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ABSTRACT In order to solve the problem of load variation and nonlinear strong coupling of the quadrotor
load unmanned aerial vehicle (UAV), this paper proposes a fuzzy adaptive linear active disturbance rejection
control algorithm based on the Kalman filter (KFFA-LADRC). Firstly, according to the established dynamics
model of the quadrotor load UAV, the linear extended state observer (LESO) and the controller based on
the bandwidth method are designed. Secondly, to enhance the system’s adaptability and robustness, a real-
time fuzzy adaptive controller is introduced to dynamically adjust the controller parameters. Furthermore,
to tackle uncertainties disturbances arising from sensor noise and unknown external disturbances, theKalman
filter is utilized to predict the output state, thereby providing the optimal estimation input for the LESO. The
approach not only achieves stable control of internal interference, but also reduces the dependence of the
Kalman filter on the mathematical model. Finally, simulation results substantiate the efficacy of the proposed
KFFA-LADRC, highlighting its robustness and adaptability when accommodating variations in load mass,
sensor noise, and external interferences within unfamiliar environments.

INDEX TERMS Fuzzy adaptive, Kalman filter, linear active disturbance rejection control, quadrotor load
unmanned aerial vehicle.

I. INTRODUCTION
In recent years, quadrotor unmanned aerial vehicles(UAVs)
have extensively utilized across various global industries,
undertaking challenging tasks such as oil pipeline patrols,
high-altitude cable inspections, logistics transportation, dis-
aster search and rescue missions [1], [2], [3], [4], [5].
Compared to fixed-wing aircraft and traditional helicopters,
these UAVs offer greater flexibility and rapid responsiveness.
During disaster relief efforts, a quadrotor can swiftly access
isolated areas, delivering essential medical supplies, food,
and communication equipment. However, during flight, they
encounter challenges like sensor noise, wind disturbances,
and variations in load. With six degrees of freedom and
only four control inputs, they demonstrate underactuation and
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strong nonlinear coupling, necessitating rigorous attitude and
position control.

Accompanied by technological progress, research method-
ologies for quadrotor UAVs have witnessed rapid advance-
ments, particularly in the integration of adaptive control
[6], [7] and reinforcement learning [8]. While adaptive
control dynamically adjusts control parameters to adapt
to ever-changing flight conditions, reinforcement learn-
ing determines optimal control strategies through ongo-
ing interactions with the environment. Nevertheless, these
sophisticated control methods often require higher com-
putational resources, potentially complicating the drone’s
control system and increasing costs. The control landscape
for quadrotors encompasses a wide array of strategies,
including PID control [9], linear quadratic regulator (LQR)
control [10], sliding mode control [11], LADRC control
[12], neural network control [13], and H∞ control [14],
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to name a few. However, each approach presents its own
distinct features and constraints. For instance, LQR control
relies heavily on precise dynamic models. Sliding mode
control, though robust against external disturbances and
parameter variations, can induce high-frequency oscillations
if not properly configured. Neural networks [15], despite
their speed and adaptability, may not always be suitable
for systems as nonlinear and tightly coupled as quadrotors.
Moreover, many control strategies tend to overlook the
internal and external disturbances that quadrotors frequently
encounter.

In contrast, PID control remains a popular choice due to its
straightforward structure and the advantage of not relying on
meticulous mathematical models. Its ease of implementation,
especially on budget-friendly and energy-efficient hardware,
renders it particularly suitable for quadrotor UAVs. Typically,
the control framework for these UAVs employs a cascade
PID strategy [16], which is bifurcated into outer and
inner loops. The inner loop predominantly manages the
drone’s attitude via angular velocity, whereas the outer loop
governs its position using angles. While the robustness
and interference resistance of PID control have certain
limits, its simplicity and broad applicability continue to
endear it to many. Indeed, in a bid to surmount PID’s
inherent constraints, researchers have begun blending it
with alternative control techniques. In the reference [17],
it introduces an adaptive control methodology for both
attitude and position in quadrotors, effectively sidestepping
manual gain adjustments. Referenced [18] literature employs
adaptive neural networks combined with extended Kalman
filters to fine-tune PID parameters, thus diminishing control
discrepancies and enhancing response times. Elsewhere,
In the reference [19], a genetic algorithm tackles the
optimization of linear and nonlinear constraints by adjusting
PID controller parameters. In another cited study [20],
incorporating both fuzzy neural networks with PID not only
refines the controller’s parameters and enhances the UAV’s
performance, but also reduces the computational demands of
cascaded neural network control. Nevertheless, while these
adaptations improve upon some of PID’s shortcomings, the
strategies deployed to counter system noise and uncertainties
remain incomplete, leading to apprehensions about potential
excessive error estimations and oscillations during target
tracking.

To further enhance and refine the aforementioned control
techniques, Professor Han Jingqing introduced the ADRC
[21] approach to optimize traditional PID control. Central
to this method is its ability to estimate and counteract
system disturbances to meet control objectives. Notably,
this technique does not rely on precise mathematical
models, making it particularly suited for addressing the
nonlinear, strongly coupled dynamics of quadrotor UAVs.
Yet, as noted in the literature [22], the processes of
sampling and discretization can degrade performance and
amplify system intricacy. Discrepancies and uncertainties

in system models can compromise the controller’s efficacy.
To address these challenges, the LADRC framework was
introduced. This merges an extended state observer with
an adaptive mechanism, allowing for real-time disturbance
estimation, compensation, and mitigation. While LADRC
offers advancements in precision and reliability compared
to PID, the complexity of parameter tuning has increased.
To streamline this process, references [23] utilize the
bandwidth method, reducing the number of parameters and
thereby broadening LADRC’s applicability.

However, despite LADRC’s ability to effectively estimate
and counteract disturbances, improper parameter settings can
lead to system instability or overshoot, particularly during
load variations. To bolster the control system’s adaptability
and stability, fuzzy adaptive control is incorporated into
LADRC. The fuzzy controller processes both the input
error and its rate of change, establishing control parameters
based on predefined fuzzy rules. These outputs are then
defuzzified to derive the actual control parameters. This
integration amplifies the system’s robustness and capacity
to handle non-linearities. The inclusion of the fuzzy adap-
tive mechanism facilitates real-time parameter estimation
and tweaking, enabling the system to adeptly manage
uncertainties. Reference [24] results from various studies
indicate that when a controlled entity experiences internal
disturbances, relying solely on PID control doesn’t facilitate
swift objective function tracking. However, by integrating
PID with fuzzy adaptive control, the resulting fuzzy-PID
demonstrates rapid tracking capabilities with enhanced
robustness. In the referenced study [25], a fuzzy sliding
mode controller has been crafted for longitudinal attitude
decoupling, showcasing commendable adaptability. While
the fuzzy controller excels in boosting system robustness and
reaction times, its disturbance immunity could benefit from
further refinement. Hence, integrating fuzzy control with
LADRC enhances its resistance to disturbances. Building
on previous work [26], a unique set of fuzzy rules has
been proposed, introducing the fuzzy-LADRC methodology
which boasts a quicker response and superior anti-disturbance
capabilities.

