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ABSTRACT This paper considers distributed optimization for learning problems over networks with
heterogeneous agents having different computational capabilities. The heterogeneity of computational
capabilities implies that a subset of the agents may run computationally-intensive learning algorithms like
Newton’s method or full gradient descent, while the other agents can only run lower-complexity algorithms
like stochastic gradient descent. This leads to opportunities for designing hybrid distributed optimization
algorithms that rely on cooperation among the network agents in order to enhance overall performance,
improve the rate of convergence, and reduce the communication overhead. We show in this work that hybrid
learning with cooperation among heterogeneous agents attains a stable solution. For small step-sizes µ, the
proposed approach leads to small estimation error in the order of O(µ). We also provide the theoretical
analysis of the stability of the first, second, and fourth order error moments for learning over networks with
heterogeneous agents. Finally, results are presented and analyzed for case study scenarios to demonstrate
the effectiveness of the proposed approach.

INDEX TERMS Distributed optimization, diffusion strategy, gradient descent, heterogeneous networks,
Newton’s method, stochastic gradient descent, stability analysis.

I. INTRODUCTION
Distributed optimization is a key enabler for collaborative
learning in intelligent networks in which the edge devices
only have access to their local data streams. It provides
a scalable solution to the distributed inference problem in
scenarios where communication between nodes is costly and
data centralization raises privacy concerns [1], [2], [3], [4],
[5], [6], [7]. Most prior literature focuses on distributed
optimization in homogeneous networks where all agents
have similar computational capabilities and apply the same
learning algorithm. However, real network deployments
have much richer structure and may comprise agents with
various energy constraints and hardware complexities [8],
[9], [10], [11]. These agents may cooperatively solve one
optimization problem, each using their own distinct learning
method. Stability and convergence of this hybrid optimization
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problem must be guaranteed. The goal of this work is to
investigate this issue and evaluate the performance gains of
distributed learning in heterogeneous networks.

Learning over networks induces many degrees of freedom
and there are many factors that can improve or degrade the
distributed learning performance. For instance, the following
design options have an imperative impact on the performance
of distributed learning algorithms: the optimization algorithm
that is being run by every agent, the distributed learning
strategy, the selection of the weights over the edges of
the network, the synchronous/asynchronous reception of
shared parameters over the network [12], [13], [14], the
topology of the network [15], [16] (strongly connected,
weakly connected, etc.), the link failures [17], the exchange
of noisy information [18], [19], [20], the malicious behavior
[21], etc. In particular, the weights over the edges of the
network play an important role in improving theminimization
of the cost function of every agent and they are chosen
according to different rules like the metropolis [22], [23],
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Hasting [24], [25] relative degree [26], Laplacian [27], [28],
[29], etc.

The proposed algorithms in the literature for optimization,
estimation and learning over networks assume that the dis-
tributed agents have similar or homogeneous computational
capabilities. Having similar computational capabilitiesmeans
that the distributed agents should normally run the same
iterative optimization algorithm. For instance, the methods
of incremental [16], consensus [16], [30], diffusion [16],
[31], enlarged cooperation [16] and spatio-temporal [32]
distributed strategies are proposed in the literature where
all agents are assumed to have homogeneous computational
capabilities. In this work, we study learning over networks
when the distributed agents have different or heterogeneous
computational capabilities and can run different iterative
optimization algorithms while cooperating among each other.
For instance, a subset of the capable agents can run Newton’s
method, full gradient descent, while the other subset may only
be able to run stochastic gradient descent (SGD) due to their
limited computational capabilities.

There exist many applications for optimizing learning
over multiple agents with heterogeneous computational
capabilities [33], [34], [35]. For instance, in wireless cellular
networks with cooperative and distributed learning, some
mobile phones may have more computational capabilities
than others, and base stations may serve as edge computing
nodes with much higher capabilities than cell phones [5],
[36], [37], [38]. In wireless sensor networks (WSN), sensor
devices normally have varying levels of computational,
energy, and storage resources, which restricts their ability to
run different classes of distributed learning algorithms [39],
[40], [41], [42], [43]. Mixed models of hybrid optimization
algorithms can also find application use cases in distributed
power systems, computer networks, industrial control
systems, etc.

Themain contribution of this paper is in proposing a hybrid
distributed optimization approach for learning over networks
with heterogeneous agents and in proving theoretically its
stability. Although there are many papers in the literature
that deal with heterogeneous computing [44], [45], [46],
[47], [48], [49], this is the first work that theoretically and
experimentally investigates the cooperation between agents
when they perform different optimization algorithms. The
theoretical and simulation results show that the first, second
and fourth order moments converge to a stationary point
and attain a stable solution. This paper shows that the
cooperation among agents that can run fast algorithms like
Newton’s method and slow ones like SGD can improve the
rate of convergence and performance of all agents. Improving
the rate of convergence and performance for agents with
limited computational capabilities leads to reducing the local
power consumption, decreasing the communication overhead
over the network, and saving financial costs resulting from
running the network for a long time.

The rest of the paper is organized as follows. Section II
presents the network model and the problem formulation.
Section III provides the stability of the first, second, and

fourth order moments of learning among heterogeneous
multi-agent systems. Simulation results and analysis are
presented in Section IV. Finally conclusions are drawn in
Section V.

II. PROBLEM FORMULATION
We assume a network of N interacting agents with different
computational capabilities, which allows the distributed
agents to run heterogeneous optimization algorithms. Dif-
ferent algorithms may be run over the network agents and
depending on the the available computational resources, the
agent can determine which algorithm it can handle.We define
a parameter δ to distinguish among the optimization algo-
rithms over the network as follows:

δ =



NM for agents with high computational capabilities
and run the Newton’s method,

QN for agents with high computational capabilities
and run the Quasi-Newton method,

GD for agents with high computational capabilities
and run the gradient descent method,

SGD for agents with low computational capabilities
and run the stochastic gradient descent method.

(1)

Without loss of generality, we have only focused on New-
ton’s, Quasi-Newton, gradient descent, and SGD methods
since these are among the most widely used techniques in
iterative optimization algorithms.

Many distributed learning strategies can be considered,
however we adopt in this work the diffusion method due to
its stability and superior adaptation performance. Diffusion
techniques have shown better performance in adaptive
situations where it is essential to track drifts in the underlying
models through constant step-size adaptation [50], [51].

