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ABSTRACT Retinal fundus images contain highly informative geometrical features for detecting diabetic
retinopathy (DR), including vessels, especially thin and low-contrast vessels, which are predominant features
for accurately diagnosing diabetic retinopathy. Automatic segmentation methods have been developed based
on deep convolutional neural networks to replace manual labeling. These methods have shown acceptable
performance in fundus vessel segmentation. The UNet model is a well-known architecture of deep neural
networks often used for vessel segmentation tasks and has achieved significant performance. However, seg-
mentation tasks remain challenging due to multiple convolutions, down-sampling operations, and inadequate
feature fusion in the encoder-decoder architecture. Also, traditional convolution increases the number of
multiplications while performing convolution operations. These challenges lead to the loss of information
related to thin and low-contrast vessels, eventually affecting the segmentation performance. To tackle this
issue, we propose incorporating depthwise parallel attention in the existing UNet framework (DPA-UNet)
to achieve accurate vessel segmentation. This approach entails the integration of a depthwise convolution
block in the downsampling path and a parallel attention mechanism in the upsampling path of UNet. The
primary benefit of depthwise convolution and global information embedding (GIE) is the ability to capture
intricate information characteristics across channels. This helps to minimize the information degradation
caused by conventional convolution and downsampling techniques. A parallel attention network is proposed
in the upsampling path of the existing UNet to optimize the channel and spatial information acquired from the
encoder-decoder. Extensive experiments are conducted on three publicly available datasets, namely DRIVE,
STARE, and CHASE_DB1, to validate the performance of the proposed model. The findings indicate that
the UNET model with depthwise parallel attention achieved a competitive performance with fewer network
parameters in segmenting retinal vessels.

INDEX TERMS Diabetic retinopathy, vessel segmentation, depth-wise separable convolution, UNet,
attention mechanism, deep learning.

I. INTRODUCTION
Diabetes is a widespread disease worldwide caused by insulin
resistance or insufficient insulin production. Uncontrolled
continuing diabetes can cause damage to the retina. As the
disease progresses, the blood vessels inside the retina start
to bulge, leak, and close, eventually developing vessel-like
regions within the eye. The duration of diabetes will cause
risk factors for developing DR, and monitoring blood glucose
levels has a high impact on controlling the progression of
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DR [1]. Fundus imaging is a non-invasive popular imag-
ing modality for diagnosing diabetic retinopathy as well
as it is used in various security applications [2], [3], [4].
The segmentation of retinal blood vessels is a fundamen-
tal step in diagnosing DR. This process involves depicting
various morphological characteristics of the retinal blood
vessels, including bifurcation, branching points, length and
width of the segmented vascular tree. These features act
as a diagnostic source for identifying diabetic retinopathy.
An ophthalmologist can mark these retinal vessels to diag-
nose DR, but it is time-consuming, and we need a skilled
ophthalmologist. Automated systems have been developed
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to assist ophthalmologists in DR detection due to the surge
in diabetes cases and the lack of trained ophthalmologists.
The Uniqueness of each retinal vascular structure discloses
the significance of blood vessel segmentation [5]. Various
factors, including noise, low contrast, asymmetrical shape,
and multiscale properties of the vessels, may degrade the
vessel segmentation results. Therefore, it is necessary to have
a standard and automated segmentation of retinal vessels to
diagnose diabetic retinopathy. However, it is a continuing
challenge due to the following characteristics of retinal ves-
sels,

(1) Low resolution, high noise, and poor contrast of retinal
fundus images increase the complexity of the segmen-
tation task.

(2) The retinal image comprises bifurcations, branching
points, centreline reflex, and boundary points.

(3) The size and width of the vessels vary when they travel
radially outward from the optic disc; likewise, intensity
values differ significantly within the fundus image.

