importance and effectiveness of both the CCFE
and MGFF modules in enhancing the performance of our
model.

V. CONCLUSION
In this paper, we introduce the CCFE module and MGFF
module and demonstrate their effectiveness in frame inter-
polation applications through extensive experiments. The
model equipped with these two modules can obtain more
accurate optical flow estimation, enabling better handling
of occlusion and blurring issues in large motion scenes.
Nevertheless, there is room for refinement in terms of image
generation clarity andmodel inference speed. Future research
endeavors will focus on enhancing these aspects to optimize
our proposed model further.
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