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ABSTRACT Predicting the future trajectories of surrounding pedestrians is undoubtedly one of the most
essential but challenging tasks for safe urban autonomous driving. Despite this importance, there has
been limited research conducted on the egocentric view from easy-to-access vehicle-mounted cameras for
autonomous driving applications. This paper presents a non-autoregressive transformer based trajectory
prediction methodology for pedestrian on egocentric view. Furthermore, our proposed model predicts ego-
motion independent future trajectories for utilization in downstream tasks such as motion planning in
autonomous vehicles. This approach differs from previous researches as it focuses on predicting the future
position of pedestrians based on the current observed image context, rather than their future positions in
future observed images. The proposed model, referred to as the TransPred network in this paper, is composed
of three main modules: vehicle motion compensation, non-autoregressive transformer, and conditional
variational autoencoder(CVAE). The transformer structure is employed to effectively handle raw images
and the historical trajectory of the target pedestrian, enabling the generation of advanced future predictions.
Additionally, the CVAE module is utilized in the final part of the overall model to predict plausible
multiple future trajectories. It contributes to generating diverse and realistic future trajectory predictions.
The performance of our model has been evaluated on Nuscenes and In-house dataset obtained from our
vehicle equipped with sensors. We achieves the state-of-the-art performance for prioritized trajectories on
both datasets. Moreover, the usability of the proposed ego-motion independent trajectories for autonomous
driving is demonstrated through risk assessment experiments.

INDEX TERMS Autonomous driving, autonomous vehicle, attention mechanism, egocentric view, non-
autoregressive transformer, pedestrian trajectory prediction.

I. INTRODUCTION
Autonomous driving technology has made significant
advancements over the past few decades, expanding its
scope from simple highway environments to complex urban
settings. In line with this progress, ensuring pedestrian
safety in the context of sharing urban driving environments
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has emerged as a critical focal point. To enhance safety,
it is crucial to understand pedestrians’ underlying intentions
and predict their future actions, as this plays a vital role
in preventing potential collisions and disruptions to traffic
flow. However, despite this importance, there have been
insufficient researches conducted to adequately apply these
studies to autonomous vehicles. Existing studies [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18] predicting pedestrian trajectories have
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predominantly been conducted with fixed cameras on bird’s
eye view or building cctv view, rather than cameras mounted
on the autonomous vehicle. This distinction in domains arises
from the fact that the former measures the position on the
top view, not the bounding box of the pedestrian’s body, and
is not affected by ego-motion. On the other hand, research
utilizing easily accessible vehicle-mounted cameras with
an egocentric perspective for prediction purposes remains
largely underexplored in the field of autonomous driving.
Moreover, even a limited number of existing studies [19],
[20], [21], [22], [23], [24], [25] in the egocentric view predict
pedestrian’s future trajectory that encompass both ego-
motion and the movement of the target object. In other words,
the trajectory predicted in these previous studies aims to track
the ego-motion-dependent trajectory, which is the cumulative
sequence of pedestrian bounding boxes observed at each
future time step from the vehicle-mounted camera during
driving. These ego-motion dependent predictive outcomes,
as evident in Fig. 1, demonstrate challenges in grasping
pedestrians’ intention and assessing potential risks due to
their inconsistency with the surrounding context on the
current captured images.

This paper proposes ego-motion independent trajectory
prediction considering visual context and historical trajectory
based on a non-autoregressive transformer in egocentric
view. Fig. 1 illustrates an example of the proposed model’s
prediction result on Nuscenes dataset, along with the ego-
motion-dependent future trajectory pursued in previous
researches. On the current observed image, the ego-motion-
dependent trajectory appears to be pushed to the left due to
the future movements of the vehicle. On the other hand, the
trajectory we aim to track represents the future positions of
the pedestrian in the current image coordinates, independent
of the future ego-motion. As shown in the example image,
our model generates predictions that adhere to an ego-
motion independent trajectory. The output trajectory is
in harmony with the surrounding image context at the
measured current image, allowing for various applications
in autonomous vehicles. For instance, it can be utilized to
determine when pedestrians will cross or move away from
my vehicle’s driving lane. Moreover, our focus has also been
on extracting the necessary contextual information from the
raw image to predict the future trajectory of pedestrians.
During driving, human drivers predict pedestrian movements
by comprehensively considering the visual information,
road structures such as nearby crosswalks, sidewalks, and
lanes, as well as the past movements of pedestrians in
the vicinity. Following this aspects, our study actively
utilizes both the visual contextual information and historical
trajectories of target based on an cross-attention mechanism
of transformer. The transformer model [26], which has made
significant advancements in the field of natural language
processing (NLP), has also been extended to the domain of
computer vision, including tasks such as image classification,
object detection, and segmentation. The transformer model
is also a suitable framework for prediction tasks, as it

effectively utilizes the key image context and handles time
sequential data. In this study, cross-attention within the visual
transformer architecture is employed to focus on crucial
image pixels that have a significant impact on the future
trajectory. Moreover, in reference to [12], we employ a non-
autoregressive transformer with a learnable query, departing
from the time-consuming autoregressive structure of the
original transformer.

The proposed model was evaluated on two datasets: the
Nuscenes dataset, which contains a large-scale collection of
urban driving videos from an egocentric perspective, and
an in-house dataset obtained from our vehicle equipped
with sensors. The trajectory prediction performance of
the proposed model demonstrated superiority over other
prediction models in the egocentric perspective. Moreover,
the usability of ego-motion independent future trajectories
was demonstrated through risk evaluation experiments with
nearby pedestrians. The primary contributions of this work
can be summarized in three parts.
1) We are the first to apply the transformer’s cross-attention

mechanism to actively incorporate not only the historical
trajectory but also dense information from raw RGB
images in the future trajectory prediction task, achieving
state-of-the-art performance for prioritized trajectories.

2) To the best of our knowledge, this study represents
the first attempt to predict ego-motion independent
future trajectories of pedestrians from an egocentric
view, specifically focusing on their applicability in
autonomous driving.