In conventional LADRC designs, an extended state
observer is employed to estimate the system’s state and
disturbances, aiming to mitigate the impact of both exter-
nal and internal perturbations. However, in more intricate
settings, this method may not yield the most optimal
estimations. To enhance state estimation precision, the
integration of the Kalman filter with LADRC is proposed.
Recognized as a quintessential state estimation technique,
the Kalman filter can deliver optimal state predictions when
the statistical properties of system noise and disturbances
are known. This filter is adept at adapting to various
scenarios, optimally forecasting the entire system’s state
while effectively minimizing noise interference. Existing
reference [27] highlights the filter’s prowess in efficiently
eliminating the effects of measurement and channel noise
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during the control process, consequently elevating the control
system’s stability, responsiveness, and overall performance.
Nonetheless, when internal perturbations occur within the
controlled entity, the actual state deviations might not align
with the system model’s predictions. This misalignment can
lead to significant discrepancies between the system’s track-
ing and the preset values, causing the estimated outcomes
to veer away from the system’s true state. To tackle these
challenges, literature [28] has introduced designs that blend
the linear quadratic tracking approach and LADRC, further
incorporating neural network approximators and extended
Kalman filters to boost accuracy significantly. In the refer-
enced studies [29], the Kalman filter’s innate adaptability is
underscored, enabling it to dynamically fine-tune estimation
accuracy, thus mitigating measurement noise and enhancing
the control system’s overall efficiency. Collectively, these
research contributions underscore the efficacy and potential
of integrating the Kalman filter into LADRC methodologies.

To sum up, the main contributions of this paper are as
follows:

• To address the issue of air resistance affecting the
quadrotor load UAV, a mathematical model is estab-
lished. Furthermore, in response to the changes in the
quadrotor UAV’s center of mass when the load varies,
a more accurate mathematical model is designed to
enhance the system’s practicality.

• For quadrotor load UAVs tasked with frequent load
transport, maintaining stability can pose significant
challenges, especially given the internal interference
from load shifts. In addressing this, the Fuzzy Adaptive
LADRC (FA-LADRC) method emerges as a promising
solution. Specifically designed for the stability control
of quadrotor load UAVs, the FA-LADRC methodology
controls both the attitude and position channels of the
UAV. By integrating the robust resilience of fuzzy adap-
tive control with LADRC’s exceptional anti-interference
capabilities, this innovative system not only ensures
swift and stable setpoint tracking but also proficiently
mitigates disturbances arising from load alterations
during transit.

• To address the impacts of sensor noise and environmen-
tal rigors on quadrotor load UAVs, a refined FA-LADRC
framework augmented with the Kalman filter becomes
indispensable. Positioned as a disturbance observer,
when determining the observation gain wo (LESO’s
observed gain) for LESO, striking the right balance
between disturbance attenuation and noise impact can
be challenging. This is where the Kalman filter, intro-
duced prior to LESO, enhances the system’s response
speed while simultaneously reducing noise interference.
Notably, their combined use dilutes the Kalman filter’s
reliance on strict mathematical modeling. The culmina-
tion of these interventions results in markedly improved
control performance, especially in interference-ridden
conditions. Furthermore, this integratedmethod rectifies

FIGURE 1. structure diagram of a quadrotor load UAV.

issues associated with the Kalman filter’s deviation from
tracking input signals during dynamic changes in the
controlled object.

• To demonstrate the feasibility of the proposed control
scheme, this study conducts simulation experiments
using MATLAB/SIMULINK. In the simulation exper-
iment, PID control, without bandwidth LADRC(WB-
LADRC), LADRC, FA-LADRC, and Kalman filter
fuzzy adaptive LADRC(KFFA-LADRC) are introduced
to compare the tracking input signals of the quadrotor
load UAV. During the flight of the quadrotor load UAV,
load mass changes and white noise are introduced to
simulate real-life interference. These control methods
are designed to mitigate the effects of interference and
enhance the tracking performance of the quadrotor load
UAV. By designing different control methods, the results
show that the KFFA-LADRC control scheme exhibits
better stability and adaptability under the interference
condition. The simulation results show the feasibility of
KFFA-LADRC for quadrotor load UAVs.

The structure of the remaining content of this paper is
as follows: The second section describes the mathematical
modeling of the quadrotor UAV; The third section outlines
the design of the control scheme; In the fourth section, the
simulation results and discussion of the control scheme are
presented. Finally, the paper concludes with a summary.

II. DYNAMICS MODEL OF A QUADROTOR LOAD UAV
According to Fig. 1, the two adjacent rotors rotate in opposite
directions to counteract the reverse moment generated
by their respective rotations. The quadrotor possesses six
degrees of freedom: namely x, y, and z as the position
coordinates, ξ , δ, and η as the attitude coordinates, where ξ ,
δ, η represent roll angle, pitch angle and yaw angle.
The rotation matrix corresponding to each axis is as

follows:

Rx (η) =

 1 0 0
0 cos η − sin η

0 sin η cos η

 ,
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Ry (η) =

 cos η 0 sin η

0 1 0
− sin η 0 cos η

 ,

Rz (η) =

 cos η − sin η 0
sin η cos η 0
0 0 1

 . (1)

The following formula can describe the relationship
between the earth-fixed frame E and the body-fixed frame
B according to matrix transformation [30].

R = Rx (ξ)Ry (δ)Rz (η) =
[
M1 M2 M3

]
, (2)

where

M1 =

 cos δ cos η

cos δ sin η

− sin δ

 ,

M2 =

 sin ξ sin δ cos η − cos ξ sin η

sin ξ sin δ sin η + cos ξ cos η

sin ξ cos δ

 ,

M3 =

 cos ξ sin δ cos η + sin ξ sin η

cos ξ sin δ sin η − sin ξ cos η

cos ξ cos δ

 . (3)

A. POSITION DYNAMICS MODEL
According to Newton’s second law, the position dynamics
model of the quadrotor UAV, under the influence of various
forces, can be established as follows:

F = ma,
F = f + GM + Gm + Kf 1

=

(
4∑
i=1

Fi

)
bz + GM + Gm + Kf 1,

(4)

where F represents the combined external force acting on
the quadrotor UAV, αi denotes the total lift force of the
motor, M is the mass of the quadrotor, m is the mass
of the load, Fi indicates the lift provided by a single
motor. The lift of the rotor is directly proportional to the
square of the rotational speed, meaning the force of each
motor can defined as Fi = Ktα2

i , where Kt is the lift
coefficient of the rotor coefficient. Additionally, GM =[
0 0 −Mg

]T , Gm =
[
0 0 −mg

]T , where g denotes the
acceleration due to gravity, The air resistance matrix is given
by Kf 1 =

[
−Kf ẋ −K f ẏ −Kf ż

]T , with Kf being the air
resistance coefficient. Applying the transformation matrix R,
the following expression is obtained:

bz =
[
i j k

] cos ξ sin δ cos η + sin ξ sin η

cos ξ sin δ sin η − sin ξ cos η

cos ξ cos δ

 . (5)