Diverse approaches have been proposed to address these
problems, which can be broadly categorized into traditional
and automated segmentation methodologies [6]. Traditional
segmentation methods can be subdivided into matched filter
[7], [8], [9] and morphology [10], [11], multiscale filtering
[12], [13], and kernel-based [14], [15] segmentation methods.
Matched filters perform feature extraction in retinal images
by rotating the kernel in different directions, dimensions,
and locations. These unsupervised methods require feature
extractors and depend on additional preprocessing tech-
niques. When the background of retinal images is even and
simple, these extractors can perform excellently. However,
retinal images have tremendous differences in illumination,
and contrast might result in poor performance.

The increased computing resources of computers have
encouraged the development of automatic retinal vessel
segmentation techniques. It can achieve better results than
unsupervised traditional segmentation techniques since they
use annotated images. Automated retinal vessel segmentation
techniques are supervised segmentation techniques that use
convolutional neural network (CNN) algorithms, and they
learn the features automatically. A vast number of methods
practice convolutional neural networks to segment retinal
vessels [16], [17], [18]. CNNs can be effective for retinal ves-
sel segmentation, but they also have potential drawbacks that
should be considered when designing a fundus retinal vessel
segmentation pipeline. A limited vessel dataset for training
the model can make it challenging to train the CNN. This
challenge can be overcome by utilizing UNet effectively [19].
Retinal fundus images often have considerable resolution,

contrast, and noise variability. The presence of variability
in images can challenge Convolutional Neural Networks
(CNNs) in accurately performing segmentation of regions
of interest across fundus images. Researchers have experi-
mented with CNN with cascaded convolutions [20], dilated
convolutions [21], and cascading models [22], [23]. The uti-

lization of dilated convolution presents certain advantages.
The network’s receptive field can be increased without an
increase in parameters by incorporating an increased dila-
tion rate. However, it aggregates the multiscale information
from different receptive fields instead of contextual infor-
mation. Contextual information regions exhibit a significant
relationship with vessel data, particularly for small vessels.
Dilated convolution is prone to overfitting when training the
network with a limited dataset. Depthwise convolution gives
an effective replacement for traditional convolution, it keeps
the intricate contextual details of vessels. The utilization
of the attention mechanism is a convincing computational
framework for preserving long-range contextual information.

This paper is organized into six sections: Section I covers
an introduction, Section II deals with a brief overview of the
recent methods in the literature, and Section III presents a
detailed description of the proposed work for segmentation
of retinal vessels based on DPA-UNet. Dataset details are
presented and discussed in Section IV. Section V covers
simulation Results. Finally, the discussion and conclusion are
presented in Sections VI and VII respectively.

II. RELATED WORKS
Previously, conventional image processing methods were
employed by researchers for the segmentation of retinal
vessels. These methods included thresholding segmentation
[24], [25] and specific morphological operations [26]. Subse-
quently, various learning-based methodologies incorporating
handcrafted features were employed to tackle this task [27].
Nonetheless, the scope of these handcrafted features was
insufficient to generalize the varied characteristics inherent in
complex fundus images, impeding their ability to accurately
depict such features. Consequently, these methodologies
were occasionally subject to erroneous interpretation, partic-
ularly in extreme cases such as low-contrast microvessels and
lesion areas. The use of DNNs-basedmethods shows superior
performance in handling complexity in fundus images as
it learns features directly from the training data [28], [29].
There are many methods available for diagnosing diabetic
retinopathy through retinal vessel segmentation [30].
Numerous studies have been conducted on retinal vessel