3) We perform a risk assessment with surrounding pedes-
trians to showcase the utilization of our predicted ego-
motion independent future trajectories in autonomous
driving.

The remaining sections of the paper are as follows:
Section II describes related studies focusing on image-
based prediction approaches. In Section III, we outline the
comprehensive model architecture proposed in this research
and provide detailed explanations of the methodology.
Section IV presents various experiments and ablation studies
conducted to evaluate the prediction performance and provide
analysis. Lastly, Section V concludes this research.

II. RELATED WORK
A. TRAJECTORY PREDICTION ON BIRD’S EYE VIEW
Most of the pedestrian trajectory prediction research has
been conducted using bird’s eye views or building views
captured in crowded indoor or outdoor squares. Accord-
ingly, a significant amount of research has focused on the
interactions with surrounding agents to predict pedestrian
movement patterns in such congested spaces. Alahi et al.
[1] proposed a Social-LSTM model, which utilizes social
pooling techniques to learn the interactions between nearby
pedestrians in crowded environments. A Social-GAN [2],
which leverages the concept of Generative Adversarial
Networks (GAN), was proposed as an extension of the work
presented in [1]. This approach incorporates global pooling
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to effectively capture interactions among all individuals
depicted in an image. Xue [3]’s work focused on predicting
multi-destination conditional trajectories using bi-directional
LSTM path classification method. Yue et al. [27] integrates
dynamics for crowd modeling into a deep learning approach.
Multiple research studies [4], [5], [6], [7], [8], [9] have
utilized graph-based networks to understand and model
interactions involving multiple objects.

Recently, the attention mechanism [26] in transformers
has brought significant improvements in long-term prediction
performance in the field of NLP, leading to various attempts
to apply transformers in trajectory prediction. Yu et al. [10]
encoded the interactions with nearby pedestrians within
a specific range using a spatial transformer and applied
temporal transformers to encode the temporal information
of each agent’s historical trajectory. GAT [11] constructed
interactions between agents and between agents and infras-
tructure using a sparse graph structure, and captured the most
noteworthy interactions based on attention mechanism. Addi-
tionally, they enhanced prediction performance by incorpo-
rating additional inputs such as satellite maps, semanticmaps,
traffic signals, and agent position maps. Agentformer [12]
proposed a methodology where a single transformer module
handles both temporal and spatial information, enabling
consideration of the impact of one agent at a specific time
on the future state of other agents. This was achieved by
flattening the agent information and temporal sequence to
apply attention simultaneously. Achaji et al. [13] pointed
out the time-consuming nature of using merged attention
in Agentformer [12] and proposed a method based on
temporal-spatial divided attention. They also utilized a non-
autoregressive model based on learnable queries to enable
parallel application of Transformers. Liu et al. [14] also
addressed the time-consuming nature and error accumulation
in auto-regressive models, proposing a non-autoregressive
transformer-based prediction model. These transformer-
based prediction methodologies have demonstrated superior
performance compared to various RNN-based approaches.

On the other hand, Lee et al. [15] demonstrated the
first attempt to utilize Conditional Variational Autoencoders
(CVAE) for plausible multiple trajectory prediction. Nowa-
days, multi-modal forecasting [16], [17], [18], [24], [25],
[28], [29], [30] has become the dominant approach in the field
of trajectory prediction, as it offers more realistic prediction
results compared to single-path forecasting. In accordance
with this research trend, our research also applies CVAE
to derive diverse trajectories, offering applicability for
downstream tasks that require probabilistic predictions rather
than deterministic trajectories.

B. TRAJECTORY PREDICTION ON EGOCENTRIC VIEW
There have been several studies focused on predicting the
future bounding box sequence of pedestrians’ bodies in urban
driving scenarios using data captured from vehicle-mounted
cameras, rather than their future positions in the top view.
Bhattacharyya et al. [19] pioneered pedestrian trajectory

FIGURE 1. Illustration of ego-motion independent trajectory prediction.
The past and future trajectories from the dataset are represented by the
yellow and green colors, respectively. These trajectories depict the
cumulative positions perceived in the image at each time step. The
ground truth of the ego-motion independent future trajectory, which we
aim to follow, is highlighted in red. The blue color represents the
predicted trajectory generated by our proposed model. The final positions
are represented by star-shaped markers and the bounding box is used to
indicate the current position of the target pedestrian.

prediction on images from onboard camera. By incorporating
vehicle motion and pedestrians’ past trajectories as inputs,
Bayesian-LSTMwas employed to estimate future trajectories
and associated uncertainties. Yagi et al. [20] introduced
a convolution-deconvolution framework that considers the
vehicle’s motion, pedestrian’s past trajectory, bounding box
scales, and poses to predict pedestrian future trajectories.
Quan et al. [23] introduced a modified version of the
LSTM model that effectively integrates various inputs,
including pedestrian intention, vehicle motion, and global
scene information. Makansi et al. [22] predicted reachable
locations based on semantic segmentation images and
ego-motion. Subsequently, many researchers attempted to
use prior destination with historical trajectories to predict
pedestrians’ future trajectories. Two recent studies [24], [25]
have proposed trajectory prediction methods that consider
both top view and egocentric view perspectives. Both
studies shared similarities in having the prediction models
based on CVAE modules and goal-conditioned decoders.
Yao et al. [24] specifically proposed a bi-directional decoder
with dual forward and backward GRUs based on the ultimate
destination. Wang et al. [25] suggested estimating the goal
position sequence during the prediction time horizon rather
than the final destination.

