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ABSTRACT The realization of intelligent mining is the only method for realizing high-quality development
in the coal industry. As the forefront working link inmine production, achieving automatic roadway tunneling
control is key to improving production efficiency, enhancing intelligence, and reducing accident rates at
fully mechanized tunneling working faces. Among various detection techniques, machine vision technology
stands out with advantages of non-contact measurement, rich information acquisition, and high detection
accuracy. The detection and control of tunneling equipment groups based on machine vision has become a
research hotspot in the intelligence process of coal mines. This study first introduces the key technologies
of a visual detection system, including camera calibration, image preprocessing, feature extraction, visual
matching, target segmentation and recognition, visualmeasurement, and 3D reconstruction. It then elaborates
on detection principles, workflows, limitations, precautions, and development status of various vision detec-
tion systems in practical application scenarios at tunneling faces, such as tunneling equipments, anchoring
systems, transportation systems, and safety auxiliary systems, which significantly improve production safety
and efficiency. Finally, considering challenging work conditions and strong interference in mines, the
successful adaptation of machine vision to excavation sites relies on addressing technical challenges related
to poor environment adaptability, limited imaging field of view, and low intelligence level. Furthermore,
according to existing research results and the current technical status, this paper forecasts key technologies
that need to be developed in the future for coal mine intelligent equipment systems based on machine vision,
including multi-sensor information fusion, equipment group collaborative control, and digital twin-driven
remote monitoring.

INDEX TERMS Machine vision, coal machinery equipment, detection and measurement, roadway fully
mechanized tunneling faces, unmanned coal mine.

I. INTRODUCTION
According to the ‘‘Global Energy Data’’ published by the
International Energy Agency, global coal production experi-
enced a strong rebound of 6% in 2021 and amarginal increase
of 0.9% in 2022, after a decline of 5.3% in 2020 due to
the impact of Covid-19, which continues to supply approx-
imately a quarter of the world’s primary energy and over a
third of its electricity [1]. As an indispensable energy source
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for industrial development, coal possesses advantages such as
abundant reserves, high carbon content, convenient usability,
and low cost compared to other energy sources. Despite the
accelerated construction of clean and low-carbon energy sys-
tems in many countries, coal has maintained an irreplaceable
core position in the energy structure for a significant period
of time.

Throughout the entire coal production process, there are
two main procedures: tunneling and coal mining. The tun-
neling procedure takes place at the tunneling face, marking
the initial phase of mine excavation. It encompasses activities
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such as drilling, blasting, and excavation to establish under-
ground tunnels and chambers, thereby creating pathways and
areas for subsequent coal mining operations. The coal mining
procedure takes place at the coal mining face and encom-
passes the extraction, loading, and transportation of coal from
the coal seam within the excavated region. Coal mining is
contingent upon tunneling, and tunneling, in turn, facilitates
the coal mining process.

The automation level of mining technology and equip-
ment is directly related to the efficiency and safety of mine
production. Currently, the coal mining procedures has transi-
tioned into an era of unmanned and automated working faces.
However, the level of tunneling technology, equipment, and
mechanization has significantly lagged behind that of coal
mining. According to an investigation, in China, the largest
consumer and importer of coal in 2022, the mechanization
degree of mining faces all over the country has reached
more than 85%, which exceeds the number of tunneling
faces by 25% [2]. Consequently, the average monthly tun-
neling progress across the nation remains within 300 meters,
with the required workforce for the tunneling process being
approximately 3.1 times that of the coal mining personnel.
Due to the outdated tunneling equipment and techniques,
the pace of tunnel advancement fails to match the normal
demands of coal mining. The resulting phenomenon of slow
tunneling and rapid mining has given rise to the challenge
of ‘‘mining and excavation imbalance’’, significantly ham-
pering coal production efficiency. Moreover, these issues
primarily stem from the constrained workspace and intricate
operational procedures of the underground tunneling face,
and the complexities in harmonizing ‘‘tunneling, anchor-
ing, supporting, and transportation’’ activities. According to
incomplete statistics, in the tunneling process, the time spent
on anchorage maintenance is 2-3 times longer than that of
cutting [3]. The anchorage speed has become the key factor
limiting the roadway construction progress. Evidently, as a
poor safety, heavy task, and low-automaticity working scene
in the coal mine production, the technical indicators and
intelligence degree of the fully mechanized tunneling face
underground is urgently necessary to be advanced to meet the
needs of safe and efficient mining.