In diffusion method, every agent over the network runs
iteratively the following algorithm:

ψk,i−1 =

∑
l∈Nk

alkωl,i−1,

ωk,i = ψk,i−1 + µkdδk (ψk,i−1)

(2)

where ω ∈ RM is the global parameter, which all agents
over the network must decide upon, ψ combines linearly the
previous iteratesωl,i−1 received from the neighborhoodNk of
agent k and thenψk,i−1 is used to update the descent direction
optimization algorithm, dδk (·) is the descent direction, and µk
is the learning rate or the step size. The coefficient alk that
appears in (2) represents the weight that agent k assigns to
the received iterate ωl,i−1 from agent l, and these weights are
usually selected to satisfy the following conditions [22], [23],
[24], [25], [26], [27], [28], [29]:

alk ≥ 0,
N∑
l=1

alk = 1, and alk = 0 if l /∈ Nk ,

k = 1, 2, . . . ,N (3)
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where Nk represents the neighborhood of the agent k . The
entries {alk} can be collected into an N × N matrix A, such
that the k-th column of A consists of {alk , l = 1, 2, . . . ,N }.
The individual cost function of every agent k is defined to

be Jk (ω). Every agent k holds a given cost function Jk (ω), its
own data, iterative optimization algorithm and some shared
parameters over the network from agents in its neighborhood.
The objective is to determine the unique minimizer ωo of the
weighted aggregate cost Jglob(ω) that is given by

Jglob(ω) =

N∑
k=1

αkJk (ω) (4)

whereN is the number of agents over the network, αk is some
positive scalar (αk ≥ 0), and ωo can be written as

ωo = argmin
ω

Jglob(ω) = argmin
ω

N∑
k=1

αkJk (ω). (5)

Note that dδk (·) in (2) can take different forms of
descent directions like Newton’s direction, gradient descent,
SGD, etc. We suggest the following definition for dδk (·) to
accommodate all possibilities of the descent directions that
may be adopted by the distributed agents:

dδk (ψk,i−1) = −Y δk,i−1{∇Jk (ψk,i−1) + sδk,i(ψk,i−1)} (6)

The matrix Y δk,i−1 ∈ RM×M and its value depends on the
adopted iterative optimization algorithm as shown below

Y δk,i−1 =


[∇2Jk,i−1(ψk,i−1)]−1 when δ = NM ,
Bk,i−1(ψk,i−1) when δ = QN ,
IM when δ = GD,
IM when δ = SGD.

(7)

where Bk,i−1(ψk,i−1) is an approximation of the inverse of
the Hessian matrix ∇

2Jk,i−1(ψk,i−1)]−1 as will be described
in Section II-B. Computing the matrix Y δk,i−1 at the minimizer
ωo produces a matrix Y δk,o which is defined as follows:

Y δk,o =


[∇2Jk,i−1(ωo)]−1 when δ = NM ,
Bk,i−1(ωo) when δ = QN ,
IM when δ = GD,
IM when δ = SGD.

(8)

The sδk,i(·) in (6) is called the gradient noise and it represents
the difference between the full gradient ∇Jk (·) and the
approximated gradient ∇̂J k (·) and it is defined as

sδk,i(ψk,i−1) =


0, when δ = NM , QN , or GD,
∇̂Jk (ψk,i−1) − ∇Jk (ψk,i−1),
when δ = SGD.

(9)

The gradient noise plays an important role in the stability
analysis as will be shown in Section III. The approximated
gradient ∇̂J k (·) may be the mini-batch-gradient descent,
SGD, etc. These approximating algorithms [52] are widely
used for online learning, learning with big data [53], and
when agents have limited computational capabilities [54],

[55], [56], [57], [58], [59], [60]. Using (6), we can write (2)
as follows:

ψk,i−1 =

∑
l∈Nk

alkωl,i−1,

ωk,i = ψk,i−1

−µkY δk,i−1{∇Jk (ψk,i−1) + sδk,i(ψk,i−1)}

(10)

The following is an assumption about the individual and
the aggregate cost functions Jk (ω) and Jglob(ω).
Assumption 1 (Conditions on Aggregate and Individual

Costs): Assume that the individual costs, Jk (ω), are each
twice-differentiable and convex, with at least one of them
being ν-strongly convex (the agent k0). It follows that Jglob(ω)
is strongly convex and attains a global minimizer ωo and
satisfies:

∇Jglob(ωo) =

N∑
k=1

αk∇Jk (ωo) = 0 (11)

In addition, we assume that the gradient ∇Jk (ω) is δc-
Lipschitz. It follows that the Hessian of the individual cost
function ∇

2Jk (ω) and the Hessian of the aggregate cost
function ∇

2Jglob(ω) satisfy the following conditions:

∇
2Jk (ω) ≤ δcIM (12)

νIM ≤ ∇
2Jglob(ω) ≤ δcIM (13)

∇
2Jk0 (ω) ≥ νIM > 0, ∇

2Jk (ω) ≥ 0, k ̸= k0 (14)

for some positive parameter ν ≤ δc.
■

Let ω̃k,i and ψ̃k,i−1 be defined as follows:

ω̃k,i = ωo − ωk,i−1 (15)

ψ̃k,i−1 = ωo − ψk,i−1 (16)

where ωo is the optimal minimizer of the cost function given
in (4). By using the mean value theorem [61], it can be shown
that ∇Jk (ψk,i−1) can be written as

∇Jk (ψk,i−1) = −Hk,i−1ψ̃k,i−1 − bk (17)

where bk is the gradient of the cost function at the optimal
value of the network and it is given by

bk = −∇Jk (ωo) (18)

Hk,i−1 is defined to be

Hk,i−1 =

∫ 1

0
∇

2Jk (ωo − tψ̃k,i−1)dt (19)

From (12) and (19) and since each individual Hessian matrix
is positive semidefinite, we get:

Hk,i−1 ≤ δcIM (20)

Moreover, we deduce from (14) and (19) that

Hko (ω) ≥ νIM > 0, Hk ≥ 0, k ̸= ko (21)
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Subtracting ωo from both sides of (10) and using (15), (16)
and (17), then (10) can be rewritten as

ψ̃k,i−1 =

∑
l∈Nk

alk ω̃l,i−1,

ω̃k,i = ψ̃k,i−1 − µkY δk,i−1Hk,i−1ψ̃k,i−1

−µkY δk,i−1bk + µkY δk,i−1s
δ
k,i(ψk,i−1)

(22)

To assess the evolution of the error dynamics across the entire
network, equations (22) of all agents can be collected and
written into a network-error recursion formula as follows:

ω̃i = Bi−1ω̃i−1 +Msi(ωi−1) −Mb (23)

where

ω̃i = col{ω̃1,i, ω̃2,i, . . . , ω̃N ,i} (24)

Bi−1 = (I −MH′
i−1)AT (25)

I = IN ⊗ IM (26)

A = A⊗ IM (27)

where the convention col is used to represent a column
vector, A is a left stochastic matrix that includes the weights
{alk} over the edges of the network, and the term ⊗ is the
Kronecker product. Note that the weights αk that are used
in (4) are chosen to be

αk = µkpk (28)

where pk represents the k-th entry of the Perron eigenvector
of A (Ap = p, 1T p = 1).