The studies on urban driving data with an egocentric view
have primarily prioritized advanced interpretation of vehicle
movements and pedestrians’ past trajectories, rather than
focusing on sparse interactions among pedestrians in urban
driving situation. However, all the aforementioned studies in
the egocentric domain focus on predicting future bounding
boxes in the future image coordinate system that will be
observed at each time step, relying on the future motion
of the vehicle. In the context of autonomous vehicles, it is
considerably challenging to utilize these predicted results
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FIGURE 2. Architecture of the proposed model based on a non-autoregressive transformer with learnable queries for pedestrian trajectory
prediction.

by comparing them with available information such as lane
markings or pedestrian crosswalk in the current observed
image. In this study, the future positions of pedestrians
on the current image coordinate system are predicted
independently of the future vehicle movements. Moreover,
the majority of these prior studies have either disregarded
the valuable information present in images or relied on
processed information derived from images, such as semantic
segmentation images, which required additional algorithms
for interpretation. In contrast, our proposed approach aims
to leverage the rich and unprocessed information directly
extracted from the raw images, enabling a more compre-
hensive and holistic understanding of the scene, facilitating
higher-level anticipatory capabilities. To accomplish this,
we introduce a non-autoregressive transformer-based predic-
tor that effectively incorporates image scene information and
historical trajectory into the prediction process using a cross-
attention mechanism.

III. PROPOSED METHOD
The aim of this study is to derive the future trajectories of
the target pedestrians within an egocentric view for the Np
prediction horizon, using the past trajectories of target pedes-
trians Xot , subject vehicle states V

o
t , and the last observed raw

image Iot . Notably, the desired future trajectories in this study,
unlike existing works, indicate the anticipated positions of
pedestrian within the context of the currently observed image
at time t . In other words, these trajectories capture the
pedestrian movements independent of the future motions of
vehicles, thereby facilitating comprehension of pedestrian
behaviors from the perspective of autonomous vehicles.
We denote Xot = [xt−No+1, xt−No+2, . . . , xt ] as the observed
past trajectory of the target pedestrian at time t , where
xt ∈ R4 represents the center position, height and width
of the bounding box in pixel units. The predicted trajectory
at time t is denoted as Xpt = [xt+1, xt+2, . . . , xt+Np ], and
the ground truth of the future trajectory is denoted as Y pt =

[yt+1, yt+2, . . . , yt+Np ]. The desired ego-motion independent

trajectories are denoted with hat symbols as X̂ot , X̂
p
t , Ŷ

o
t ,

and Ŷ pt . The ground truth Ŷ ot and Ŷ pt for past and future
trajectory at time step t are obtained by processing the Xot
and Y pt provided in the dataset. This procedure is addressed
in Section III-F.

A. OVERVIEW
The proposedmodel for obtaining the final output X̂pt consists
of three key modules: the vehicle motion compensator, the
transformer-based trajectory predictor, and the conditional
variational autoencoder (CVAE). Initially, the past trajectory
Xot is transformed into a compensated trajectory X̂ot using the
trained vehicle motion compensation module. For instance,
in the case of a stationary pedestrian, the observed historical
trajectory Xot may not align with the same coordinate
positions throughout due to the past motions of the subject
vehicle. However, if the model is well trained, ideally, the
trajectory Xot will be transformed into a trajectory X̂ot that
aligns with the current bounding box in the current image
coordinate system, represented by xt , after passing through
the vehicle motion compensation module. Subsequently, X̂ot
is utilized as input for the trajectory prediction module. The
trajectory predictor is based on a transformer structure, which
is composed of an encoder and a decoder. In the encoder,
a cross-attention mechanism is employed to effectively
integrate the encoded image features from the 2D backbone
and the historical trajectory. The decoder then generates
hidden features for the future trajectory of the target
pedestrian. Lastly, the CVAE module incorporates latent
variables to learn the distribution of the target trajectory
and uses this distribution to predict K multiple trajectories.
The overall architecture of the proposed model is illustrated
in Fig. 2.

B. VEHICLE MOTION COMPENSATION
The displacement △Xot of 2D bounding boxes on the image,
caused by the vehicle’s motion, is estimated through the
vehicle motion compensator. There are limitations in finding
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FIGURE 3. Architecture of the modified transformer module with
cross-attention mechanism to effectively fuse the historical trajectory and
image feature.

a unique solution for the displacement of dynamic target
objects in the dynamic image coordinate system captured by
a moving camera through purely algebraic methods. There-
fore, the proposed vehicle motion compensation module is
employed to estimate displacements based on a learning
methodology that allows for the incorporation of more
intricate relationships.

The observed past trajectory Xot and the vehicle state
sequence V o

t , which contains information on the vehicle’s
speed and yaw rate during the observation time horizon No,
serve as inputs to the vehicle motion compensation module.
They are individually encoded by the bounding box encoder
and the vehicle state encoder. The compensation module is
composed of a combination of fully connected layers and
a GRU, forming its overall architecture. The derived △Xot
through this module is added to the observed trajectory Xot ,
resulting in the transformation of the observed trajectory
Xot into the compensated observed trajectory X̂ot . In other
words, the target pedestrian bounding boxes at each image
coordinate during the time steps [t − No + 1, . . . , t − 1] are
transformed to their corresponding positions in the current
image coordinates at time t . The compensated observed
trajectory X̂ot can be defined by the following equation.

X̂ot = Xot + △Xot (1)

The computed X̂ot is then used as input to the transformer-
based trajectory predictor with image features.

C. TRANSFORMER-BASED TRAJECTORY PREDICTION
To construct a trajectory prediction that comprehensively
incorporates both the compensated past trajectory and

FIGURE 4. Architecture of the multi-head attention module.

the image pixels containing crucial contextual informa-
tion, we present a modified transformer architecture. This
modification involve adapting the transformer structure to
effectively integrate the compensated past trajectory and the
relevant image pixels, which are vital for predicting future
paths. The proposed structure of modified transformer is
shown in Fig. 3. In the transformer encoder, the encoded past
trajectory X̂ot is treated as query Q ∈ RNo×dm , where No
each query element represents the encoded bounding box at
each time step within the observation horizon. To introduce
temporal information to the query sequence, each query
element is added with an encoded temporal value. The
temporal encoder follows a sinusoidal design, similar to the
original transformer [26], to extract the timestamp feature.
The timestamp feature τ t ∈ Rdm for each time step t is
computed as follows:

τ tj =

{
sin(t/10000j/dm ) for j even
cos(t/10000(j−1)/dm ) for j odd

(2)

where the notation τ tj refers to the j-th feature of τ t

with a feature dimension of dm. On the other hands, the
encoded image feature serves as the key-value K ,V ∈

RH ·W×dm for the transformer encoder, incorporating learned
positional encoding, following the approach proposed in [31].
Additionally, taking inspiration from [31] and [32], a 2D
Gaussian weight mask is employed to efficiently identify
influential key pixels near the past trajectory within the
observed image space, encompassing a broader range. The
mask M ∈ RH ·W×No is represented by the expression below.