segmentation utilizing the UNet architecture. One of the main
challenges in diabetic retinopathy detection is segmenting
vessel information with a limited dataset. It was developed by
Olaf Ronneberger [19] and inspired by the performance of a
fully connected neural network [31]. The resolution of fundus
retinal images exhibits significant variability due to vessels
with varying widths, an optic disc [32], a bright retinal spot,
and the darkest region known as the macula. To address the
issue of significant scale variation, the authors have proposed
a three-part network to segment vessels. The vessel features
are identified using an enhanced encoder network with a
decoder network. The decoder network is a dual-decoder
network, effectively segmenting thick and thin vessels. Seg-
mentation output was produced by adaptive feature fusion,
which helps to tackle the multiscale information [33].
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The segmentation task is challenging since the diame-
ter of the retinal vessel is approximately two pixels wide.
To address this issue, a Gaussian filter is implemented to
amplify low-contrast vessels. The filter is utilized as an input
to the multipath convolutional neural network to extract low
and high-contrast vessels separately. The downsampling and
upsampling pathways are used to extract the low-frequency
vessel map. The regions responsible for coding and decoding
facilitate the extraction of a segmentation map with high-
frequency components. The dilated convolution is employed
to extract high-frequency vessel maps, while the fusion net-
work facilitates the acquisition of the ultimate segmentation
map for vessels [34]. The Weighted UNet and Residual UNet
architectures are employed in a cascaded manner to process
globally enhanced and locally enhanced patches effectively.
The weighted UNet model receives locally enhanced patches
as input and generates a coarse segmentation output. The
Residual UNet model utilizes locally enhanced patches and
the coarse segmentation output generated by the same model
as its input, and subsequently generates the segmentation
output [35].

The authors Wei et al. [36] introduced an enhanced version
of the UNet architecture that utilizes a genetic algorithm to
decrease the computational complexity of the model. In con-
trast to concatenation employed in the upsampling pathway of
UNet, elementwise addition is employed; it requires a lower
computation. The process of concatenation results in the
production of feature maps of greater size, thereby increasing
the computational complexity involved. The authors have
achieved significant reductions in computational complex-
ity and parameters. Jin et al. [37] introduced an integrated
deep-learning architecture in response to the scale changes
observed in retinal fundus photographs and geometrical shape
changes. A novel architecture was proposed by integrating
UNet and Deformable-ConvNet. The deformable convolu-
tion has replaced the conventional convolution layer in the
standard UNet architecture. This enhancement resulted in an
improved ability to capture the variable shape and scale of the
vessel.

According to Lv et al. [38], the accuracy of retinal vessel
segmentation plays a crucial role in the diagnosis of diabetes
and diabetic retinopathy. The technique of atrous convolu-
tion and attention modules is employed to segregate vessel
and nonvessel components. The attention module employs a
circular bounding box to estimate the maximum anticipated
area of retinal vessels. Further the attention module facilitates
the acquisition of circular bounding box coordinates by the
network. The authors Wang et al. [39] presented an algorithm
for vessel segmentation that uses aUNet architecture as a base
network, with a focus on capturing the intricatemicrovascular
features of vessels. The UNet architecture was enhanced
by incorporating residual blocks and dilated convolutions.
The upsampling process in UNet employs bilinear interpola-
tion and transpose convolution techniques to perform weight
updates.

Segmenting vessels from fundus images can be challeng-
ing due to low contrast, uneven background, and complex
structural information. To address this issue, Luo et al. [40]
proposed an improved UNet that includes a densely con-
nected network and attention mechanism. The addition of a
dense network in the encoder-decoder framework maximizes
the utilization of network features. Moreover, the attention
mechanism helps to identify vessel structures amidst uneven
background and other abnormalities. However, their method
still struggles with segmenting retinal vessels from unsmooth
edges in the fundus image background.

Thin vessels have low segmentation accuracy due to imbal-
ance with thick vessels, which dominate pixel-wise loss.
Learning discriminative features can separate thick and thin
vessels during segmentation, reducing the negative effects of
their imbalanced ratio [41].

Many deep convolutional neural network methods have
limited ability to capture global context information of larger
regions due to their small receptive fields. Jiang et al. [42]
suggested using parallel convolution layers with various dila-
tion rates to enhance the model’s ability to gather dense
feature information and accurately capture retinal vessel
information of different sizes.