M = diag{µ1IM , µ2IM , . . . , µN IM } (29)

si(ωi−1) = col{Y δk,i−1s
δ
1,i(ψ1,i−1), . . . ,Y δk,i−1s

δ
N ,i(ψN ,i−1)}

(30)

b = col{Y δ1,ob1, Y
δ
2,ob2, . . . ,Y

δ
N ,obN } (31)

H′
i−1 = diag{H ′δ

1,i−1,H
′δ
2,i−1, . . . ,H

′δ
N ,i−1} (32)

H ′δ
k,i−1 = Y δk,i−1Hk,i−1 (33)

According to (1), different forms can be taken by dδk (ψk,i−1)
and Y δk,i−1 as will be shown in the following sections.
In addition, we state the lower and upper bounds of Y δk,i−1,
which will be useful in the remaining part of the paper.

A. DISTRIBUTED AGENTS UNDER NEWTON’S METHOD
When a subset of agents run the Newton’s method, then the
descent direction dδ=NMk (ψk,i−1) in (2) becomes [62], [63]

dδ=NMk (ψk,i−1) = −Y δ=NMk,i−1 ∇Jk,i−1(·)

(34)

where sδ=NMk,i (ψk,i−1) is equal to zero and Y δ=NMk,i−1 in (10) is
given in this case by

Y δ=NMk,i−1 = [∇2Jk,i−1(ψk,i−1)]−1 (35)

and [∇2Jk,i−1(·)]−1 is the inverse of the Hessian matrix at
every iteration. The induced 2-norm of Y δ=NMk,i−1 can be upper
bounded as follows

∥Y δ=NMk,i−1 ∥ = ∥[∇2Jk,i−1(ψk,i−1)]−1
∥

(a)
≤ 2∥[∇2Jk (ωok )]

−1
∥ = L̃k (36)

where L̃k is some positive number and (a) follows since
∇

2Jk (·) is assumed to be positive definite at every iteration,
then ∇

2Jk (ωok ) is non-singular and thus there is a radius
r > 0 such that ∥[∇2Jk (ψk,i−1)]−1

∥ ≤ 2∥[∇2Jk (ωok )]
−1

∥

for all ωk with ∥ψk,i−1 − ωok∥ ≤ r [64]. Note that if
[∇2Jk (ψk,i−1)]−1 is not positive definite at every iteration,
then it can be replaced by related positive-definite matrix
like modified Hessian matrices to guarantee that condition
[62], [63], [64], [65]. This means that Y δ=NMk,i−1 can be upper
bounded as follows

Y δ=NMk,i−1 ≤ c2IM (37)

where c2 is some positive number. In addition, since
∇

2Jk,i−1 ≤ δcIM , and based on (35) we get

Y δ=NMk,i−1 ≥
1
δc
IM = c1IM (38)

where c1 is some positive number. Consequently

c1IM ≤ Y δ=NMk,i−1 ≤ c2IM (39)

B. DISTRIBUTED AGENTS UNDER QUASI-NEWTON
METHOD
Quasi-Newton method is an approximation technique for the
Newton’s method and it can compute efficiently the inverse of
the Hessian matrix by relying only on the gradient of the cost
function [64], [65], [66]. There are many different versions of
Quasi-Newton methods (Broyden-Fletcher-Goldfarb-Shanno
(BFGS), Davidon-Fletcher-Powell (DFP), etc), but they are
all based on approximating the inverse of the Hessian
[∇2Jk,i(ψk,i−1)]−1 by another matrix Bk,i(ψk,i−1) which may
take different forms depending on the update formula. For
instance, the BFGS method computes Bk,i(ψk,i−1) as follows

Bk,i = Bk,i−1 −
(Bk,i−1sk,i−1)(Bk,i−1sk,i−1)T

sTk,i−1Bk,i−1sk,i−1
+
yk,i−1yTk,i−1

yTk,i−1sk,i−1

(40)

where yk,i−1 and sk,i−1 are given by

yk,i−1 = ∇Jk,i(ψk,i) − ∇Jk,i−1(ψk,i−1) (41)

sk,i−1 = ψk,i − ψk,i−1 (42)

So, Y δ=QNk,i−1 usually takes the following form under Quasi-
Newton method:

Y δ=QNk,i−1 = Bk,i−1 (43)

Then the descent direction dδ=QNk (ψk,i−1) in (2) becomes

dδ=QNk (ψk,i−1) = −Bk,i−1∇Jk,i−1(·) (44)

Note that sδ=QNk,i (ψk,i−1) is equal to zero, and since Bk is
designed to be symmetric and positive definite at every
iteration, then Y δ=QNk,i−1 can be bounded as follows:

clqIM ≤ Y δ=QNk,i−1 ≤ cuqIM (45)

where clq and cuq are some positive numbers (clq < cuq).
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C. DISTRIBUTED AGENTS UNDER GRADIENT DESCENT
METHOD
When the gradient descent is being implemented by any of
the distributed agents, then the sδ=GDk,i (ψk,i−1) is equal to zero,
and the Y δ=GDk,i−1 in (10) is given in this case by

Y δ=GDk,i−1 = IM (46)

The descent direction dδ=GDk (ψk,i−1) in (2) becomes

dδ=GDk (ψk,i−1) = −∇Jk,i−1(ψk,i−1) (47)

The induced 2-norm of Y δ=GDk,i−1 is given by

∥Y δ=GDk,i−1 ∥ = 1 (48)

D. DISTRIBUTED AGENTS UNDER STOCHASTIC GRADIENT
DESCENT METHOD
Stochastic Gradient Descent (SGD) is an approximation
algorithm of GD that requires low computational complexity
[53], [55], [58], [59], [60], [67], [68], however it introduces
non-zero gradient noise sδ=SGk,i (ψk,i−1). The Y δ=SGk,i−1 in (10) is
given in this case by

Y δ=SGDk,i−1 (ψk,i−1) = IM (49)

Then, the descent direction dδ=SGDk (ψk,i−1) in (2) for agents
which implement the SGD is given by

dδ=SGDk (ψk,i−1) = −[∇Jk (ψk,i−1) + sδ=SGDk,i (ψk,i−1)] (50)

The induced 2-norm of Y sk,i−1 is given by

∥Y δ=SGDk,i−1 ∥ = 1 (51)

E. UNIFYING BOUNDS OF Y δ
K ,I−1

We capture in this section the various bounds of Y δk,i−1
by a single unifying description under different iterative
optimization strategies. We conclude from (39), (45), (46),
and (49) that Y δk,i−1 is bounded as follows

c′1IM = min{1, c1, clq}IM ≤ Y δk,i−1 ≤ max{1, c2, cuq}IM
= c′2IM (52)

where c′1 and c′2 are defined to be equal to min{1, c1, clq}
and max{1, c2, cuq}, respectively. In addition, we conclude
from (36), (45), (48), and (51) that