Muv,t = exp

(
−
(u− cx,t )2 + (v− cy,t )2

σ r2

)
(3)

where (u, v) represents the indices of image pixels, and
(cx,t , cy,t ) denotes the center point of the bounding box at t
time step of compensated past trajectory X̂ot . r represents the
distance from the center point of the bounding box to one of
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its corner points, and σ is a hyper-parameter used to control
the extent of the masked region. The σ has been configured
as shown below.

σ = 4(2r + 1) (4)

The multi-head cross-attention module, including the weight
mask, can be expressed mathematically as follows:

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i )

Attention(Q,K ,V ) = (softmax
(
QKT
√
dk

)
⊙M )V (5)

Each query, key, and value is projected using WQ
i ∈ Rdm×dk ,

WK
i ∈ Rdm×dk , and WV

i ∈ Rdm×dk , respectively, and then
applied to the attention mechanism. The masked attention
weights are obtained by element-wise multiplication of the
attention weights and the 2D weight mask, and then these
masked attention weights are multiplied by the V .

MultiHead = Concat(head1, . . . , headh)WO (6)

The results from h heads are concatenated, and a projection
matrix WO

∈ Rh·dk×dm is applied to ensure that the output
has the same size as the input query. Equations (5) and (6)
are visualized in Fig. 4.
The derived output of transformer encoder is utilized as

the key-value input for the transformer decoder component.
In the transformer decoder, the ultimate objective is to
derive the hidden features of future trajectory over the
prediction time horizon Np based on the hidden features of
length No, which encapsulate the past trajectory and image
context information. The original transformer [26] operates
in an autoregressive manner, which not only results in
significant time consumption on inference but also introduces
exposure bias due to the disparity between the training
process that employs ground truth and the inference process
that relies on previous predictions instead. Furthermore,
if both training and inference operate autoregressive manner
applying previous predictions, it hampers the utilization of
parallelization power during training, resulting in inefficient
learning time. Therefore, taking inspiration from [13],
we adopt a learnable query with a temporal dimension of Np.
By incorporating the learnable query, parallel decoding can
be performed during both training and inference, effectively
addressing the aforementioned issues. The learnable query
is randomly initialized and serves as the query input to the
multi-head cross-attention module after passing through self-
attention. The multi-head cross-attention is conducted in a
similar manner to the encoder, with the exception that no
mask is applied. The final hidden feature derived from the
decoder undergoes a CVAEprocess to facilitate diversemulti-
trajectory prediction.

D. CONDITIONAL VARIATIONAL AUTOENCODER (CVAE)
In this study, the CVAE is employed as an additional module
to derive plausible multi-trajectories for safe urban driving.
The CVAEmodule is designed to learn a target distribution by

introducing latent variables for one-to-manymodeling. In our
CVAE module, the hidden feature of the future trajectory hx̂pt
obtained from the transformer-based trajectory predictor is
used to conditionally model the distribution of the ground
truth trajectory Ŷ pt . In accordance with references [15], the
CVAE module is composed of three parts: the recognition
network Qφ(z|hx̂pt , Ŷ

p
t ), the prior network Pψ (z|hx̂pt ), and

the generation network Pθ (X̂
p
t |hx̂pt , z). Here, φ, ψ , and θ

represent the parameters of the three respective networks.
The recognition network is composed of a combination of
GRU and fully-connected layers. On the other hand, the other
networks are solely comprised of fully-connected layers.
All distributions are assumed to be Gaussian, and during
training, samples are drawn from the distribution N (µqz , σ

q
z )

obtained from the recognition network. During inference,
samples are drawn from the prior network. To reconstruct
the distribution from recognition network, the recognition
network, and the prior network are trained to minimize the
difference between the Gaussian distributions derived from
each network. Ultimately, K diverse future trajectories X̂pt
can be obtained by passing through the generation network,
where K represents the number of samples.

E. LOSS FUNCTION
The overall loss function consists of three components:
trajectory prediction loss, compensation loss, and KLD loss.
The trajectory prediction loss measures the error between
the predicted trajectories X̂pt from the proposed model and
the target trajectories Ŷ pt . The trajectory prediction loss
is formulated using the Best-of-Many (BoM) approach,
as referenced in [19], [24] and [25], where the best prediction
among k multiple trajectories derived from the stochastic
prediction model is selected. The loss is calculated using the
L2 norm. The formulation of the trajectory prediction loss can
be expressed as follows:

Lpred = min
∀k∈K

∥X̂p,kt − Ŷ pt ∥2 (7)

The compensation loss is derived by comparing the
compensated observed trajectory X̂ot with the target trajectory
Ŷ ot using the L2 norm. Accordingly, the compensation loss
can be formulated simply as shown below.

Lcomp = ∥X̂ot − Ŷ ot ∥2 (8)

The KLD loss captures the discrepancy between the target
Gaussian distribution N (µqz , σ

q
z ), represented by Zq, derived

from the recognition network of the CVAE module and the
distribution N (µpz , σ

p
z ), represented by Zp, derived from the

prior network. The overall loss, including the KLD loss,
is given as follows.