According to formula (4), the following relation can be
derived:(

4∑
i=1

Fi

)
bz + GM + Gm + Kf 1

=

(
4∑
i=1

Fi

) [
i j k

] cos ξ sin δ cos η + sin ξ sin η

cos ξ sin δ sin η − sin ξ cos η

cos ξ cos δ


+

 0
0

−Mg

+

 0
0

−mg

+

−Kf ẋ
−Kf ẏ
−Kf ż


= (M + m)

[
i j k

] ẍÿ
z̈

 . (6)

Rearranging the above equation yields the following
expression:

ẍ =

4∑
i=1

Ktα2
i (cos ξ sin δ cos η + sin ξ sin η) − Kf ẋ

M + m
,

ÿ =

4∑
i=1

Ktα2
i (cos ξ sin δ cos η + sin ξ sin η) − Kf ẏ

M + m
,

z̈ =

4∑
i=1

Ktα2
i (cos ξ cos δ − Kf ż)

M + m
− g.

(7)

B. ATTITUDE DYNAMICS MODEL
The angular momentum theorem of the motion of the center
of mass can be derived as:

Mb =
dL
dt

, (8)

In the body coordinate system, the following expression
can be obtained,

Mb =
dL
dt

|b + αL + Kf 2 = M1 +M2 + Kf 2, (9)

where L represents the moment of momentum, Mb denotes
the combined external moment of the quadrotor UAV, M1 is
the moment generated by the lift force, M2 is the moment
generated due to the air resistance by the spiral rotor, and
Kf2 =

[
−Kf ξ̇ −K f δ̇ −Kf η̇

]T is the air resistance matrix.
The lift of the rotor is directly proportional to the square of
the rotational speed, so the resistance moment of each rotor
M2i = Kdν2i , where Kd is the resistance moment coefficient
and νi is the corresponding motor speed.

M1 =

4∑
i=1

riFi = l (F3 − F1) by + l (F2 − F4) bx ,

M2 = Kd
(
ν21 + ν22 + ν23 + ν24

)
bz,

Kf2 =

[
−lKf ξ̇ −lKf δ̇ −Kf η̇

]T
,

(10)

CombineM1,M2, and Kf2 as presented in equation (10) to
obtain the following formula

Mb = M1 +M2 + Kf2
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=
[
bx by bz

] l (F2 − F4) − lKf ξ̇
l (F3 − F1) − lKf δ̇

Kd
(
ν21 − ν22 + ν23 − ν24

)
− Kf η̇

 ,

(11)

where l denotes the distance from the center of mass to the
center of the motor, bx , by, and bz represent unit vectors along
the x, y, and z axes respectively, ri refers to the vector of each
rotor lever, Fi is the vector corresponding to the lift force of
each rotor.

ξ̈ =
l(F2 − F4) − (Iz − Iy)δ̇η̇ − lKf ξ̇

Ix
,

δ̈ =
l(F3 − F1) − (Ix − Iz)ξ̇ η̇ − lKf δ̇

Iy
,

η̈ =
Kd (ν21 − ν22 + ν23 − ν24 ) − (Iy − Ix)ξ̇ δ̇ − lKf η̇

Iz
,

(12)

where Ix , Iy, and Iz represent the moment of inertia on the x,
y, and z axes respectively.

C. DYNAMICS MODEL OF QUADROTOR LOAD UAV
When the quadrotor UAV is loaded, due to the increase in
weight, the center of mass of the quadrotor load UAV moves
down, and the distance from the motor to the center of mass
is increased, which affects the pitch angle movement and
the roll angle movement of the quadrotor UAV. The centroid
coordinates of the quadrotor UAV are set as (x1, y1, z1), and
the centroid coordinates of the load are set as (x2, y2, z2).
Once connected to the payload, the quadrotor drone and its
load function as a single entity. Consequently, the centroid
coordinates of the quadrotor UAV after being connected to
the load are as follows:

xa = (Mx1 + mx2)/(M + m),
ya = (My1 + my2)/(M + m),
za = (Mz1 + mz2)/(M + m).

(13)

As illustrated in Fig. 1, the centroid coordinates of the
quadrotor UAV are denoted by (0, 0, 0), while the centroid
coordinates of the load are given by (0, 0, z2). By utilizing
equation (13), can calculate the coordinates labeled as za =

mz2/ (M + m). Consequently, the center of mass coordinate
of the quadrotor load UAV is (0, 0, za).

In line with the quadrotor and torque model, a virtual
controlling force denoted by U =

[
U1 U2 U3 U4

]T is
introduced, replacing the total lift force and the torque
experienced at each attitude angle.

U =


U1
U2
U3
U4

 =


f
Mx
My
Mz

 =


F1 + F2 + F3 + F4

F2 − F4
F3 − F1

F1 − F2 + F3 − F4



TABLE 1. Units for magnetic properties.

=


Kt

4∑
i=1

ν2i

Kt
(
ν22 − ν24

)
Kt
(
ν23 − ν21

)
Kd
(
ν21 − ν22 + ν23 − ν24

)

 , (14)

where U1, U2, U3, and U4 represent z-axis speed control
input, roll-axis speed control input, pitch-axis speed control
input, and yaw-axis speed control input, f is the total lift
force of the quadrotor load UAV, Mx , My, and Mz are the
rolling moment, pitching moment and yawing moment under
the attitude angle respectively. According to (7), (12), (13),
(14) the following formula can be obtained

ẍ = U1 (cos ξ sin δ cos η + sin ξ sin η) / (M + m)

−Kf ẋ/ (M + m) ,

ÿ = U1 (cos ξ sin δ sin η − sin ξ cos η) / (M + m)

−Kf ẏ/ (M + m) ,

z̈ = U1(cos ξ cos δ)/ (M + m) − Kf ż/ (M + m) − g,
ξ̈ = U2l/Ix +

(
Iz − Iy

)
δ̇η̇/Ix − lKf ξ̇ /Ix ,

δ̈ = U3l/Iy + (Ix − Iz) ξ̇ η̇/Iy − lKf δ̇/Iy,
η̈ = U4/Iz +

(
Iy − Ix

)
ξ̇ δ̇/Iz − Kf η̇/Iz,

l =
2
√
l02 + za2,

(15)

where l0 represents the distance from the origin of the
quadrotor load UAV coordinate system to the center.