∥Y δk,i−1∥ ≤ max {̃Lk , cuq, 1} = L̃max (53)

There are still four important terms which include the matrix
Y δk,i−1 and need to be bounded. The first term is ∥I−H ′δ

k,i−1∥,
while the remaining ones are the first, second, and the fourth
moments of Y δk,i−1s

δ
k,i(ψk,i−1). The upper bound of ∥I −

H ′δ
k,i−1∥ is computed below

∥I −H ′δ
k,i−1∥ = ∥I − Y δk,i−1Hk,i−1∥

= ∥Y δk,i−1((Y
δ
k,i−1)

−1
− Hk,i−1)∥

≤ ∥Y δk,i−1∥∥((Y
δ
k,i−1)

−1
− Hk,i−1)∥

≤ ∥Y δk,i−1∥∥(∇
2Jk (ψk,i−1) − Hk,i−1)∥

= ∥Y δk,i−1∥

∗ ∥

∫ 1

0
∇

2Jk (ψk,i−1) − ∇
2Jk (ωo − tψ̃k,i−1)dt∥

≤ Lmax

∗

∫ 1

0
∥∇

2Jk (ψk,i−1) − ∇
2Jk (ωo − tψ̃k,i−1)∥dt

≤ Lmax

∫ 1

0
K′
d∥ψk,i−1 − ωo + tψ̃k,i−1∥dt

= LmaxK′
d

∫ 1

0
∥ψ̃k,i−1(t − 1)∥dt

= LmaxK′
dC∥ψ̃k,i−1∥

= LmaxK′
dC∥

∑
l∈Nk

ω̃l,i−1∥

≤ LmaxK′
dCN∥ω̃i−1∥ (54)

where K′
d is a positive scalar that follows from the Lipschitz

condition [16] and C is some positive constant.
■

Now, regarding the moments of Y δk,i−1s
δ
k,i(ψk,i−1), it is

useful to recall that the gradient noise is non-zero only when
the distributed agents are applying the SGD. The following is
an important assumption about the gradient noise for agents
that apply the SGD.
Lemma 1 (Moments of Gradient Noise): The gradient

noise process sδ=SGDk,i (ψk,i−1) has non-zero value over agents
that implement the SGD as given in (9). In addition, their
matrix Y δ=SGDk,i−1 = IM is given in (49). Then, the moments
of the gradient noise in [16] remain unchanged for the term
Y δ=SGDk,i−1 sδ=SGDk,i (ψk,i−1) and thus for any ω ∈ Fi−1 and for all
k = 1, 2, . . . ,N, we have

E[Y δ=SGDk,i−1 sδ=SGDk,i (ψk,i−1)|Fi−1] = 0 (55)

E[∥Y δ=SGDk,i−1 sδ=SGDk,i (ψk,i−1)∥2|Fi−1] ≤ β2k ∥ψ̃k,i−1∥
2
+ σ 2

s,k

(56)

E[Y δ=SGDk,i−1 sδ=SGDk,i (ψk,i−1)(sδ=SGDl,i )T (ψk,i−1)|Fi−1] = 0,

k ̸= l (57)

E[∥sδ=SGDk,i (ψk,i−1)∥4|Fi−1] ≤ β4k ∥ψ̃k,i−1∥
4
+ σ 4

s,k (58)

for some β2k ≥ 0, σ 2
s,k ≥ 0, and Fi−1 represents the set of the

previous iterates {ωi−1}.
■

As explained in [16], these conditions are automatically
satisfied in many circumstances of interest in learning and
adaptation. Condition (55) states that the gradient noise is
unbiased conditioned on the past iterates. Condition (56)
states that the second-order moment of the gradient noise is
bounded by the squared norm of the iterates. Condition (57)
shows that the gradient noises across the agents are uncorre-
lated.

F. COMPUTATIONAL COMPLEXITY
It is noteworthy to mention the computational complexity of
the different optimization methods adopted by the distributed
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TABLE 1. Computational complexity for different optimization algorithms.

agents. The objective function Jk (ωk ) is usually expressed as
a summation of loss function Qk (ωk ) as follows:

J (ωk ) =
1
L

L−1∑
l=0

Qk (ωk , γk (l), hk (l)), hk ∈ Rm, γk (l) ∈ R.

(59)

where L, hk , and γk are the size of the data-set, one
sample of the data-set, and the class of the samples of the
data-set respectively. The computational complexity for i
iterations for Newton’s method is O(i × L3) [69], while
the quasi-Newton method has a computational complexity of
O(i × L2) [70]. The gradient descent based methods have
lower convergence rates than Newton’s based methods, but
they require lower computational complexity. The GD has a
computational complexity of O(i × L) [64], [69], while the
SGD computational complexity is O(i) [60], [69]. Table 1
summarizes the computational complexity for the adopted
optimization algorithms.

III. STABILITY ANALYSIS
Using the results of the previous section, we examine the
stability of the mean-error process ∥E ω̃i∥, the mean-square-
error E∥ω̃i∥

2 and the fourth-order moment E∥ω̃i∥
4 of the

distributed strategy in (23).

A. STABILITY OF FIRST, SECOND AND FOURTH ORDER
ERROR MOMENTS
In this section, we study how well the distributed strategies
in (22) and (23) approach the optimal solution ωo of the
global cost in (4). This can be measured by the first, second
and fourth order moments of the error between the iterate
ωk,i and the optimal point ωo. The following theorems are
introduced in this section, and the proofs are moved to the
appendices.

1) THEOREM 1: NETWORK MEAN-SQUARE-ERROR
STABILITY
Assume that the aggregate cost Jglob(ω), the individual costs
Jk (ω), and the network topology satisfy the conditions in
Assumption 1 and Lemma 1. Then, the network with
heterogeneous agents is mean-square stable for sufficiently
small step-sizes, specifically, it holds that

lim sup
i→∞

E∥ω̃k,i∥
2

= O(µmax), for k = 1, 2, . . . ,N (60)

for any µmax < µo, for some small enough µo.
Proof: See Appendix B.

2) THEOREM 2: NETWORK FOURTH-ORDER MOMENT
STABILITY
Assume that the aggregate cost Jglob(ω), the individual
costs Jk (ω), and the network topology satisfy the conditions
in Assumption 1 and Lemma 1. Then, the fourth-order
moment,E∥ω̃k,i∥

4, of the network with heterogeneous agents
is stable for sufficiently small step-sizes, specifically, it holds
that

lim sup
i→∞

E∥ω̃k,i∥
4

= O(µ2
max), for k = 1, 2, . . . ,N (61)

for any µmax < µo, for some small enough µo.
Proof: See Appendix C.