Ltotal = Lpred + Lcomp + DKL(Zq||Zp) (9)

F. GROUND TRUTH TRAJECTORY GENERATION
Since this research is based on urban driving data from
a camera-equipped vehicle, the camera coordinates change
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at each time step with respect to the world coordinate
system. According to the research objective, the ground
truth trajectories required for training are the ego-motion
compensated past and future trajectories of the target
pedestrian, represented as Ŷ ot = [ŷt−No+1, ŷt−No+2, . . . , ŷt ]
and Ŷ pt = [ŷt+1, ŷt+2, . . . , ŷt+Np ] on t image coordinate.
The ŷt+i ∈ R4 for i ∈ [−No + 1,Np] represents the
compensated center position and size of the bounding box of
the target pedestrian observed at time t+ i, with respect to the
image coordinate system observed at time t . The conventional
approach, feature descriptor [33], [34], [35] and matching
[36], [37], can be used to transform images captured at
different times and locations within the same spatial context
into a unified coordinate system. However, this method is
both time-consuming and prone to inaccuracies, particularly
in the presence of dynamic objects in the images. In order
to achieve a higher degree of precision in the transformation
process, it is necessary to utilize the positional information of
the target pedestrian in the physical 3d space.

In this research, the model was trained and evaluated using
both the NuScenes dataset and our own dataset. Due to the
differences in the information provided by these two datasets,
the ground truth was generated in slightly different ways for
each dataset. In the case of the NuScenes dataset, precise
information regarding the 3d bounding boxes of the target
pedestrians in the world coordinate system, as well as the
global location of the ego-vehicle, is provided. Therefore, the
center of the global 3d bounding box pgped within the range
of [t −No + 1, t +Np] is transformed into a local coordinate
system based on the global coordinates of the ego-vehicle at
time t , represent as pgveh,t .

pOv(t)ped,t+i = pgped,t+i − pgveh,t (10)

i ∈ [−No + 1,Np]

where pped,t+i represents the center position of the pedes-
trian’s bounding box observed at time t+i in the 3d coordinate
system, while Ov(t) denotes a local coordinate system with
the ego-vehicle’s coordinates at time t as the reference point.
Subsequently, by utilizing the extrinsic and intrinsic matrix of
the camera sensor in the ego-vehicle coordinate system, the
bounding box is projected onto the t image plane, allowing us
to obtain the desired ground truth, Ŷ ot and Ŷ

p
t . Inmathematical

notation, it can be represented as follows.

ŷt+i = f (K [R|t]bOv(t)ped,t+i) (11)

i ∈ [−No + 1,Np]

where K and [R|t] are the camera intrinsic and extrinsic
matrix provided in Nuscenes dataset, respectively. The
bped,t+i represents the corner position of the bounding box
observed at time t + i in the 3d coordinate system. f (·)
represents the post-processing step that derives a bounding
box vector consisting of the 2D center position, height, and
width in the image from the projected corner positions.

On the other hand, for our self-collected dataset, the global
coordinates of the ego-vehicle and the target pedestrian are
not available. Instead, we can utilize the local position of
the target pedestrian with respect to the vehicle’s coordinate
system, obtained from the LIDAR sensor mounted on the
vehicle, along with the subject vehicle motion states from the
vehicle’s chassis sensor. In order to obtain the ground truth Ŷ ot
and Ŷ pt , vehicle motion compensation in 3D space is required
using vehicle motion states, specifically the velocity and yaw
rate. The compensation process entails transforming the 3d
bounding box sequence of the target pedestrian in the ego-
vehicle coordinates systemwithin the range of [t−No+1, t+
Np], based on the motion information of the vehicle, to the
positions in the ego-vehicle coordinate system at time t . The
process can be expressed mathematically as follows. Here,
the position z value of the bounding box is not considered.

pOv(t)ped,t+i

=



pOv(t)ped,t for i = 0

(T tt+1T
t+1
t+2 · · · T t+(i−1)

t+i )pOv(t+i)ped,t+i

for i ∈ [1,Np]

(T tt−1T
t−1
t−2 · · · T t+(i+1)

t+i )pOv(t+i)ped,t+i

for i ∈ [−No + 1,−1]

(12)

T t+(i−1)
t+i

(
pOv(t+i)ped,t+i

)
=

[
cos(γ t+idt) sin(γ t+idt)
−sin(γ t+idt) cos(γ t+idt)

]
pOv(t+i)ped,t+i

+

 −
νt+i

γ t+i
sin(γ t+idt)

νt+i

γ t+i
−

νt+i

γ t+i
cos(γ t+idt)

 (13)

T t+(i+1)
t+i

(
pOv(t+i)ped,t+i

)
=

[
cos(γ t+idt) −sin(γ t+idt)
sin(γ t+idt) cos(γ t+idt)

]
pOv(t+i)ped,t+i

+

 νt+i

γ t+i
sin(γ t+idt)

νt+i

γ t+i
−

νt+i

γ t+i
cos(γ t+idt)

 (14)

where pOv(t+m)ped,t+n represents the center x, y position of the
pedestrian’s bounding box observed at the time t + n in the
vehicle coordinate system at time t +m. T t+mt+n represents the
transformation from the coordinate system at time t + n to
the coordinate system at time t + m. Additionally, γ and
ν denote the yaw rate and velocity of the subject vehicle,
respectively. Once the ego-motion is compensated, the same
process is applied to project the compensated 3D bounding
box of the pedestrian onto the image plane in the vehicle
coordinate system using the camera sensor’s extrinsic matrix
and intrinsic matrix. The resulting ground truth Ŷ ot and Ŷ pt are
then utilized to train model and evaluate performances.
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TABLE 1. Trajectory prediction results of multi-modal models on nuscenes and in-house datasets. the performance of the proposed model is shown at
the bottom, and the best results are highlighted in bold.

TABLE 2. Trajectory prediction results of deterministic models on nuscenes and in-house datasets. the performance of the proposed model is shown at
the bottom, and the best results are highlighted in bold.