With the rapid development of visual sensing, image pro-
cessing, artificial intelligence, and other technologies, the
application of computer vision to mine production pro-
cesses has become a new trend in the development of
intelligent mines. As early as 1992, Hurteau [4] and col-
leagues developed an optical detector using an industrial
camera and artificial visual technology to measure the posi-
tion deviation of a mining vehicle relative to the planned
line. Since then, several machine vision systems had been
developed and evaluated for safe and efficient coal mine
production. With the excellent characteristics of non-contact
sensing, multilevel information fusion, high-speed modeling
and calculation, machine vision technology can commend-
ably meet the requirements of a large production range,
uninterrupted working, and timely feedback during mine

production. To objectively reflect the application status, the
number of selected publications per year was obtained by
searching strings ‘‘computer vision’’ AND ‘‘mining’’ in the
Web of Science database from 1998 to 2022 [5]. From the
bar graph shown in Fig.1, it can be clearly seen that an
increasing number of experts and scholars worldwide have
paid serious attention to the application of machine vision
technology in the field of coal mines in the last 25 years.
In particular, the number of related studies has increased
significantly since 2019. Owing to the development of pattern
recognition and artificial intelligence technology, the applica-
tion of machine vision technology in underground coal mines
has gradually expanded from initial security and protection
monitoring to position detection of coal mining equipment,
target recognition, fault detection, three-dimensional (3D)
scene reconstruction, safety monitoring, and many other
aspects [6], [7].

FIGURE 1. The number of selected publications per year in the last
25 years [5].

While numerous articles discuss the utilization of machine
vision technology in mining, there remains a notable scarcity
of comprehensive review papers in this field. As demon-
strated in Table 1, existing review literatures cover a diverse
range of applications, including mining rescue robots [9],
underground autonomous driving [14], mineral processing
[8], [12], and the identification and localization of mining
equipment [11], [13], etc. However, there is a lack of sys-
tematic literature that specifically outlines the application
of vision technology in a specific underground scenario,
particularly in the domain of mechanized tunneling faces.
Therefore, this paper endeavors to bridge this research gap.
Through a meticulous exposition of relevant technologies,
principles, workflows, and the prevailing challenges, it offers
a comprehensive panorama and a profound comprehension
to drive further research within this particular domain. The
primary objectives of this review paper are as follows:

• Offer an in-depth introduction to the key technologies
of visual detection systems designed for fully mechanized
tunneling faces.

• Concentrate on clarifying the application principles and
workflow of visual technologies within coal mine tunneling
systems in recent years.
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TABLE 1. Review studies related to machine vision applications in mining.

• Analyze various challenges and technical issues encoun-
tered during the underground on-site application of visual
technologies.

• Highlight new directions that need to be emphasized for
the future development of intelligent equipment systems in
coal mines based on machine vision.

II. VISION SENSORS AND VISUAL ALGORITHMS IN COAL
MINE FULLY MECHANIZED TUNNELING FACES
Machine vision technology plays a crucial role in intelligent
roadway excavation. It utilizes explosion-proof cameras as
information acquisition equipment and images as carriers to
accomplish the identification and positioning of target objects
through various operative algorithms, offering advantages
such as easy installation, abundant information, and non-
contact measurement.

A. VISION SENSORS
Vision sensors are essential components of a visual detec-
tion system. The quality of the acquired images depends
on the system’s hardware and environmental conditions.
Image quality also determines the difficulty of late feature
extraction and the detection accuracy of measured variables.
In challenging underground coal mine environments, it is
crucial to optimize the machine vision system using var-
ious strategies. These include designing a rational image
acquisition scheme, selecting appropriate camera parameters,
and compensating for illumination using artificial light-
ing. Commonly used vision sensors in underground coal
mines can be classified into monocular cameras, binocu-
lar cameras, multi-camera vision systems, and structured
light cameras. Table 2 provides an overview of their spe-
cific principles and applications of these different camera
types.

1) MONOCULAR CAMERAS
The monocular vision system captures images based on the
pinhole imaging model. Compared to other vision systems,
it offers the advantages of a simple structure, low cost, and
ease of calibration and identification. Furthermore, it also
serves as the foundation for other types of visual systems,
incorporating additional structures and measurement steps.

In fully mechanical tunneling operations, monocular cam-
eras are commonly used for object recognition [16], pose
detection [17], environmental monitoring [18], equipment
condition detection [19], etc. However, a single camera
is unable to extract 3D information from a single image.
When employed for spatial pose measurements, it must be
combined with other measuring devices or sensors [20].
Additionally, thermal cameras, distinct from visible light
ones, utilize the principle of infrared thermal radiation to
capture thermal images, thereby offeringmore valuable infor-
mation for environmental monitoring.