Currently, the designs of deep networksmostly concentrate
on vessels that are easy to segment. However, they tend to
ignore vessels that are more challenging to segment, like thin
vessels or those with unclear boundaries. Wang et al. [43]
introduced a shallow UNet with three decoders. There is one
decoder that is utilized to identify regions that are easy or
difficult to segment, while the other two are responsible for
segmenting the vessels.

Many current retinal vessel segmentation models in
deep learning treat each pixel equally. However, the
multi-scale vessel structure is a crucial factor that signifi-
cantly impacts the segmentation results, especially in thin
vessels. A New attention block models global dependen-
cies and minimizes inconsistencies by considering pixel
correlations [44].
Motivated by the existing methods, depthwise parallel

attention UNet is proposed as illustrated in Fig. 1 to automat-
ically segment retinal vessels. Experiments on well-known
public datasets resulted a good performance among existing
methods. This paper presents a lightweight retinal vessel
segmentation model based on a deep neural network. The
main contributions of our work are as follows,

1. In order to address the issue of information loss result-
ing from the implementation of multiple convolutions
and downsampling operations, our proposed method
involves the use of a depthwise convolution instead of
a traditional convolution in the downsampling path of
the UNet model.

2. To capture the intricate informations from multiple
channels we have used Global Information Embedding
Block(GIE) in the Downsampling layer of the UNet.
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FIGURE 1. Overview of the proposed DPA-UNet.

FIGURE 2. Proposed depthwise parallel attention UNet.

3. To effectively fuse the features from the encoder and
decoder blocks, a parallel attention mechanism is pro-
posed to efficiently utilize the channel and spatial
information.

In summary, deep learning methods can work with limited
ground truth. Hence it is difficult to get ground truth images
for medical images. Themain challenge in working with deep
learning models is making a more efficient and lightweight
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FIGURE 3. Depthwise convolution block (DCB).

network. Therefore, we propose DPA-UNet to segment reti-
nal vessels efficiently with fewer network parameters.

III. PROPOSED METHODOLOGY
This section explains the channel and spatial attention UNet
designed to segment the retinal vessels efficiently.We present
the proposed architecture design and a detailed explanation of
each block.

A. WORK FLOW OF THE PROPOSED DPA-UNet
We utilize UNet as a backbone network, a depthwise con-
volution block, GIE block, and a parallel attention block
integrated into UNet to increase the segmentation perfor-
mance of the model. Depth-wise convolution block in the
proposed model performs convolution, which applies a sin-
gle filter to each input image channel, resulting in a set of
output features. This operation reduces the number multi-
plications needed for the convolutional layers and increases
the computation efficiency of the model. A parallel atten-
tion block considers channel and spatial relationships so that
long-rang dependencies could benefit the understanding of
thin and low-contrast vessels. The overall architectural design
is shown in Fig.1.

B. BASE NETWORK
The rich representation capabilities of many well-designed
deep neural networks show excellent performance in seman-
tic segmentation tasks. One such architecture is a fully
convolutional neural network (FCN) [31], features are per-

FIGURE 4. Modified downsampling block.

ceived using an encoder and decoder structure and a fully
convolution classification. Aggregating low-level features
into high-level features using skip connections is an added
contribution to semantic segmentation to recover the reduced
details. Inspired by skip connection and FCN, UNet architec-
ture is developed which modifies and extends the structure of
FCN with a U-shaped encoder-decoder architecture. UNet is
a well-known deep-learning architecture for medical image
segmentation, especially for retinal vessel segmentation.
Many variants of UNet architectures have been explored by
the researchers. A typical UNet has a 3 × 3 convolution,
which limits the feature representation ability. Traditional
convolution increases the parameters, forcing the network to
memorize rather than learning. It leads to overfitting. To over-
come this, we propose an enhanced base network composed
of three key blocks: a depth Convolution Block (DCB) with
a Global Information Embedding (GIE) block and a parallel
Attention Block (PAB).