IV. EXPERIMENTS
A. DATASETS
In this study, the model’s performance was evaluated using
both the Nuscenes dataset and an in-house dataset. Both
datasets consist of urban driving data, providing ego-centric
view video data with 1600 × 900 resolution. The Nuscenes
dataset is a large-scale dataset that provides diverse scene data
with a duration of 20 seconds. It offers annotations for the
object class, location, and size information of surrounding
targets, as well as the states of the ego-vehicle, including its
position, velocity, acceleration, and yaw rate, at a frequency
of 2Hz. However, since the Software Development Kit
(SDK) provided by Nuscenes is primarily focused on vehicle
prediction tasks, additional preprocessing was performed
to extract scenes of pedestrian appearance for pedestrian
prediction. As for the in-house dataset, consecutive scenes
were captured at a rate of 20Hz and included front camera
video, chassis data, and LiDAR point clouds for generating
ground turth. During the training and inference processes
of the in-house dataset, the data was downsampled to 2Hz,
consistent with the Nuscenes dataset. The trajectory data
from the in-house dataset and the NuScenes dataset are
preprocessed by shifting them one timestep at a time to create
overlapping data, in order to increase the dataset size. The
total number of samples for each dataset was 23,916 and
4,425, respectively, with approximately 20% allocated as test
data. Due to the limited amount of in-house dataset, a transfer

learning method was employed using a model pre-trained on
the large-scale Nuscenes dataset for training on the in-house
dataset.

B. IMPLEMENTATION DETAILS
All experiments were conducted using a single GPU setup
with a NVIDIA GeForce RTX 3090 Ti graphics card. The
proposed model has an observation length, denoted as No, set
to 4, allowing for a 2-second time horizon in 2Hz data. The
prediction length Np is set to 8, allowing for a 4-second time
horizon. Considering the usability in the downstream task,
we present a longer term prediction than previous studies.
For the transformer-based predictor, all feature dimensions,
including dm and dk , are set to 128 and the number of multi-
heads, h, is set to 8. The CVAE module utilized a sample
count of 20 (K=20). Resized images to 640 (W ) × 360
(H ) were used as inputs to the model in order to handle
the computational load. On the other hands, the prediction
results were computed at the original resolution of 1600 (W )
× 900 (H ). To encode image features, we utilized pre-trained
ResNet50 and FPN models provided by MMDetection3D
as 2D backbones. The provided model was pre-trained on
instance segmentation tasks using the nuImages dataset.
Additionally, the bounding box encoder and vehicle state
encoder were composed of a combination of GRU and
fully connected (FC) layers. The transformer encoder and
decoder in our model were constructed with a depth of
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FIGURE 5. Qualitative comparisons of trajectory prediction models. The past and future trajectories from the dataset are represented by the yellow
and green colors, respectively. These trajectories depict the cumulative positions perceived in the image at each time step. The ground truth of the
ego-motion independent future trajectory, which we aim to follow, is highlighted in red. The blue color represents the predicted trajectory generated by
our proposed model. The final positions are represented by star-shaped markers and the bounding box is used to indicate the current position of the
target pedestrian. Additionally, the predicted trajectories of the comparison models are displayed as lines with ‘X’ marks at the final predicted
positions.

2 and 1, respectively. For our in-house dataset, transfer
learning was performed by unfreezing the final prediction
head, input encodings and vehicle motion compensation from
a pre-trained model on the NuScenes dataset. The proposed
model underwent training with batch size 20 for 50 epochs,
employing an initial learning rate of 5 × 10−4. A reduction
of 0.8 in the learning rate was applied when there was no
improvement observed in the test loss during 5 epochs.

C. EXPERIMENTS FOR TRAJECTORY PREDICTION
1) OUTLINE
In this section, the performance of the proposed prediction
network is compared to other recent methods on both the
Nuscenes dataset and an in-house dataset. The comparison
models include multi-modal predictors SGNet [25] and
BiTrap [24], which have demonstrated state-of-the-art perfor-
mance in pedestrian path prediction using vehicle-mounted
camera data from prominent datasets such as PIE and JAAD.
Additionally, a simplified model consisting of a single LSTM
and FC layer, augmented with a CVAE for multi-modal
trajectory generation, is used as the baseline comparison
model. As a side note, the JAAD and PIE datasets do not
provide annotations for positions of objects in the physical 3d
space. Therefore, it is not possible to obtain the ground truth
of the ego-motion independent future trajectory proposed in
this paper, rendering them inapplicable for this study.

The objective of this paper is to derive future trajectories
that are independent of ego-motion, distinguishing it from
previous studies. Therefore, we reproduce the performance
results of two state-of-the-art models to align with our
specific task. The model we propose is mainly composed of
the ego-motion compensation, transformer-based predictor,
and CVAE modules, where the ego-motion compensation
module is responsible for generating ego-motion independent
trajectories. This module can operate independently and
be attached to other models for utilization. Therefore,
we integrated this module into the front end of the SGNet [25]
and BiTrap [24] models to derive ego-motion independent
trajectories and evaluated their performance through re-
training on the NuScenes dataset. By doing so, we were able
to compare the performance of predictor with that of the state-
of-the-art models under equivalent settings and task.

To facilitate downstream tasks such as motion planning,
it is essential to prioritize and find the most probable future
trajectory among the diverse predicted paths. Given the
consideration of all diverse predictive trajectories, vehicle
might exhibit overly cautious movements. Hence, numerous
motion planning methodologies [38], [39], [40], [41], [42],
[43], [44], [45], [46] adopt a prioritized prediction outcome.
Given our study’s emphasis on applications in autonomous
driving, we concentrate on presenting results centered around
the performance of the selected highest-priority or second-
highest priority trajectories among the K = 20 predicted

104562 VOLUME 11, 2023



Y. Kim et al.: Non-Autoregressive Transformer Based Ego-Motion Independent Pedestrian Trajectory Prediction

trajectories, instead of the performance based on the lowest
error compared to the ground truth among the K trajectories
as in other studies [24], [25]. The selection process uses a
K-means clustering methodology referring to previous stud-
ies [47], [48], [49]. Given that the CVAE module generates
K prediction trajectories from the gaussian distribution, the
largest trajectory cluster can be considered the dominant
cluster having a higher probability. We cluster the predicted
trajectories into five groups, and then the average trajectories
of the largest or second largest clusters were used to
derive the results. Moreover, in order to clearly demonstrate
the superiority of our approach in the unimodal aspect,
we have also incorporated a comparison of the performance
of deterministic versions, which inherently generate a single
trajectory, with other state-of-the-art models. Following the
approach of SGNet and BiTrap, the deterministic version is
obtained by removing the CVAE module.