3) THEOREM 3: NETWORK MEAN-ERROR STABILITY
Assume that the aggregate cost Jglob(ω), the individual costs
Jk (ω), and the network topology satisfy the conditions in
Assumption 1 and Lemma 1. Then, the first-order moment,
∥Eω̃k,i∥, of the network with heterogeneous agents are stable
for sufficiently small step-sizes, specifically, it holds that

lim sup
i→∞

∥Eω̃k,i∥ = O(µmax), for k = 1, 2, . . . ,N (62)

for any µmax < µo, for some small enough µo.
Proof: See Appendix D.

IV. SIMULATION RESULTS
In this section, we illustrate the performance of the proposed
work in comparison with existing algorithms that assume
the homogeneous computational capabilities among the
dispersed agents. Figure 1 presents an example of a strongly
connected network of N = 10 agents. Each agent owns a
regularized multinomial logistic cost function Jk (ω) that is
given by

Jk (ωk ) =
ρ

2
∥ωk∥

2

−
1
L

L−1∑
n=0

[ωTk,γk (n)hk (n) − log(
K∑
l=1

eω
T
k,lhk (n))] (63)

where L, γk (n) ∈ R, hk (n) ∈ RM and ρ represent the size
of the data-set, the nth label, the nth data sample and the
regularization parameter, respectively. The gradient and the
Hessian matrix of (63) can be found in [71]. The objective
of every agent is to minimize (63) in a distributed manner.
All agents are assumed to have the same cost function Jk (ω).
We choose αk = 1 in (28) for all agents.
Two metrics are used to assess the performance of the

proposed algorithm. The first metric measures the mean-
square-deviation (MSD) at agent k and a set of agents S using
the following formulas

MSDk = E∥ω̃k,i∥
2 (64)

MSDS =
1

|S|

∑
k∈S

MSDk (65)

where |S| is the size of set S. The second metric measures
the excess risk (ER) at every agent k and a set of agents S.

VOLUME 11, 2023 103535



M. H. Nassralla et al.: Hybrid Distributed Optimization for Learning Over Networks With Heterogeneous Agents

ER represents the average fluctuation of Jglob(ω) around its
minimum value Jglob(ωo). ER is defined as

ERk = E{Jglob(ωk,i−1) − Jglob(ωo)} (66)

ERS =
1

|S|

∑
k∈S

ERk (67)

A. KEY PARAMETERS
The algorithm in (2) entails several parameters (step-size µk
and weight matrix A) to be predetermined. A constant step-
size µk = 10−3 is assumed for agents running SGD, and
a variant µk using a backtracking line search method based
on Armijo condition [64], [65] is selected for agents running
Newton’s method or the full gradient descent method. On the
other hand, the weights of matrix A are chosen as

alk =


1

|Nk |
, if l ∈ Nk

0, otherwise
(68)

where |Nk | denotes the degree of the agent k , which is equal
to the size of its neighborhood.

B. DATASET
The MNIST dataset [72] is used to evaluate the performance
of the proposed work. The MNIST dataset is a collection
of handwritten digit images used extensively in pattern
recognition and machine learning research. It has a training
set of 60,000 examples, and a test set of 10,000 examples.
The digits have been size-normalized and centered in fixed-
size images.

C. IMPACT ON AGENTS WITH HIGH COMPUTATIONAL
CAPABILITIES
The proposed distributed optimization for learning over
networks has an imperative impact on both capable and non-
capable agents. The convergence rate of agents with low
computational capabilities will increase after its cooperation
with agents with high computational capabilities, whereas
the capable agents will undergo a decrease in their rate of
convergence. To assess the impact of the proposed work on
the capable agents, six scenarios are considered:

• Scenarios 1, 2, and 3: All agents implement Newton’s
method, Quasi-Newton method, and GD method per
respective scenario.

• Scenarios 4, 5, and 6: Agents three and eight implement
Newton’s method, Quasi-Newton method, and GD
method per respective scenario, while other agents run
SGD.

Agents three and eight in the network of Figure 1
are assumed to own high computational capabilities. So,
we will evaluate the impact of such high computational
capabilities on the remaining agents over the network.
Figures 2 to 4 present the normalized curves for MSD{3,8} =
1
2 (MSD3 + MSD8) in (65) for agents three and eight in
the aforementioned six scenarios. The curves are attained
by running the distributed strategy in (2) and averaging the

FIGURE 1. A strongly connected network with N = 10 agents which own
heterogeneous computational capabilities. Subset of the agents can run
the Newton’s methods, or the GD, and the remaining ones can only
implement the SGD.

FIGURE 2. Impact of heterogeneous distributed optimization algorithms
on capable agents running Newton’s method.

trajectories of each agent over 200 repeated experiments. The
following conclusions can be derived from Figures 2 to 4:

• The learning curves for capable agents converge to
a stationary point and attain a stable solution, which
proves that the cooperation with nodes which implement
SGD does not affect the stability of Newton’s method,
Quasi-Newton method, or GD method.

• The learning curves for capable agents converge faster
in homogeneous networks than heterogeneous networks.
This shows that the performance of agents running New-
ton’s method, Quasi-Newton method, or GD method
degrades upon cooperating with agents running SGD.
However, this degradation at the capable agents is
acceptable since it is outweighed by the performance
improvement of the other agents as will be shown in the
next section.
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FIGURE 3. Impact of heterogeneous distributed optimization algorithms
on capable agents running Quasi-Newton method.

FIGURE 4. Impact of heterogeneous distributed optimization algorithms
on capable agents running the GD method.

D. IMPACT ON AGENTS WITH LOW COMPUTATIONAL
CAPABILITIES
This section shows the impact of cooperative learning in
heterogeneous networks on agents with low computational
capabilities. Four scenarios are considered:

• Scenarios 4, 5 and 6 of Section IV-C.
• Scenario 7: All agents implement SGD.

Figures 5 and 6 present the normalized curves for non-capable
agents (all agents except three and eight) for the afore-
mentioned scenarios. Figure 5 presents the evolution of the
ensemble-average learning curvesMSD{1−10}\{3,8} in (65) for
the incapable agents using the distributed learning method
in (2). The following conclusions can be made:

• The proposed heterogeneous learning method converges
to a stationary point and attains a stable solution,
which proves that the cooperation with nodes who
implement Newton’s method, Quasi-Newton method,
or GD method does not affect the stability of the SGD
method.

• The convergence rate of the proposed work is much
faster than learning in a homogeneous network with

FIGURE 5. Evolution of the mean-square deviation learning curves for
incapable agents in homogeneous and heterogeneous networks using
the diffusion learning strategy. Incapable agents use step-size µ = 10−3.

FIGURE 6. Evolution of the empirical risk learning curves for incapable
agents in homogeneous and heterogeneous networks using the diffusion
learning strategy. Incapable agents use step-size µ = 10−3.

all agents running the SGD. For instance, conver-
gence in hybrid-learning Scenarios 4 to 6 is attained
within 150 and 7000 iterations respectively, whereas
homogeneous-learning Scenario 7 requires more than
10000 iterations per agent to converge.