1) DCB BLOCK
Traditional convolution increases the parameters and shrinks
the spatial dimension of the input image. Minimizing the
number of parameters can effectively mitigate the complexity
of the network. Protecting the spatial extent of the image also
plays a vital role in information loss, which is important to
effectively segment the features with different sizes. Moti-
vated by [45] traditional convolution layer is replaced with
depth wise convolution in base network. A DCB block is
proposed in UNet to build an efficient base network shown
in Fig.3.

A depthwise convolution preserves the spatial dimension
and channel dimension of the image with a smaller network
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FIGURE 5. Parallel attention block.

TABLE 1. Dataset description.

complexity. The convolution output without any loss in the
channel and spatial dimension is given to the upsampling
path in the UNet since feature representation in the upsam-
pling path is vital in the segmentation output. Applying a
typical 3 × 3 convolution filter to each channel of the input
image could reduce the complexity of the network compared
to standard convolution. Each layer in the UNet has two
convolutional layers with a kernel size of 3 × 3 that are
applied to each channel of the input image and cascaded
together to obtain the output feature map without losing any
channel or spatial dimension. After performing convolution
in each channel separately, those features are concatenated,
and 1×1 kernel is applied across all channels simultaneously
to capture the complex relationship between thin and low
contrast vessels mentioned in (1). It could help to increase the
feature representation capability of themodel with the limited
dataset.

Odepth_conv = I (A,B,C)Conv1×1 (1)

2) MODIFIED DOWNSAMPLING (GIE) BLOCK
To explicitly model the interdependencies between the chan-
nels of the convolution features, we embed the GIE block
inspired by the squeeze and eexcitation [46] block after con-
volution, which showed promising pperformance inmodeling
interdependencies between the channels as shown in Fig.4.
Feature recalibration is performed to selectively emphasize
the features, allowing the network to learn and utilize the
global information. The re-calibrated feature is next exposed
to a squeeze operation, which combines the feature maps
across spatial dimensions to generate a channel descriptor.
An additional activation function is applied to control how
excited each channel is. The output feature map’s channels

are each given a signal as part of the squeeze process, which
makes the best use of channel dependencies possible. Learned
filters are limited to the local receptive field and are unable
to capture data outside the receptive field. To solve this
problem, we used the squeeze operation, which performs
global average pooling to generate channel wise information.
Since we are aggregating multichannel features, the network
should learn a non-mutually exclusive relationship between
channels. To achieve this, we used the ReLU activation func-
tion, allowing the network to introduce nonlinearities into
the channel interaction. This nonlinear interaction between
the channels allows the network to combine features from
multiple channels, which helps the network to produce more
complex and abstract feature. Incorporating a fully connected
layer between the global average pooling and activation func-
tion has been shown to facilitate generalization and mitigate
model complexity. Finally, max pooling and GIE block out-
puts are combined to get the final output of downsampling
mentioned in (2). Each layer of the UNet follows the above-
mentioned downsampling operation.

(DownSample)O = MaxPool · (GIE)O (2)

3) PARALLEL ATTENTION BLOCK
The upsampling path of UNet plays a significant role in
feature representation and segmentation. Motivated by the
dual attention mechanism [47], we propose a parallel atten-
tion block to model a network that produces long range
contextual information. Each upsampling layer has a parallel
attention module. The concatenation process involves merg-
ing of features obtained from the upsampling layer with those
obtained from the skip connection in the downsampling path.
The UNet architecture utilizes skip connections to transfer
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FIGURE 6. Original images from the dataset and corresponding ground truth images. (a) DRIVE dataset, (b) CHASE_DB1 dataset (c). STARE dataset.

convolutional features from the downsampling path. The
downsampling path consists of layers that perform depthwise
convolution. The outcome of the concatenation process is
then fed into a parallel attention mechanism that comprises
spatial and channel attention modules.