2) METRICS
To assess the prediction performance, we followed the
evaluationmetrics utilized in previous studies [22], [24], [25],
[50], specifically the Average Displacement Error (ADE) and
Final Displacement Error (FDE). The ADE metric provides
the average error between the predicted and ground truth
trajectories over a specified prediction time horizon. On the
other hand, the FDE metric quantifies the positional error of
the final point of the predicted trajectory. We computed the
ADE values for different time steps, including 1.0, 2.0, 3.0,
and 4.0 seconds into the future from the current time t . The
bounding box’s upper-left and lower-right pixel coordinates
were used to calculate the errors. Additionally, we also
computed the ADE and FDE based on the center pixel
coordinate of the bounding boxes, denoted as CADE and
CFPE . The errors were calculated using the Mean Square
Error (MSE) between the target trajectory and the predicted
future trajectory. The smallest error value among the selected
k paths from the K generated predictive paths through
sampling is recorded as the performance.

3) RESULTS
The experimental results for k = 1, 2 and 20 are summarized
in Table 1. Although it slightly lags behind in the prediction
performance for k = 20 without considering the priority
of trajectories, the proposed model, TransPred, outperforms
the compared models in terms of prediction accuracy
for the selected highest-priority or second-highest priority
trajectories on both datasets. Furthermore, as indicated in
Table 2, our model exhibited superior performance in the
deterministic prediction of deriving a single future trajectory.
The results indicate that while existing state-of-the-art
studies hold a stronger position from a diversity perspective,
the proposed TransPred model exhibits superior predictive
performance for a prioritized trajectory compared to other
models. This establishes its proficiency not only in predicting
performance but also its potential strengths in downstream
tasks.

FIGURE 6. Qualitative comparisons of trajectory prediction models on
risk assessment experiment. The predicted trajectories are depicted as
lines, and the pedestrian’s bounding box at the final prediction time is
indicated. Blue indicates cases classified as non-risky situations, while
red represents the results classified as risky situations.

Additionally, the results also demonstrate the effectiveness
of our modified transformer-based prediction model, which
leverages the cross-attention module to appropriately fuse
information from the raw image and historical trajectories for
advanced prediction. Further analysis into the contributions
of each component to the prediction performance is discussed
in detail through the ablation study. The qualitative results
are presented in Fig. 5, illustrating a prioritized trajectory
on multi-modal prediction in example scenes. As depicted
in the Fig. 5, the proposed model successfully predicts
ego-motion independent future trajectories from the ego-
motion dependent historical trajectory as input. Moreover,
the presented figures demonstrate that our proposed model
consistently adheres better to the ground truth trajectory
compared to other comparative models.

D. EXPERIMENTS FOR RISK ASSESSMENT
1) OUTLINE
One of the notable aspects of this study is its practicality in
applying pedestrian path prediction in autonomous driving.
Therefore, in this section, we demonstrate the practicality by
conducting experiments that assess the risk from surrounding
pedestrians using the predicted ego-motion independent tra-
jectories in urban driving scenarios. As mentioned above, it is
challenging to use ego-motion-dependent future trajectories
derived from existing prediction studies to assess pedestrian
encroachment in hazardous areas, such aswithin the ego-lane,
on the current observed image. However, it becomes feasible
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TABLE 3. Risk prediction results on nuscenes and In-House dataset.

by utilizing the ego-motion independent future trajectories
obtained from our proposed model. We evaluated the risk
by determining whether the target pedestrians enter the ego-
vehicle’s driving lane based on their predicted trajectories
during prediction time horizon. The entrance status is
determined by evaluating whether the ratio of the encroached
width to the predicted bounding box width exceeds a pre-
defined threshold. The ground truth for risk assessment is also
obtained by comparing the ground truth of future trajectory
Ŷ pt with the lanes obtained on the last observed image at t
time step.

This experiment is conducted on the nuscenes dataset
and an in-house dataset. For the nuscenes dataset, the lane
information is provided through HD map and is projected
onto the image for use. On the other hand, for the in-house
dataset, lane information is obtained using CondLaneNet
[51], one of the various approaches [51], [52], [53], [54],
[55], [56] for lane detection in images, and for scenes
with ambiguous lanes, we performed manual labeling. The
risk prediction results of the comparison models were
computed based on a prioritized trajectory of multi-modal
results.

2) METRICS
The outcome of the risk assessment is provided as binary
results indicating whether the situation is risky or not.
However, it appears that there is an imbalance in the data
labels, with a much larger number of non-risky situations
compared to risky situations. Accordingly, we use balanced
accuracy as a main performance metric. Furthermore, from
the perspective of autonomous driving, misclassifying risky
pedestrians as non-risky is a much more dangerous situation
than the opposite. Therefore, recall and F2 score are used as
additional metrics. Recall represents the number of positive
instances correctly predicted among the actual positive data,
while the F2 score is a comprehensive performance metric
widely used in tasks where recall holds more weight. It takes
into account both precision and recall, with a higher emphasis
on recall, making it suitable for evaluating the performance
in situations where correctly identifying positive instances is
crucial.

TABLE 4. Ablation results on image input and attention weight mask.

3) RESULTS
The results are summarized in Table 3. The proposed model,
TransPred, exhibits the highest risk evaluation performance
compared to other models in terms of all metrics for both
datasets. Based on intuitive recall metrics, we observe a
high positive prediction performance of over 80% for both
datasets. In the case of F2 score, all models show relatively
low performance on the nuscenes dataset, which can be
attributed to the imbalance in the data leading to generally
low precision. However, even in such a situation, our
model demonstrates the highest performance. These results
demonstrate the applicability of ego-motion-independent
predicted trajectories in autonomous driving and showcase
the superiority of our proposed model. The qualitative results
of risk assessment, along with comparisons to other models,
can be observed in Fig. 6.