• The proposed hybrid method significantly reduces the
communication overhead among the learning agents and
the overall network power consumption during learning
due to the faster convergence rate.

Figure 6 presents the evolution of the ensemble-average
learning curves ER{1−10}\{3,8} in (67) for the incapable agents
using the distributed learning method in (2). Figure 6 shows
that there is a large gap between the ER curves of the
incapable agents in the homogeneous network of Scenario
7 and those in the heterogeneous network of Scenarios 4 to
6. Again, this clearly illustrates that with hybrid learning
convergence is achieved much faster at the incapable agents
due to cooperation with the capable agents.
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FIGURE 7. Evolution of the average mean-square deviation learning
curves over all agents of Figure 1 in homogeneous and heterogeneous
scenarios.

E. OVERALL PERFORMANCE
Figure 7 illustrates MSD{1−10} over all the network agents
of Figure 1 in Scenarios 3, 6 and 7 of Sections IV-C
and IV-D. The figure shows that network performance in
Scenario 6 (GD+SGD) is much closer to that of Scenario 3
(all GD) than that of Scenario 7 (all SGD). This shows
that the performance improvement of the incapable agents
in Section IV-D outweighs the performance reduction of the
capable agents in Section IV-C. This further shows that it
is sufficient to selectively deploy few capable agents in a
network to approximate the performance of a fully capable
network through hybrid learning.

F. IMPACT OF THE COMBINATION WEIGHTS ON THE
PERFORMANCE
The weights over the edges of the network play a cen-
tral role in stability, convergence and performance of
the distributed optimization algorithms [16]. There are
many different algorithms in literature on the optimal
selection of the combination weights over the edges of
the network [16]. In this part of the paper, we show
experimentally that the weights over the edges of the
network affect also the distributed learning among agents
with heterogeneous computational capabilities. Figure 8
illustrates the impact of the choice of the combinationweights
{alk} in (2) on the performance of the hybrid distributed
learning method. Referring to Scenario 4 in Section IV-C,
Figure 8 shows the evolution of MSD{1−10} for three choices
of {alk}:

• Uniform combination weights [16] as in (68)
• Combination weights based on relative degree [26]:

alk =


nl∑

m∈Nk

nm
, if k and l are neighbors or k = l,

0, otherwise
(69)

FIGURE 8. Evolution of the average mean-square deviation learning
curves over the agents of Figure 1 for different combination policies.
Agents three and eight run Newton’s method, while other agents run SGD.

• Combination weights using the metropolis method [22]:

alk =



1
max(nl, nk )

, if k ̸= l are neighbors,

1 −

∑
l∈Nk\{k}

alk , k = l,

0, otherwise
(70)

As expected, the convergence rate changes based on the
combination strategy. The problem of optimally selecting
combination weights {alk} in hybrid learning sceharios is an
element for future study.
In summary, learning over heterogeneous networks allows
agents with limited computational capabilities to run simple
learning methods such as SGD but still enjoy faster
convergence based on cooperation with capable agents imple-
menting more advanced techniques. This helps incapable
agents to both perform better and save power. Additionally,
the faster convergence reduces the communication overhead
for parameter exchange in cooperative learning.

V. CONCLUSION
This work studied the distributed learning problem among
network agents with heterogeneous computational capabili-
ties. We proposed an iterative learning method where a subset
of incapable agents run SGD, while other capable agents
run computationally demanding techniques such as Newton’s
method or full GD. Theoretical and simulation results show
that for small step-size parameter µ, the distributed learning
based on cooperation between the two types of agents
is stable and converges faster than learning algorithms in
homogeneous networks. As part of the future work, we will
study the convergence analysis, and the trade-off between
computational and communication cost for the distributed
learning among agents with heterogeneous computational
capabilities.
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APPENDIX A
ANALYSIS OF THE MATRIX BI−1
Matrix Bi−1 in (25) plays an important role in the stability
and the convergence analysis of (22). In this section, we will
present a decomposition and some upper bounds for the
elements of the matrix Bi−1 which will be useful for the
upcoming proofs in appendices B, C and D. A is a left
stochastic matrix and assumed to be primitive. The Jordan
canonical decomposition of the N × N matrix A is given by

A1 = VϵJV−1
ϵ (71)

where J , Vϵ , and V−1
ϵ have dimensions of N × N and they

are given by

J =

(
1 0
0 Jϵ

)
(72)

Vϵ =
(
p VR

)
(73)

V−1
ϵ =

(
1
T

V T
L

)
(74)

where the matrices VL , Jϵ, VR have dimensions of (N −1)×
(N − 1). Since V−1

ϵ Vϵ = IN , then it holds that,
1
TVR = 0T

V T
L p = 0
V T
L VR = IN−1

(75)

Substituting (71) into (25), we get

Bi−1 = ((V−1
ϵ )T ⊗ IM ){(JT ⊗ IM ) − DT

i−1}(V
T
ϵ ⊗ IM )

(76)

where DT
i−1 is given by

DT
i−1 = ((Vϵ)T ⊗ IM )MH′

i−1AT ((V−1
ϵ )T ⊗ IM )

=

(
DT11,i−1 D

T
21,i−1

DT12,i−1 D
T
22,i−1

)
(77)

The objective of this section is to find the upper bounds of the
terms ∥DT11,i−1∥, ∥D

T
12,i−1∥, ∥D

T
21,i−1∥, and ∥DT22,i−1∥ of the

matrix Bi−1. Substituting (73), (74) and (75) in (77), we get

D11,i−1 =

N∑
k=1

µkpkH′T
kδ,i−1 (78)

D12,i−1 = (1T ⊗ IM )H′T
i−1M(VR ⊗ IM ) (79)

D21,i−1 = (V T
L A⊗ IM )H′T

i−1M(p⊗ IM ) (80)

D22,i−1 = (V T
L A⊗ IM )H′T

i−1M(VR ⊗ IM ) (81)

Let µk be defined as

µk = τkµmax (82)

where τk is some positive scalar, then the matrix sequence
D11,i−1 can be upper bounded as follows

D11,i−1 =

N∑
k=1

µkpkY δk,i−1H
δT
k,i−1

(a)
≤ pmaxτkmaxµmaxNc

′

2δcIM

= c′′2µmaxIM
= O(µmax) (83)

where (a) follows from (20) and (52), c′2 is defined in (52),
µmax and pmax represent the maximum learning rate and the
maximum entry of the vector p, respectively, while c′′2 is a
constant that is equal to pmaxτkmaxNc