The spatial and channel attention module is responsible for
producing distinct long-range spatial contextual features and
channel dimension features achieved by performing follow-
ing steps. Initially, a channel attention matrix mentioned in
(3) is produced to examine the relationship among the pixels
within the features. The multiplication operation given in
equation (4) is applied to the original feature and the attention

matrix. Following this, the resultant matrix obtained from the
multiplication of the matrix and the initial feature is merged
using element-wise addition, thereby producing a new feature
that reflects channel information over a significant range,
as indicated by equation (5).

CAMatrix = ReLU (FTC · FC ) (3)

Hc = (CAMatrix · FC ) (4)

Oc = Hc+ FC (5)

Fig 5. Shows the structure of the parallel attention module.
FTC represents the transpose of the input feature map. FC
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TABLE 2. Performance of attention block in the proposed model DPA-UNet.

TABLE 3. Computational complexity comparison between Traditional and Depth wise convolution.

TABLE 4. Algorithm of the proposed depth wise separable attention UNet model.

is the input feature map given to parallel attention module.
CAMatrix is the channel attentionmatrix generated after apply-
ing ReLU activation to the product of the input feature and
the transpose of the input feature. The final channel output
feature map is produced by adding the product of the channel
attention matrix and input feature represented as HC and the
original input feature. This will make the network to refine
the channel features. The spatial attention module computes
channel dimension features in an instance similar to channel
attention module, except the channel attention matrix. where
1×1 convolution is performed on the input featuremap before
generating the spatial attention matrix mentioned in (6), (7),
and (8).

SAMatrix = ReLU (FConv1×1 · FTCov1×1) (6)

Hs = SAMatrix · FConv1×1
S (7)

OS = Hs+ FS (8)

where SAMatrix represents spatial attention matrix. Hs rep-
resents the product of spatial attention matrix and input
feature map (FS − spatial attientionmodule input). Finally,
outputs of attention modules are summed up to get the
features, where OC and OS represents output of channel
and spatial attention module respectively. Each layer in
the upsampling path of UNet adopts this parallel attention
mechanism to aggregate the long-range contextual infor-
mation of both spatial and channel dimensions, as shown
in (9).

PAout = OC + OS (9)
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FIGURE 7. Training loss comparison.

FIGURE 8. Validation loss comparison when performing the validation with same type of dataset which is used in training.

IV. DATASETS
The performance of DPA-UNet is evaluated on the STARE,
DRIVE and CHASE_DB1 datasets which are distinctive
datasets available for the vessel segmentation task mentioned

in Table.1. Original fundus images and their corresponding
ground truth images are shown in Fig.6.

The DRIVE dataset consists of 40 images divided into a
training and test containing 20 images each. Each image has
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FIGURE 9. Cross validation loss comparison.

a size of 565 × 584. The canon CR5 nonmydriatic 3CCD
camera was used to acquire the image with a 45-degree field
of view [48].

The STARE dataset consists of 20 fundus images with
a size of 605 × 700 divided into training and testing sets
containing 10 images each. A 35V TopCon camera was used
to acquire the images [25].
The CHASE_DB1 [49] dataset is taken from 14 children

and consists of 28 images with a size of 960×999, and images
were acquired using a Nidek camera at 30V.

Since we have a limited dataset patch based training is
used, Table 1 shows the dataset details used to evaluate the
proposed algorithm.

A. MULTISCALE PATCH EXTRACTION
We extracted the patches of size 256 × 256 from the images
in the dataset. For both original and resized image we have
assigned the window dimensionWk ×Hk × C with stride of
S=2.

We used 960 patches for training. The patch extraction
from the data with a size of H×W is denoted as,

P = ([
W −Wk

S
] + 1) × ([

H − Hk
S

] + 1)

V. SIMULATION RESULTS
The proposed model incorporates both an upsampling
path and a downsampling path. To evaluate the model’s
performance, we trained and tested it by integrating the
attention module separately in both the upsampling and
downsampling paths. The performance of the model was

evaluated individually, and upon combining the module in the
upsampling path, the segmentation results were found to be
appropriate as presented in Table 2.