In the simulation experiment, the parameters utilized for
the quadrotor UAV are detailed in Table 1:

III. DESIGN OF KALMAN FUZZY ADAPTIVE LINEAR
ACTIVE DISTURBANCE REJECTION CONTROL
The quadrotor load UAV operates using four motors,
adjusting their speeds to dictate its movement. As depicted
in Fig. 2, both the attitude and position rings of the UAV are
under the governance of the KFFA-LADRC system, where
FAC represents the fuzzy adaptive control, and KF stands
for the Kalman filter. The operational procedure begins by
inputting a signal into the LADRC. As the system endeavors
to track the objective function, any arising discrepancies
or errors are channeled into the fuzzy control as inputs.
Post fuzzy logic processing, the controller’s bandwidth is
ascertained and then applied back to the LADRC, ensuring
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FIGURE 2. Block diagram of control scheme.

the system retains agility while bolstering its robustness.
Subsequent to this, the LADRC computes the control amount,
and treats it as an input for the object being regulated,
aiming to closely adhere the input value. Recognizing the
need to enhance the system’s performance and minimize
noise, a Kalman filter is incorporated. This filter refines the
tracking values prior to them being routed to the LESO. The
incorporation of this step amplifies the system’s observational
and estimation prowess. Collectively, these processes form an
integrated closed-loop control system, designed to maximize
accuracy and efficiency.

A. DESIGN OF LINEAR ACTIVE DISTURBANCE REJECTION
CONTROL
The LADRC generates differential signals for the entire
control system using a tracking differentiator (TD) and
orchestrates the transition process. The LESO employed
in the control scheme exhibits fast response and robust
anti-interference capabilities. Both internal and external
disturbances are regarded as the total disturbance of the
system, and can be compensated for by the linear control rate.
For instance, in the case of height control, the controller is
shown in Fig. 3.

1) DESIGN OF TRACKING DIFFERENTIATOR
When the setpoint is entered into the control system, the large
system response caused by the step signal can be mitigated by
introducing a transition process, to achieve smooth setpoint
tracking and improve the stability of the control system.

According to the theory of optimal control, the discrete
system is the optimal control function, referred to as fhan,

FIGURE 3. Structure diagram of controller.

which can be defined as follows:

q = ih2,
c0 = hc2,
c1 =

√
q(q+ 8 |y|),

c2 = c0 + sign(y)(c1 − q)/2,
fsg(x, q) = (sign(x + q) − sign(x − q))/2,
c0 = (c0 + y)fsg(y, q) + c2(1 − fsg(y, q)),
fhan = −r(c/q)fsg(c, q) − rsign(c)(1 − fsg(c, q)),

(16)

Based on equation (16), further arrangements can be made
for the transition process.

fh = fhan(xa(k) − v(k), xb(k), i, h0),
xa(k + 1) = xa(k) + hxb(k),
xb(k + 1) = xb(k) + hfh,

(17)

where h represents the simulation time step, h0 denotes
the smoothing factor, and i indicates the velocity factor.
As the velocity factor increases, the transition takes less time,
but i reaches a point where the transition is so fast that
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the tracking signal overshoots or oscillates. In the control
simulation experiment the values are assigned as follows:
h = 0.005, h0 = 0.1, i = 200.

2) DESIGN OF LINEAR EXTENDED STATE OBSERVER
Based on the TD, the LESO is introduced to enhance the
LADRC system. Consider a class of nonlinear time-varying
systems with singular input-single output:

v(n) (t) = f
(
v(n−1) (t) , · · · , v (t) ,w (t)

)
+ bu (18)

where u and v are the input and output of the controlled
object system, respectively, b is the control gain coef-
ficient, and w(t) is the external disturbance, v(n) (t) =

f
(
v(n−1) (t) , · · · , v (t) ,w (t)

)
indicates that the controlled

object is dynamic, which can be linear time-varying system,
and can be represented by f , where let v(k) = pk+1, k =

1, 2, . . . , n − 1, and let pn+1 = f . Therefore, the dynamic
characteristics of the system can be articulated as follows:

ṗ1 = p2,
...

ṗn−1 = pn,
ṗn = pn+1 + bu,
v = p1,

(19)

where pn+1 is the extended state, which provides an accurate
estimate of the internal state of the system by observing all
the state-changing effects of the system except for the control
inputs. The LESO is constructed according to (19).

˙̂s1 = ŝ2 + l1(p1 − ŝ1),
...
˙̂sn−1 = ŝn + ln−1(p1 − ŝ1),
˙̂sn = ŝn+1 + ln(p1 − ŝ1) + bu,
˙̂sn+1 = ln+1(p1 − ŝ1),

(20)

where Ŝ =
[
ŝ1 ŝ2 · · · ŝn+1

]T
∈ Rn+1, li, i = 1, 2, . . . , n +

1 is the gain parameters of the LESO, which exhibits
minimal dependence on the system model. Instead, it is
primarily associated with the order of the controlled object.
Consequently, the dynamic height channel of the quadrotor
load UAV can be derived from equation (15).

ṗ1 = p2
ṗ2 = u(cos ξ cos δ)/(M + m) + f0
f0 = −Kf ż/(M + m) − g
y = p1

(21)

where P = [p1, p2]T is a measurable state of a second-order
system, u is the system input, and f is the state in the formula
other than the system input, called the total disturbance of the
LADRC system.

Define s1 = p, s2 = p̂, and s3 = f as representations
of LESO. For the second-order controlled object, in order to
accurately estimate the two state variables and the disturbance

signal of the system, it is necessary to select a higher
bandwidth than the order of the controlled object. Therefore,
a third-order observer is designed, where S =

[
s1 s2 s3

]T ,
the nonlinear system is derived according to equation (20).{

Ṡ = AS + Bu+ Eh
V = CS

(22)

where A =

 0 1 0
0 0 1
0 0 0

, B =
[
0 b 0

]T ,
E =

[
0 0 1

]T , C =
[
1 0 0

]
.

The LESO is{
˙̂p = Ap̂+ Bu+ L(v− v̂),
v̂ = Cp̂,

(23)

where L =
[
l1 l2 l3

]T is the vector of LESO gain in a linear
active disturbance rejection controller.

3) DESIGN OF THE LINEAR CONTROL RATE
Based on the TD and LESO methods, the control rates
can be designed according to the system’s requirements and
performance standards as follows:

u = (u0 − ŝ3)/b0, (24)

where u is the output of the PD controller, b0 is the controller
constant, its function is to compensate for the static error in
the system.

u0 = kp
(
r − ŝ1

)
+ kd

(
ṙ − ŝ2

)
(25)

where r represents the input signal, kp denotes the propor-
tional coefficient of the LADRC controller, and kd is the
differential coefficient.

4) PARAMETER TUNING
Building upon the foundations of the LESO and PD
controller, this paper introduces a bandwidth reference [31] to
optimize the LADRC system. This approach not only ensures
system stability but also diminishes the number of parameters
within the control system. The bandwidth method is serves to
allocate the pole of the characteristic equation. By positioning
the pole of the control loop is located in the left half-plane,
the system maintains continual stability.