′

2δc.
The lower bound of D11,i−1 can be derived as follows

D11,i−1 =

N∑
k=1

µkpkY δk,i−1H
δT
k,i−1

(a)
≥ c′1pkoτkoµmaxνIM
= c′′1µmaxIM
= O(µmax) (84)

where (a) follows from (21) and (39), c′1 is defined in (52),
and c′′1 is a constant that is equal to c′1pkoτkoν. The induced
2-norm of ∥IM − DT11,i−1∥ can be derived as follows. It can
be deduced from (83) and (84) that

c′′1µmaxIM ≤ D11,i−1 ≤ c′′2µmaxIM
−c′′2µmaxIM ≤ −D11,i−1 ≤ −c′′1µmaxIM

(1 − c′′2µmax)IM ≤ IM − D11,i−1 ≤ (1 − c′′1µmax)IM
∥IM − DT11,i−1∥ ≤ max{1 − c′′1µmax , 1 − c′′2µmax}

= 1 − O(µmax) (85)

∥D21,i−1∥ can be bounded as follows

∥D21,i−1∥ = ∥(V T
L A⊗ IM )H′T

i−1M(p⊗ IM )∥

≤ ∥(V T
L A⊗ IM )∥∥H′T

i−1∥∥M∥∥p⊗ IM∥

= ∥(V T
L A⊗ IM )∥∥H′T

i−1∥∥M∥

√
Np2max

= α21∥H′T
i−1∥∥M∥

(a)
≤ α21∥M∥( max

1≤k≤N
∥H ′δ

k,i−1∥)

(b)
≤ α21∥M∥L̃maxδc
= α21∥M∥L̃maxδc
≤ σ21µmax = O(µmax) (86)

where (a) follows from the property of the induced 2-norm of
block diagonal matrices, and (b) follows from (20) and (53).
α21 and σ21 are positive constants that are defined to be equal
to ∥(V T

L A ⊗ IM )∥
√
Np2max and α21∥M∥L̃maxδc, respectively.

Similarly, it can be shown that

∥D12,i−1∥ ≤ σ12µmax = O(µmax)

∥D22,i−1∥ ≤ σ22µmax = O(µmax)

(87)

APPENDIX B
NETWORK MEAN-SQUARE-ERROR STABILITY
Multiplying both sides of (23) by VTϵ we get:

VTϵ ω̃i = VTϵ Bi−1ω̃i−1 + VTϵ Msi(ωi−1) − VTϵ Mb (88)
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[
ωi
ω̌i

]
=

 I − DT11,i−1 −DT21,i−1
−DT12,i−1 J T

ϵ − DT22,i−1

 [
ωi−1
ω̌i−1

]

+

[
si−1
ši−1

]
−

[
b̄
b̌

]
(89)

where

VTϵ ω̃i =

(
(pT ⊗ IM )ω̃i
(V T

R ⊗ IM )ω̃i

)
=

(
ω̄i
ω̌i

)
(90)

VTϵ Ms(ψi−1) =

(
(pT ⊗ IM )Ms(ψi−1)
(V T

R ⊗ IM )Ms(ψi−1)

)
=

(
s̄i
ši

)
(91)

VTϵ Mb =

(
(pT ⊗ IM )Mb
(V T

R ⊗ IM )Mb

)
=

(
b̄
b̌

)
(92)

From the expression of b̄ and b̌, we note that they depend on
M and b. Recall from (31) that the entries of b are defined
in terms of the gradient vectors and ∇Jk (ωo) and the matrix
Y δk,o = Y δk,i−1(ω

o). Since each Jk (ω) is assumed to be twice-
differentiable, then each ∇Jk (ω) is a differentiable function
and therefore bounded. In addition, Y δk,i−1 is also bounded as
discussed in Section II-E. It follows that

b̄ = −

N∑
k=1

pkµkY δk,o∇Jk (ω
o) = O(µmax) (93)

Similarly,

b̌ = O(µmax) (94)

From (89) we can write:

ωi = (I − DT11,i−1)ωi−1 − (DT21,i−1)ω̌i−1 + si−1 (95)

ω̌i = (−DT12,i−1)ωi−1 + (J T
ϵ − DT22,i−1)ω̌i−1 + ši−1 − b̌

(96)

Conditioning both sides of (95) on Fi−1 and using the
condition on gradient noise that is given in (55),

E[∥ωi∥2|Fi−1] = E[∥(I − DT11,i−1)ωi−1 − (DT21,i−1)ω̌i−1

+ si−1 − b∥2|Fi−1]

= ∥(I − DT11,i−1)ωi−1 − (DT21,i−1)ω̌i−1

− b∥2 + E[∥si−1∥
2
|Fi−1] (97)

Conditioning again on both sides of (97) we get:

E[∥ωi∥2] = E[∥(I − DT11,i−1)ωi−1 − (DT21,i−1)ω̌i−1

− b∥2] + E[∥si−1∥
2]

≤
1

1 − t
E[∥(I − DT11,i−1)ωi−1∥

2]

+
1
t
E[∥(DT21,i−1)ω̌i−1 − b∥2] + E[∥si−1∥

2]

≤
1

1 − t
E[∥(I − DT11,i−1)∥

2
∥ωi−1∥

2]

+
2
t
E[∥(DT21,i−1)∥

2
∥ω̌i−1∥

2] +
2
t
∥b∥2

+ E[∥si−1∥
2]

(a)
=

(1 − σ11µmax)2

1 − σ11µmax
E[∥ωi−1∥

2]

+
2σ 2

21µ
2
max

σ11µmax
E[∥ω̌i−1∥

2] +
2∥b∥2

σ11µmax

+ E[∥si−1∥
2]

= (1 − O(µmax))E[∥ωi−1∥
2]

+ O(µmax)E[∥ω̌i−1∥
2] + O(µmax)

+ E[∥si−1∥
2] (98)

where (a) follows from (85), and (86). It is shown in [16] that
E[∥si−1∥

2 and E[∥ši−1∥
2 are upper bounded by

E[∥si−1∥
2, E[∥ši−1∥

2

≤ ν21ν
2
2β

2
dµ

2
max[E[∥ω̄i∥

2] + E[∥ω̌i∥2]] + ν21µ
2
maxσ

2
s (99)

Substituting (99) in (98) we get:

E∥ωi∥
2

≤ (1 − O(µmax))E∥ωi−1∥
2
+ O(µmax)E∥ω̌i−1∥

2

+ O(µ2
max)

(100)

Similarly by following the same steps that led to (100) and by
using the results of (87), we get:

E[∥ω̌i∥2] ≤ (ρ(Jϵ) + ϵ + O(µ2
max))E[ω̌i−1∥

2]

+ O(µ2
max)E[|ωi−1∥

2] + O(µ2
max) (101)

Equations (100) and (101) can be written in a matrix form as
follows:[

E∥ωi∥
2

E∥ω̌i∥
2

]
≤ 0

[
E[ωi−1∥

2]
E[ω̌i−1∥

2]

]
+

[
O(µ2

max)
O(µ2

max)