We attempted fusing the multiple modules like Resid-
ual Net, attention gate, depth wise convolution in UNet.
We Choose the depth wise separable attention UNet since it
segmented the vessels efficiently with less network parame-
ters while maintaining accuracy compared to existing meth-
ods. Finally, the Adam optimizer and binary cross entropy are
used to calculate the gradient and loss respectively. Table 4.
Shows the algorithm of the proposed model. The experiment
is trained and tested in the TensorFlow framework. Training
loss and validation loss curve was plotted for last 250 epochs
shown in Fig. 7. and Fig. 8. It shows that, compared to
existing state of art methods proposed model achieved less
training and validation loss respectively. Since we have not
used more data for training to test the generalization of the
model, we performed cross validation and calculated the
validation loss. Residual Attention UNet and the Proposed
model achieved the acceptable validation loss compared to
other existing state art methods shown in Fig.9.

The main advantage of performing depth wise convolution
is shown in table.3. depth wise convolution has the ability
to significantly reduce the number of parameters and calcu-
lations. Depth wise convolution decomposes the convolution
operation into separate convolutions for each input channel,
using a separate set of filters for each channel. This reduces
the number of parameters compared to traditional convolu-
tional layers, making the model more efficient. Depth wise
convolution is a highly effective way to capture localized
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TABLE 5. Average performance analysis of module fusion on the DRIVE, STARE and CHASE_DB datasets.

FIGURE 10. Vessel segmentation results of proposed work in the green channel, Row 1 and 2 shows that the model predicts low contrast vessels
also, Row 3 shows that even in strong central reflex vessel struture is predicted appropriately.

features within individual input channels. By allowing for
feature separation, it enhances the separation of features,
enabling each channel to focus on different aspects of the
input. Since each input channel has its own set of filters, the

number of multiplications required per channel is reduced,
leading to faster inference times. After analyzing the table.3.
provided, it is evident that conventional convolution filters
demand 364ms for processing a single image. On the other
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FIGURE 11. Vessel segmentation results of the proposed model in RGB image.

TABLE 6. Computational complexity comparision of proposed model with existing models.

hand, a depth-wise convolution filter only requires 86ms to
process a single image.

The comparison of different module fusion performances
on STARE, DRIVE, and CHASE_DB are mentioned in
Table.5. The depthwise separable attentionUNetwas selected
due to its efficient vessel segmentation capabilities with fewer
network parameters, while still maintaining accuracy com-
pared to other methods.

Evaluation of proposed method is mentioned in Table.7.
A, Table.7. B, Table.7. C. proposed methodology is com-
pared with existing vessel segmentation algorithms. It shows
proposed methodology achieved a competitive performance
with exiting algorithms with less parameters mentioned in
Table.6. Fig. 10 shows algorithms segmentation result on
green channel. Fig.11. shows the segmentation result of
the proposed algorithm on RGB image. We have com-
pared our segmented results with ground truth images shown
in Fig. 12.

We conducted a thorough evaluation of vessel segmenta-
tion using the DPA-UNet model and compared its perfor-

mance against both unsupervised and supervised approaches
across three separate datasets. Our assessment utilized impor-
tant metrics, including Sensitivity, Specificity, Accuracy,
and AUC, resulting in clear and compelling outcomes.
Our findings demonstrate the superior capabilities of the
DPA-UNet model in vessel segmentation, which could be
of great value in various medical applications. Table 7, A,
B, C presents the findings of a study that examined various
segmentation methods applied to the DRIVE, STARE, and
CHASE datasets. The data clearly indicates that supervised
methods tend to outperform their unsupervised counterparts.
Additionally, deep learning techniques perform exceptionally
well in terms of Accuracy (Acc) and AUC. The STARE
dataset and CHASE_DB1 dataset contain a large number
of lesion abnormal images with uneven illumination, low
contrast, and similar morphology of blood vessels and some
pathological sites, which lead to difficulty in retinal blood
vessel segmentation. When we observe the table, our pro-
posed approach achieved a good accuracy on all three datasets
compared to existing method.
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FIGURE 12. Comparison of segmentation result of a proposed model with ground truth.
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FIGURE 12. (Continued.) Comparison of segmentation result of a proposed model with ground truth.