[sa − (−w)]n = sn+1
a + wα1sna + · · · + wnαnsa + wn+1αn+1,

(26)

where [
l1 l2 · · · ln+1

]
=
[
wα1 w2α2 · · · wn+1αn+1,

]
(27)

where w > 0, and αi, i = 1, 2 · · · , n + 1 is the coefficients
of the characteristic polynomial.
L =

[
3wo 3w2

o w
3
o
]
can be obtained from (22), (26),

where wo is the bandwidth of LESO.
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kp = w2
c ,kd = 2wc can be obtained from (25), (26), where

wc is the bandwidth of the PD controller.
(1) Controller parameters wc
The approximate closed-loop transfer function of the

controller system of equation (25) can be obtained as

Ĝcl (s) =
w2
c

(s+ wc)2
. (28)

Formula (28) corresponds to the unit step signal

Y (s) =
w2
c

(s+ wc)2
1
s

=
1
s

−
1

s+ wc
−

wc
(s+ wc)2

. (29)

The inverse Laplace transform of the formula (29) is
obtained

y (t) = 1 − (1 + wcts) e−wct , (30)

As illustrated by the aforementioned formula, y (t) esca-
lates monotonically without any overshoot. It is apparent that
the adjustment time ts is predominantly influenced by the
parameter wc. Consequently, the crucial task in tuning the
bandwidth of the PD controller lies in selecting an appropriate
value for wc to achieve a satisfactory adjustment time for the
system.

|y (ts − y (∞))| = (1 + wcts) e−wcts ≤ 1%, (31)

The adjustment time ts can be obtained by solving the
following transcendental equation

(1 + wcts) e−wcts = 1%, (32)

It is obtained by numerical method{
ts = 4.74

/
wc, 1 = 2,

ts = 5.83
/
wc, 1 = 5.

(33)

Select 1 = 2 and keep a certain margin, which can be
made in the actual design.

Choose an appropriate adjustment time ts while retaining
a certain margin, thereby facilitating the actual design of the
following relationship:

ts =
(8 − 10)
wc

. (34)

In the PD controller, the bandwidth wc of the PD controller
can be obtained through the calculation of the formula (34).
The gain of the noise transfer function increases with the
increase of the high-frequency band as the bandwidth wc.
Therefore, it is necessary to balance the system’s noise
immunity and response time when choosing wc.

(2) LESO parameters wo
In the LESO system, the gain wo serves a critical role

in shaping the system’s performance. As illustrated in the
referenced [32] article, it is directly proportional to the
control gain, represented by the equation wo = cwc.
In essence, elevating the observer gain can diminish the
system’s overshoot. However, this action also results in
a slower system response. Moreover, adjusting this gain

FIGURE 4. Structure diagram of fuzzy control.

noticeably enhances the system’s sensitivity to its parameter
settings. Consequently, the constant c is typically adjusted
within the range of 5 to 10,

wo = (5 − 10)wc. (35)

(3) Control quantity coefficient b0
Selecting an optimal value for b0 facilitates achieving a

desired steady-state output devoid of disturbances. As illus-
trated in equation (15), the optimal selection for the compen-
sation gain can be expressed as b0 = (cos ξ cos δ)/ (M + m).
However, due to the strong coupling characteristics of the
quadrotor load UAV, the value of b0 changes in real-time.
Therefore, the design value of b0 is as follows:{
z̈ = b0u+ f ,
f = [cos ξ cos δ/(M + m) − b0]u− Kf ż/(M + m) − g.

(36)

According to cos ξ cos δ/ (M + m) ≤ cos ξ cos δ/M ≤

1/M , let

b0 = 1/M (37)

B. DESIGN OF THE FUZZY ADAPTIVE CONTROL
Quadrotor load UAVs, when executing missions, frequently
adjust to varying loads, causing their mathematical models
to change often. Relying on fixed controller parameters
in such dynamic environments is not always optimal.
To address this, this paper integrates fuzzy control technology
into the LADRC control system. This fuzzy controller
transitions continuous values into fuzzy values, processed
via a set of predefined fuzzy rules. Afterward, these fuzzy
values undergo defuzzification, transforming them back into
continuous control signals. Working alongside the LADRC
controller, the parameters are dynamically tailored using
fuzzy logic. As the quadrotor manages different loads, the
system experiences these variations as internal disturbances.
The crux of fuzzy adaptive control lies in discerning the fuzzy
relationship among the PD controller’s bandwidth wc, error
e, and error rate ec. By doing so, the control parameters can
be dynamically adjusted. In the reference [33], should the
system encounter external interferences, the fuzzy controller
steps in, generating suitable control signals that promptly
counteract these interferences, ensuring system stability. This
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approach offers the dual advantage of rapid target tracking
and diminished noise in the LESO post stabilization. In real-
world application, the fuzzy controller employs the sensitive
triangular membership function to monitor e and ec in real-
time. This allows for the dynamic adjustment of wc based
on fuzzy control rules, enhancing the system’s adaptability.
To provide a visual understanding, the Z-axis channel’s fuzzy
adaptive controller structure is depicted in Fig. 4.
Seven fuzzy sets have been designed for the input x1 and

x2 of the fuzzy system, that is, if n = 2, i = 1, 2, p1 = p2 = 7,
then there are p1 × p2 = 49 fuzzy rules. The fuzzy system is
constructed in the following two steps.

Step 1: For variable xi (i = 1, 2), define pi fuzzy sets
Alii (li = 1, 2, · · · 7).

Step 2:
n∏
i=1

pi = p1 × p2 = 49 fuzzy rules are used to

construct the fuzzy system, then the fuzzy rule j is

R(j)
: IF x1 is A

l1
1 and x2 is A

l2
1 THEN f̂ is Bl1l2 , (38)

where li = 1, 2, · · · , 7, i = 1, 2, j = 1, 2, · · · 49, Bl1l2 is the
fuzzy set of the conclusion. Fuzzy rules 1 and 49 are denoted
as

R(1)
: IF x1 is A11 and x2 is A

1
2 THEN f̂ is B1,

...

R(49)
: IF x1 is A71 and x2 is A

7
2 THEN f̂ is B49. (39)

The fuzzy reasoning process adopts the following four steps:
(1) The product inference machine is utilized to carry out

the premise inference of the rule, yielding the inference result
2∏
i=1

µ
A
li
i
(xi).

(2) The single-value fuzzer is employed to find ȳl1l2f , which
represents the function value f (x1, x2) corresponding to the
maximum value (1.0) of the membership function at the
horizontal coordinates (x1, x2).
(3) The product inference machine is used to realize

the principle of rule premise and rule conclusion, and the

inference result is ȳl1l2f

(
2∏
i=1

µ
A
li
i
(xi)

)
; When all the fuzzy

rules are combined, the output of the fuzzy system is
7∑

l1=1

7∑
l2=1

ȳl1l2f

(
2∏
i=1

µ
A
li
i
(xi)

)
.

(4) Utilizing the average defuzzer, the fuzzy system yields
the following output:

f̂ (x) =

7∑
l1=1

7∑
l2=1

ȳl1l2f

(
2∏
i=1

µ
A
li
i
(xi)

)
7∑

l1=1

7∑
l2=1

(
2∏
i=1

µ
A
li
i
(xi)

) , (40)

where µ
A
li
i
(xi) represents the membership function of xi.