E. ABLATIONS AND ANALYSIS
1) IMAGE INPUT EXCLUSION
In this research, the raw image was used as input with-
out any additional pre-processing such as segmentation.
The transformer architecture was employed to encode the
historical trajectory and raw image information, allowing
for effective feature encoding and accurate prediction of
future trajectories. This section focuses on assessing the
contribution of image features to the model’s performance.
Additionally, the experiment investigates the role of the
attention weight mask applied near the target pedestrian’s
location. The results are shown in Table 4. Firstly, when no
image information was used at all, the model exhibited a
significant performance decrease, with the error increasing
by approximately 1.8 times for the nuScenes dataset and
5.3 times for the in-house dataset compared to the complete
model based on the CADE metric. This result demonstrates
that the proposed transformer architecture effectively encodes
key points from raw images, which are essential for predict-
ing future trajectories. Furthermore, without the weight mask
alone, the error increased by approximately 1.6 times for
the nuScenes dataset and 2.8 times for the in-house dataset
compared to the complete model based on the CADE metric.
In the case of the nuScenes dataset, there was little difference
in performance between not using images at all and excluding
only the weight mask. This indicates that in the Nuscenes
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TABLE 5. Comparison of inference time with prediction performance.

TABLE 6. Comparison of performance and inference time based on the
input image resolutions.

dataset, which provides video data with a relatively wide field
of view (FOV), the attention weight mask plays a crucial
role in effectively encoding relevant image information by
focusing attention on the areas near the target pedestrian
within the wide coverage area.

2) INFERENCE TIME
In the context of autonomous vehicles, not only the accuracy
of predictions but also real-time performance is crucial.
Table 5 presents the measured inference times for 10 samples.
We selected a sample size of 10 based on the assumption that
in our dataset, there were no more than 10 pedestrians present
in a single image frame, and it is generally expected that the
maximum number of pedestrians would be around 10. In the
results table, the LSTM-CVAE and BiTrap-NP [24] models
demonstrated very fast inference times below 10ms, but they
exhibited lower performance. On the other hand, SGNet-ED
[25] demonstrated slightly higher performance compared to
the previous two models. Nevertheless, it should be noted
that SGNet-ED [25] demonstrated inferior performance in
comparison to our model, even including the version without
image inputs. Additionally, SGNet-ED [25] reported an
inference time roughly 2.7 times slower when compared
to our image-less model. Our complete model, which
utilizes dense image information, comes with a relatively
high computational load. However, we have mitigated the
temporal overhead through techniques such as image resizing
and the non-autoregressive structure of the transformer.
As a result, an inference time of approximately 17Hz was
achieved, which is considerably practical for application
in autonomous driving. Furthermore, our complete model
demonstrated significantly notable performance, recording
error values nearly half that of SGNet. This demonstrates
that our proposed prediction model presents a competitive
solution even considering the trade-off of computational
efficiency.

TABLE 7. Comparison of performance based on the depth of transformer
encoder and decoder.

3) IMAGE RESOLUTIONS
The proposed approach utilizes image inputs to actively
incorporate key contextual information around the target
pedestrians for prediction. In this regard, the resolution of
input images can influence both the model’s performance
and inference time. Therefore, we analyze the impact of
various input image resolutions, which we have documented
in Table 6. The image resolutions encompass four settings
while maintaining a 16:9 aspect ratio and including the
full resolution provided by the dataset. Naturally, higher
image resolutions lead to increased inference time and
improved performance. However, when comparing image
resolution 960 × 540 to 1600 × 900, there is a very
slight performance degradation of approximately 1.08 times
based on CADE , while the inference time is reduced by
around 37%. On the other hand, for 640 × 360, the
performance is similar to 960 × 540, but the inference time
is significantly reduced by approximately 18% compared
to 1600 × 900. As observed from the results, it can be
deduced that the advantages in terms of inference time
outweigh the performance degradation caused by reducing
the resolution. Nevertheless, at the very low resolution of
480 × 270, a relatively significant performance degradation
was observed. Therefore, considering the trade-off between
performance differences and computational load, we adopt
input images of size 640 × 360 for our model.

4) TRANSFORMER LAYERS DEPTH
The performance of the proposed model was compared on
the Nuscenes dataset by adjusting the number of encoder
and decoder layers in the transformer. The results are shown
in Table 7. It was found that there was not a significant
performance difference based on the depth of the layers.
However, when only one layer was used for the encoder,
a slight decrease in performance was observed. On the
other hand, when the encoder had two or more layers, the
performance was quite similar. The highest performance was
achieved when the encoder had two layers and the decoder
had one layer. Thus, it can be concluded that the selected layer
depth is sufficient for capturing the relevant information and
generating accurate future predictions.

V. CONCLUSION
We propose a multi-modal future trajectory prediction model
for pedestrians that effectively integrates historical trajectory
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and raw image using a transformer with an attention mech-
anism in an egocentric view. Particularly, unlike previous
research, we derive future trajectories that are independent
of ego-motion and demonstrate the utility of ego-motion
independent future trajectory in autonomous driving through
risk assessment experiments. Furthermore, our proposed
prediction model exhibited superior performance not only in
terms of application aspects but also in terms of prediction
accuracy for prioritized trajectories compared to previous
studies. We also present a light version model with slightly
lower performance but much faster design without using
images that can be useful depending on the specifications
of autonomous driving equipment. In the future, we plan to
consider interactions among agents, with a particular focus on
integrating the influence of the ego vehicle’s movement on
pedestrians’ future trajectories. Moreover, we have plans to
further develop the model to ensure robustness. This includes
enhancing the model’s ability to handle slightly unstable
input trajectories resulting from real-time 2D object detection
performance, as well as variations in image quality caused
by surrounding environmental factors or weather conditions.
These efforts will contribute to the overall reliability and
performance of our proposed model, enabling its deployment
in real-world autonomous driving scenarios.
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