VI. DISCUSSION
This article introduces a depthwise parallel attention UNet
(DPA-UNet) for automatically segmenting retinal vessels in
color fundus images. The illumination changes, centreline
reflexes, bifurcation points, and reduced size and width of
the vessels from the optic disc brought challenges in vessel
segmentation. Our model integrates depth wise convolution
to deal with spatial and channel dimension reduction due to
standard convolution operation. In the downsampling process

we introduced two pooling operations, max pooling and the
GIE block, to address interdependencies between multiple
channels. Therefore, the problem of modeling channel- wise
dependencies is solved, and selective feature emphasizing
is achieved. Table 2 shows the performance of the parallel
attention block. We used it in the upsampling path of UNet
to extract the long-range contextual information. We tested
three datasets, and the proposed architecture showed good
performance in segmenting thin vessels even in low contrast

VOLUME 11, 2023 102585



K. Radha, Y. Karuna: Modified Depthwise Parallel Attention UNet for Retinal Vessel Segmentation

TABLE 7. A. Analysis of the proposed method over various existing methods on DRIVE datasets. B. Analysis of the proposed method with various existing
methods on STARE datasets. C. Analysis of the proposed method with various existing methods on CHASE_DB1 datasets.

102586 VOLUME 11, 2023



K. Radha, Y. Karuna: Modified Depthwise Parallel Attention UNet for Retinal Vessel Segmentation

TABLE 7. (Continued.) A. Analysis of the proposed method over various existing methods on DRIVE datasets. B. Analysis of the proposed method with
various existing methods on STARE datasets. C. Analysis of the proposed method with various existing methods on CHASE_DB1 datasets.

and strong central reflex. Furthermore, compared to [44], pro-
posed method can distinguish thin vessels better. Hence our
method is consistent and robust with less parameters. Further
generalization ability of the model is tested by performing
cross validation. Even though depth wise convolution is
computationally efficient, there are some potential drawbacks
when we implement this in UNet. It is sensitive to channel
correlations in the input data, so a proper preprocessing tech-
nique should be employed before training. Each input channel
is processed independently, it leads to reduced information
sharing among the channels while this reduces the computa-
tion complexity. At the same time, it limits the model’s ability
to learn and represent the high-level features that rely on
interactions between different channels, to overcome this we
used GIE block. When implementing depthwise convolution
the main challenge is capturing multichannel information,
distinct efforts need to be taken to introduce inter-channel
dependency.

VII. CONCLUSION
In this article we propose a depthwise parallel attention UNet
for vessel segmentation in fundus images. Depth wise separa-
ble convolution is performed instead of regular convolution to
sort the channel features as well as to lessen the parameters.
To lower the overfitting problem and preserve the maximum
vessel information between the convolution layers, dropout
technique is adopted in the proposed model. Channel inter-
dependency is addressed by global information embedding
block. It also helps to lessen the information loss due to
pooling operation. The upsampling path is responsible for
segmented feature maps, so we used a parallel attention block
after concatenation, which helps to preserve and fully explore
features that are more important. We conducted experiments
on the DRIVE, STARE and CHASE_DB1 datasets to eval-
uate the proposed algorithm. We have achieved acceptable
performance with less parameters compared to existingmeth-
ods. Though the proposed model has achieved a competitive
performance compared to existing state of art methods while
maintaining less parameter, we observed lack of ground truth
for fundus dataset for vessel segmentation prevented a better
validation performance of the network, specifically fundus
images with abnormalities.
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