Let ȳl1l2f be a free parameter, placed in the set θ ∈ R(49).
By incorporating the fuzzy basis vector β (x), equation 40

TABLE 2. Units for magnetic properties.

transforms as follows:

f̂ (x) = θ̂Tβ (x) , (41)

where β (x) is the base vector of a
n∏
i=1

pi = p1 × p2 = 49

dimensional fuzzy vector, whose l1 l2 element is

β (x) =

2∏
i=1

µ
A
li
i
(xi)

7∑
l1=1

7∑
l2=1

(
2∏
i=1

µ
A
li
i
(xi)

) . (42)

To quickly track the value of the objective function
and maintain sensitivity to minute errors, the parameters’
characteristics define their range of variation. This range
serves as the basic discourse domain for the fuzzy set
represented by e, ė, 1wc = (−4, −3, −2, −1, 0, 1, 2, 3, 4).
The fuzzy control’s input and output both consist of seven
linguistic variables, namely: Negative Large (NB), Negative
Medium (NM), Negative Small (NS), Zero (ZO), Positive
Small (PS), Positive Medium (PM), and Positive Large (PB).
The fuzzy rules for wc are detailed in Table 2.

Firstly, the appropriate system parameter ŵc is found
according to equation (31), then fuzzy rules are formulated
according to parameter characteristics, and finally, the revised
value 1wc is obtained by the weighted average method, such
that wc = ŵc + 1wc.

C. DESIGN OF THE KALMAN FILTER
According to formula (21), discretizing the linear system
results in the following formula,{

p(k) = Ap(k−1) + B(u(k−1) + w(k)),
yv(k) = Cp(k) + v(k),

(43)

where p(k−1) represents the system state vector, u(k−1)
denotes the input control vector, w(k) indicates the process
noise and v(k) is the measurement noise, A is the state
transition matrix, which describes how to predict the state at
time k from the state at time k − 1, B is the control matrix,
which describes how the control input u(k) and process noise
w(k) affect the state of the system, and C is the output matrix,
which describes how the state of the system is transformed
into the observed output.

The combination of LESO and Kalman filter is shown in
Fig. 5.
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FIGURE 5. Structure diagram of Kalman fuzzy adaptive linear active
disturbance rejection control.

The LESO employs a Kalman filter to enhance its
estimation capabilities. By comparing the measured values
with the predicted values from the model, the Kalman
filter refines the system state estimation, thereby improving
measurement accuracy. LESO, serving as a disturbance
observer, diligently assesses and counterbalances the sys-
tem’s unknown disturbances, ensuring formidable resistance
against such unforeseen perturbations. While a heightened
observation gain, wo, is beneficial for disturbance suppres-
sion, it can inadvertently influence the bandwidth in channels
susceptible to noise. To balance the dual challenges of
reducing disturbance and managing noise, the Kalman filter
steps in. It amplifies the bandwidth, thereby elevating both
the system’s response agility and its suppression prowess.
The Kalman filter, beyond its bandwidth enhancement role,
offers a superior starting point for LESO’s state estimations,
rooted in both the model and measurements. Concurrently,
it effectively reduces measurement noise, fortifying the
overall robustness and stability of the control framework.

In the realm of Kalman filtering, integrating LESO
reduces the reliance on pinpoint accurate mathematical
models. Within the LADRC framework, LESO is tasked
with gauging and counterbalancing the system’s internal
disturbances. It primarily considers the compensation gain
and the input data of the entity being controlled. Notably,
LESO’s cumulative disturbance is akin to the process noise,
w(k), in the Kalman filter. Even when confronted with
shifting system dynamics or incomplete models, LESO
stands resilient, adeptly offsetting unmodeled disturbances
and errors. This finesse streamlines the Kalman filter’s
operational model, circumventing undue intricacies. Under
the LADRC umbrella, the Kalman filter’s principal role
pivots around rectifying biases in LESO’s estimates and
compensations. This refines the system’s state estimations,
ensuring they remain both precise and robust. Consequently,
it further diminishes the necessity for impeccably accurate
mathematical models.

The Kalman filter can be divided into two processes:
Prediction and correction. The prediction is to establish a
prior estimate of the current state using the time update
equation, and to construct a prior estimate of the next state
according to the previous calculation. The correction is to
establish an improved posterior estimate of the current state
on the basis of the prior estimate, and uses the current

measurement variable to obtain the optimal estimate using
the measurement update equation. This iterative process
is known as the estimation-correction process, and the
corresponding estimation algorithm is called the prediction-
correction algorithm. Within the recursive Kalman filter
design, the notation ¯ represents the prior estimate, whilê
represents the optimal estimate. The recursive Kalman filter
design is as follows:

Kalman filters use previous state estimates and covariance
matrices to make predictions about the output data,

p̂−

(k) = Fp̂(k−1) + GÛ(k−1), (44)

The error variance is predicted from the dynamic model of
the system and previous state estimates

E−

(k) = FE(k−1)FT + Q, (45)

The Kalman gain is calculated by comparing the prediction
error variance with the observed noise

Nm(k) = E−

(k)H
T
(
HE−

(k)H
T

+ R
)−1

, (46)

By using the predicted state andmeasured data, the optimal
estimation of system state output is obtained by Kalman gain
weighting

p̂(k) = p̂−

(k) + Nm(k)

(
Wv(k) − Hp̂−

(k)

)
, (47)

By calculating the Kalman gain, the filter can modify the
error variance of the previous state estimation to improve the
accuracy of the estimation

E(k) =
(
I − Nm(k)H

)
E−

(k) , (48)

where F is the n × n state change matrix acting on p̂(k−1),
G is the n × n state change matrix acting on Û(k−1), H
is m × n observation model matrix, namely, measurement
system coefficient matrix, E−

(k) is the n × n prior estimation
error covariance matrix, E(k) is the n× n posterior estimation
error covariance matrix, Nm is a matrix of order n×m, which
is called Kalman gain, Q is n × n process noise covariance
matrix, R ism×m process noise covariance matrix, I is n×n
identity matrix.

The Kalman filter plays an important role in predicting and
estimating the state of the system. Q and R as parameters
in the Kalman filter, have a significant impact on the
performance and reliability of the system. Q represents the
variance of the system noise. A smaller value of Q results
in easier system convergence and higher confidence in the
model prediction. However, if the internal disturbance of the
LADRC becomes too large, it may exceed the range of the Q
value, causing the system to deviate from the desired tracking
input signal. On the other hand, R represents the variance
of the measurement noise. A larger value of R decreases
confidence in newly measured values, while a smaller value
of R can speed up system convergence but may introduce
system oscillations. In order to solve these problems and
optimize the performance of the Kalman filter, the internal
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TABLE 3. Units for magnetic properties.

parameters of the Kalman filter are designed based on the
maximum tracking error of total disturbance compensation.