]
= 0

[
E[ωi−1∥

2]
E[ω̌i−1∥

2]

]
+

[
O(µ2

max)
O(µ2

max)

]
(102)

where 0 is a matrix that is given by

0 =

 1 − O(µmax) O(µ2
max)

O(µ2
max) ρ(Jϵ) + ϵ + O(µ2

max)

 (103)

Since ρ(Jϵ) < 1 is independent of µmax , and since ϵ and
µmax are small positive numbers that can be chosen arbitrarily
small and independently of each other, then it can be easily
shown that

lim sup
i→∞

[
E∥ωi∥

2

E∥ω̌i∥
2

]
≤ (I − 0)−1

[
O(µ2

max)
O(µ2

max)

]

=

 O( 1
µmax

) O(1)
O(µmax) O(1)

 [
O(µ2

max)
O(µ2

max)

]

=

[
O(µmax)
O(µ2

max)

]
(104)

from which we conclude that

lim sup
i→∞

E∥ωi∥
2

= O(µmax) (105)

lim sup
i→∞

E∥ω̌i∥
2

= O(µ2
max) (106)
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and therefore

lim sup
i→∞

E∥ω̃i∥
2

= lim sup
i→∞

E∥(V−1
ϵ )T

[
ωi
ω̌i

]
∥
2

≤ lim sup
i→∞

∥(V−1
ϵ )T ∥

2[E∥ωi∥
2

+ E∥ω̌i∥
2] = O(µmax). (107)

■

APPENDIX C
NETWORK FOURTH-ORDER MOMENT STABILITY
Using (95), and (101), we can write:

∥ωi∥
4

= ∥(I − DT11,i−1)ωi−1 − (DT21,i−1)ω̌i−1 + si−1∥
4

(108)

∥ω̌i∥
4

= ∥ − DT12,i−1ωi−1 + (J T
ϵ − DT22,i−1)ω̌i−1 + ši−1

− b̌∥4 (109)

Using the following inequality:

∥a+ b∥4 ≤ ∥a∥4 + 3∥b∥4 + 8∥a∥2∥b∥2 + 4∥a∥2Re(a ∗ b)

(110)

Let

a = (I − DT11,i−1)ωi−1 − (DT21,i−1)ω̌i−1 (111)

b = si−1 (112)

then decompose the right-hand side of (108) according
to (110), and take the expectations on both sides and follow
exactly the same steps in [16], and use the results of (85), (86)
and (87), we get:

lim sup
i→∞

E∥ω̄i∥
4

= O(µ2
max) (113)

Similarly, let

a = (−DT12,i−1)ωi−1 + (J T
ϵ − DT22,i−1)ω̌i−1 − b̌ (114)

b = ši−1 (115)

and decompose the right-hand side of (109) according
to (110), and take the expectations on both sides and follow
exactly the same steps in [16], we get:

lim sup
i→∞

E∥ω̌i∥
4

= O(µ4
max) (116)

and, therefore

lim sup
i→∞

E∥ω̃i∥
4

= lim sup
i→∞

E
(

∥(V−1
ϵ )T

[
ωi
ω̌i

]
∥
2
)2

≤ lim sup
i→∞

∥(V−1
ϵ )T ∥

4[E∥ωi∥
2

+ E∥ω̌i∥
2] = O(µ2

max). (117)

■

APPENDIX D
NETWORK MEAN-ERROR STABILITY

ω̃i = Bi−1ω̃i−1 +Ms(ψi−1) −Mb , i ≥ 0 (118)

Bi−1 = (I −MH′
i−1)AT (119)

Let

H̃ = H− H′
i−1 (120)

whereH is a constant matrix defined as

I = diag{I1, I2, . . . , IN } (121)

and Ik , k = 1, . . . ,N represents the eye matrix.
Substituting (120) in (119), we can write:

Bi−1 = B +MH̃AT (122)

where B is given by

B = (IMN −MH)AT (123)

Substituting (122) in (118), we get:

ω̃i = Bω̃i−1 +MH̃AT ω̃i−1 +Ms(ψi−1) −Mb , i ≥ 0
(124)

Taking conditional expectations on both sides of (124)

E[ω̃i|Fi−1]
(a)
= Bω̃i−1 +MH̃AT ω̃i−1 −Mb , i ≥ 0

(125)

where (a) follows from E[s(ψi−1)|Fi−1] = 0. Taking the
expectations of both sides of (125), we can write:

E[ω̃i] = BE[ω̃i−1] +ME[H̃AT ω̃i−1] −Mb , i ≥ 0

= BE[ω̃i−1] +Mci−1 −Mb , i ≥ 0 (126)

where ci−1 is defined as follows:

ci−1 = E[H̃AT ω̃i−1] (127)

Multiplying both sides of (126) by VTϵ , we can write:[
Eωi
Eω̌i

]
= B

[
Eωi−1
Eω̌i−1

]
−

[
0
b̌

]
+ VTϵ Mci−1 (128)

Note that (128) has the same form as in [16], with the
exception that ci−1 and H̃ take different forms in this work
from that in [16]. So, we present below the upper bounds of
H̃, and ∥VTϵ Mci−1∥ and then the remaining steps of the proof
follow similarly as in [16].

H̃ δ
k,i−1 = I −H ′δ

k,i−1

∥H̃ δ
k,i−1∥ = ∥I −H ′δ

k,i−1∥
(a)
≤ LmaxK′

dCN∥ω̃i−1∥ (129)

where (a) follows from (54), then

∥H̃i−1∥ = max
1≤k≤N

∥H̃ δ
k,i−1∥ ≤ LmaxK′

dCN∥ω̃i−1∥ (130)

therefore

∥VTϵ Mci−1∥ ≤ ∥VTϵ ∥∥M∥∥ci−1∥

≤ ∥VTϵ ∥∥M∥∥E(H̃i−1AT ω̃i−1)∥
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≤ (∥VTϵ ∥∥M∥∥AT
∥)E[∥(H̃i−1∥∥ω̃i−1)∥]

(a)
≤ LmaxK′

dCN∥VTϵ ∥∥M∥∥AT
∥E∥ω̃i−1∥

2

(b)
= rµmaxE∥ω̃i−1∥

2 (131)

for some constant r that is independent of µmax . It follows
from (62) that

lim sup
i→∞

∥VTϵ Mci−1∥
2

= O(µ2
max) (132)

Rewrite (128) as[
zi
ži

]
= B

[
zi−1
ži−1

]
−

[
0
b̌

]
−

[
b
′

b̌′

]
−

[
B′z

i−1

B̌′ži−1

]

+

[
ci−1
či−1

]
+

[
c′i−1
č′i−1

]
(133)

then continue as in [16], and use the results of (85), (86)
and (87), we get:

lim sup
i→∞

∥Eω̃i∥ = O(µmax), for k = 1, 2, . . . ,N . (134)

■
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