When the controlled object experiences internal distur-
bances, a maximum tracking error of 0.01 (representing
the quadrotor UAV’s heaviest load) is classified as internal
noise. However, this only accounts for the system’s internal
disturbances. The system model may still be vulnerable
to other uncertainties like unmodeled dynamics or white
noise. Given this, there’s a need to raise the value of Q,
which is ultimately set at 0.03. In the conducted experi-
ments, once tracking stabilized, a deviation approximating
0.03 in Gaussian white noise emerged. This deviation offers
a foundational estimate for R: calculating 0.032 yields
0.0009. But, to cater to system robustness and account
for potential unforeseen disturbances, a larger R-value is
typically preferred. Based on simulations and real-world
testing, an R-value range of 0.0005 to 0.0015 is advised.
The optimal R value for system performance, pinpointed
through this process, is 0.001. Thus, the parameters are set:
Q = 0.03 and R = 0.001. Implementing these optimized
values enhances the system’s tracking precision, ensuring
optimal performance even amidst varying interferences.

IV. SIMULATION RESULTS AND DISCUSSIONS
In this part, this paper will use MATLAB/SIMULINK for the
simulation test of the system, where the initial value of the
attitude angle is (0, 0, 0), the initial value of the height is 0m,
and the parameters of the quadrotor load UAV are shown in
Table. 1. According to (34), (35), (37), the parameters of the
controller can be obtained, as shown in Table. 3.

A. EXAMPLE 1: TRACKING STEP SIGNAL
In the wake of increasingly frequent natural calamities,
such as earthquakes and wildfires, there’s an undeniable
emphasis on elevating the speed and efficacy of rescue
operations. Consequently, the ability of quadrotor load UAVs
to swiftly track set values during high-speed flights becomes
a pivotal factor in rescue outcomes. To validate the alacrity
of our control approach, experimental simulations were
conducted. For these tests, the weight of the unloaded
quadrotor UAV was standardized at 10 kg. Various control
methods were compared for efficacy, namely PID control,
WB-LADRC, LADRC, and FA-LADRC. The system’s input
signal parameters were set as follows: ξ = 0.5, δ = 0.5,
η = 0.5, and Z = 5. Fig. 6 graphically represents the tracking
trajectories for system altitude, as well as for the roll, pitch,
and yaw angles. Complementing this, Fig. 7 visualizes the
error trajectories for each of these channels. The comparative
insights drawn from these figures illuminate the advantages

TABLE 4. Time required to track setpoints (t/s).

and potential shortcomings of each control methodology,
offering a clear roadmap for optimization.

In the data outlined in Table 4, a comparative analysis
reveals distinct performancemetrics for each control strategy:

• The PID control, while managing to stabilize the yaw
angle within 1.2 seconds, failed to achieve similar results
for other channels within this time frame.

• WB-LADRC exhibits minimal overshoot, yet it
demands approximately 0.6 seconds to stabilize its
tracking – a duration that could be deemed suboptimal
in critical scenarios.

• LADRC showcases a notable performance, settling
into a steady state in about 0.4 seconds without any
overshoot, marking it as a favorable approach in quick
stabilization contexts.

• The FA-LADRC that stands out remarkably. It takes a
mere 0.3 seconds to achieve stable tracking, outperform-
ing all other tested methods both in terms of rapidity and
stability.

This analysis underscores the superiority of FA-LADRC in
scenarios demanding quick and stable responses, making it a
top contender for applications where time is of the essence.

Through the analysis of the tracking error e, it is evident
that both PID and WB-LADRC exhibit sluggishness in
achieving stable tracking due to overshoot. In contrast,
the LADRC and FA-LADRC approaches, employing the
bandwidth method, effectively track the input signals without
encountering overshoot in both the altitude and attitude
channels. Furthermore, these channels demonstrate that
FA-LADRC yields superior performance with smaller errors
compared to other control methods. These findings under-
score the ability of FA-LADRC to more rapidly and reliably
bring the system to the desired set value.

The simulation results show that FA-LADRC is superior
to other controls. FA-LADRC has the advantages of no
overshoot and faster response speed, and can track input sig-
nals quickly and stably. Absolutely, the empirical outcomes
solidify the proficiency of the FA-LADRC control technique
presented in this study. Its capability to swiftly and accurately
navigate to a designated point underscores its potential in
scenarios like reconnaissance or expedited delivery of critical
supplies. This emphasizes its importance in time-sensitive
situations, particularly in emergency or disaster response
contexts.

B. EXAMPLE 2: TRACKING TRIANGLE WAVE SIGNAL
The utilization of the triangular wave signal as the input
signal in this experiment phase offers a dynamic and more
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FIGURE 6. The results of tracking step signal.

FIGURE 7. Comparison of error e in tracking step signal experiment.

complex test scenario, mirroring real-world fluctuations and
unpredictabilities that a quadrotor loadUAVmight encounter,
especially during high-stress situations like earthquake relief.
The altitude channel, reflecting the UAV’s vertical move-
ment, serves as an indicator of its ability to ascend or descend
smoothly, which is crucial when navigating through uneven
terrains or obstacles typically found in disaster-stricken areas.
The rolling channel’s lateral movement performance provides
insights into the UAV’s potential to sidestep obstructions
or change direction promptly. Similarly, the pitch chan-
nel’s forward movement, while simultaneously climbing or
descending, tests the UAV’s dexterity in potentially tight

spaces. Finally, the yaw angle channel’s tracking of theUAV’s
heading rotation measures its ability to efficiently reorient
its direction – an essential feature during surveys or search
and rescue operations. The comparative tracking simulation
results displayed in Fig. 8 between PID control, WB-
LADRC, LADRC, and FA-LADRC provide a comprehensive
insight into each control strategy’s performance under these
demanding and varied conditions. The ultimate goal is to
discern which method offers the best combination of agility
and stability, making it the most suitable for real-world
earthquake relief missions.

From the simulation results shown in Fig. 8, it is observed
that the PID control exhibits poor tracking performance in
the altitude channel and attitude angle channel. The input
signal is not reliably tracked before descending, indicating
instability in the control scheme. On the other hand, WB-
LADRC, LADRC, and FA-LADRC exhibit a slight delay
of 0.1 seconds in tracking the triangular wave, but they
demonstrate effective tracking and rapid convergence to
the set point with each change in the triangular wave.
In these channels, LADRC and FA-LADRC outperformWB-
LADRC in terms of responsiveness, without experiencing
any overshoot. Particularly in the altitude channel, FA-
LADRC remains stable even when the quadrotor UAV
undergoes changes in its motion state, resulting in superior
control performance.

In summary, the results in Fig. 8 demonstrate that the
FA-LADRC control method has a better tracking effect on
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FIGURE 8. The results of tracking triangle wave signal.

FIGURE 9. Load variation of a quadrotor load UAV.

triangular waves than other control methods, so the FA-
LADRC control scheme is also effective for time-varying
signals (such as triangular wave signals).

C. EXAMPLE 3: LOAD CHANGE
In disaster relief efforts following earthquakes, quadrotor
load UAVs serve a dual purpose. They swiftly scout and
evaluate the affected areas using high-definition cameras
and facilitate the delivery of vital supplies to regions
that are challenging to access. This study delves into
understanding the ramifications of changes in the load on
the quadrotor UAV. Fig. 9 graphically presents these load
dynamics: it starts unburdened, takes on a 5 kg load at
the 3-second mark, and sheds this weight at the 7-second
point. Notably, throughout this simulation, the UAV’s internal
system parameters remain constant, treating the fluctuating

weight as an external variable. For this experiment, three
control mechanisms–PID control, FA-LADRC, and KFFA-
LADRC–are benchmarked. Their performance outcomes are
captured in Fig. 10. Furthermore, given that load-induced
changes cause shifts in the kp and kd parameters of both
the FA-LADRC and KFFA-LADRC, we have spotlighted
the height and roll angle channels for a deeper dive. Their
simulated responses under these conditions are depicted in
Fig. 11 and Fig. 12, respectively.
Based on the results of Fig. 10, the following conclusions

can be drawn: The disturbance influence of KFFA-LADRC
is also less than that of FA-LADRC, and in the case that
both are adaptive tuning controllers, the output tracking of
the set value in FA-LADRC with the Kalman filter is more
stable, which can quickly return to the set value, thus making
the system more stable. In contrast, PID control is more
affected by internal disturbance changes, resulting in system
instability.

In FA-LADRC and KFFA-LADRC, due to the internal
disturbance caused by the change of load quality, the fuzzy
adaptive mechanism adjusts kp and kd parameters in real-time
according to the mutation of the controlled object tracking
input signal, so as to realize the stable and fast tracking
of the input signal of the system. KFFA-LADRC optimizes
the internal disturbance as the total disturbance to make the
controller more stable.

Through an examination of the simulation outcomes,
we can deduce that the adaptive design of FA-LADRC
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FIGURE 10. The result of load variation of a quadrotor Load UAV.

FIGURE 11. The result ofchange in Kp and Kd of Z-channel during load
changes.

is potent, curbing the impact of load mass variations
on a quadrotor bearing weight. Incorporating the Kalman
filter adds another layer of stability to the control system.
These findings not only lay a solid foundation for the
practical deployment of KFFA-LADRC but also underscore
its potential. They highlight that when the quadrotor load
UAV is in transit or executing material deliveries, it maintains
controlled stability, thereby amplifying the efficacy of rescue
operations.

D. EXAMPLE 4: DISTURBANCE EXPERIMENT
During emergency responses to natural disasters, the unpre-
dictable and intricate environmental conditions intensify
the stability and swift response requirements for rescue

FIGURE 12. The result ofchange in Kp and Kd of Roll-channel during load
changes.

equipment, with drones being particularly crucial. To emulate
the resilience of UAVs amidst such challenging scenarios,
our experiment integrates Gaussian white noise, representing
the stability control dynamics of quadrotor UAVs in severe
conditions.

This simulation acknowledges multiple internal distur-
bances potentially impacting a quadrotor UAV. These encom-
pass noise from the Inertial Measurement Unit (IMU),
disturbances linked to the motor, and propulsion systems.
Given this backdrop, we’ve chosen a Gaussian white noise
model characterized by a mean value of 0 and a standard
deviation of 0.03 to represent these internal disruptions.
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FIGURE 13. Experimental results of disturbance.

Springboarding from this noise model, we’ve conceptualized
two stringent environmental simulations:

(1) An examination of the quadrotor UAV’s behavior
during load fluctuations.

(2) A representation where the UAV encounters interfer-
ence from a vertically oriented sine-wave airflow, described
as dz = 2sin(t).

In our analysis, we’ve primarily zeroed in on the roll
angle channel, though similar patterns were observed in other
channels. We’ve implemented two control methodologies:
FA-LADRC and KFFA-LADRC. Fig. 13(a) and Fig. 13(c)
portray the variations in the controller parameter wc and
the system’s adeptness at aligning with preset values in the
inaugural simulation. In parallel, Fig. 13(b) and Fig. 13(d)
provide insights into the controller parameter shifts and the
system’s proficiency at honing in on setpoints within the latter
simulation framework.

To prove the effectiveness of KFFA-LADRC, through the
analysis of Fig. 13(a) and Fig. 13(b), it can be observed that
the parameter wc in the fuzzy adaptive controller is adjusted
in real time, it dynamically adjusts the controller parameters
according to the system state, and can eliminate the deviation
and improve the control accuracy. This shows that the
fuzzy adaptive controller is effective in the case of adding
white noise. Furthermore, upon comparing the simulation
results in Fig. 13(a) and Fig. 13(b), the FA-LADRC with
Kalman filter, in which the parameter wc of the controller
fluctuates less, thus making the controller more stable. This

shows that the control system with the Kalman filter is
effective.

From Fig. 13(c) and Fig. 13(d), it’s evident that the input
signal for fuzzy adaptive tracking is more diminutive than that
of the LADRC. Furthermore, the integration of the Kalman
filter considerably diminishes the error in the tracking input
signal. This ensures enhanced system stability across diverse
environments.

From the aforementioned simulation results, it’s clear
that the KFFA-LADRC control method is highly effective.
This approach not only bolsters the system’s resistance to
interference but also enhances the stability of the fuzzy
adaptive controller. The experiment underscores the pivotal
role of the control method for quadrotor load UAVs in
disaster relief efforts. Thanks to its superior maneuverability
and resilience to interference, it furnishes rescue teams with
invaluable real-time intelligence in a range of sudden and
unpredictable scenarios. This, in turn, amplifies the efficacy
and safety of rescue missions.

V. CONCLUSION
This research study focuses on addressing the issue of load
variation in quadrotor load UAVs. A dynamic model is
established, and a control method based on KFFA-LADRC
is proposed to tackle this problem. The integration of
fuzzy adaptive control into the system enhances the
response speed and reduces the tracking time for setpoint
values. Additionally, the inclusion of the Kalman filter
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in combination with LADRC helps mitigate interference
effects on the quadrotor load UAV, thereby improving con-
troller accuracy and reducing reliance on the mathematical
model.

The experimental results highlight the significant perfor-
mance improvements achieved by the KFFA-LADRC in
terms of setpoint tracking and anti-jamming capability for
the quadrotor load UAV. The method enhances stability
control performance, leading to advancements in application
levels, safety, and economic benefits. Particularly, these
enhancements are valuable for critical applications such as
earthquake relief material transportation and operations in
challenging environments.

In future studies, our focus will be on exploring the
practical feasibility of the proposed control scheme and
refining it based on the insights gained from experimental
results. Additionally, we will investigate the impact of
ceiling effects and ground effects on loaded quadrotor
drones. We plan to explore the utilization of neural network
fuzzy adaptive control methods to optimize controller
parameters, aiming to achieve faster and more stable
tracking effects. The ultimate objective is to identify the
optimal control scheme that enhances robustness and overall
performance.

The outcomes of this research possess significant sci-
entific value and demonstrate promising prospects for
practical applications. By effectively solving the control
challenges of quadrotor load UAVs, this study provides
strong support for the utilization of such UAVs in dis-
aster relief operations and demanding environments. The
findings of this paper contribute to advancing the field
of stability control in quadrotor load UAVs, enabling
stable control of these quadrotor UAVs even in critical
situations.
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