2) BINOCULAR CAMERAS
The binocular stereo vision system consists of twomonocular
cameras. It mimics the optical parallax of human eyes to
obtain depth information of objects. By comparing the images
collected simultaneously by two cameras, it generates the par-
allax map of the target point based on the differences between
the left and right imaging surfaces, and further calculates the
spatial depth information of the point, which can be flexibly
applied to various stereometric scenes.

Compared to the monocular system, the binocular system
offers a straightforward approach to acquiring the spatial 3D
coordinates of feature points. It has demonstrated significant
experience and achievements in underground applications,
such as target identification and positioning [21], parameter
measurement [22], and 3D scene space reconstruction [23].
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TABLE 2. Principle and application of different vision sensors.

Nevertheless, the confined space in coal mine roadways sig-
nificantly constrains the practicality of binocular systems.
There is still room for improvement in system calibration
accuracy, stereo matching effectiveness, 3D reconstruction
precision, and real-time performance.

3) MULTI-CAMERA VISION SYSTEM
Multi-camera vision system, also known as multi-view stereo
imaging, is based on the principle of binocular measurement.
It involves employingmultiple cameras (often triple-eye cam-
eras) to capture several images of the same target scene from
different viewpoints and subsequently reconstructing the 3D
information of the scene. This approach effectively expands
the visual system’s field of view. Moravec et al. [24] initially
studied this system at Stanford University in 1980, where he
developed a mechanical swivel ‘‘slider’’ to obtain multiple
views for the visual navigation of the ‘‘Stanford Cart’’.

In underground coalmines, the application ofmulti-cameras
primarily focuses on geometric parameter measurement [25],
roadway 3D reconstruction [26], trajectory prediction [27],
object surface reconstruction [28], etc. Multi-camera vision
imaging offers abundant and high-precision information,
making it especially well-suited for large-scale spatial 3D
measurements. However, its calibration process and struc-
tural configuration are more complex than that of binocular
systems [29], and its real-time performance is relatively
lower. During practical implementation, it is crucial to
consider the spatial constraints in underground scenes and
strategically position the cameras to achieve optimal results.

4) STRUCTURED LIGHT CAMERAS
Structured light imaging belongs to the category of active
measurement technology. By projecting specific light

patterns or gratings onto the measured object and measuring
the modulated light, structured light cameras can acquire the
object’s depth and 3D shape information with fast speed, high
accuracy, and non-contact nature [30].
However, compared to other visual sensors, the utiliza-

tion of structured light underground is relatively limited.
Existing applications include obstacle avoidance for mining
vehicles [31], pedestrian detection [32], SLAM [33], nav-
igation and positioning [9], parameter measurement [34],
and coal block morphology measurement [35]. Nevertheless,
after several decades of development, structured light systems
still have certain limitations, particularly in measuring com-
plex surface shapes, highly reflective objects, and real-time
measurements of dynamic objects.

B. MACHINE VISION ALGORITHMS
1) CAMERA CALIBRATION
Camera calibration refers to the process of determining the
internal and external parameters of a camera by utilizing
specific targets or scene characteristics. This allows for the
mapping of the stereo space to the plane image [36]. The
calibration methods for binocular cameras, multi-camera sys-
tems, and depth camera systems are all based on that of
the monocular camera. Depending on the requirements of
reference objects, existing monocular calibration methods
can be divided into traditional calibration methods [37], self-
calibrationmethods [38], and active calibrationmethods [39].

In recent years, with the widespread application of intelli-
gent vision technology in mines, the structure and calibration
methods of underground vision systems also require corre-
sponding design and adjustments to adapt to the challenging
mining environment [40]. For instance, plane explosion-proof
glasses and optical ball covers are commonly employed to
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FIGURE 2. (a) The entire light-path lies on the same plane of π . (b) The projective geometry in the refractive plane [41].

protect the visual imaging system from dust and spray at the
heading face. To address the impact of optical devices on the
visual imaging system, Yang et al. [41] conducted a study
on the refraction mechanisms of two glass types, as depicted
in Fig. 2. They proposed corresponding noncentral refrac-
tion camera modeling and calibration methods based on a
geometric-driven single-viewmining camera imaging model.
This approach realized the glass refraction correction of the
mining camera and significantly improved the accuracy of the
underground visual measurement system.

When designing a visual measurement system for the cut-
ting head position, Zhang et al. [42] discovered that existing
external parameter calibration methods often required swing
the cutting arm to the middle position of the roadheader, rely-
ing on the operator’s experience, which led to inaccuracies
and potential fluctuations in the calibration results. To address
this issue, they proposed an external calibrationmethod based
on multiple fixed points. In this method, the cutting arm was
controlled to swing to the upper left, upper right, lower left,
and lower right corners to capture target images at these four
known limiting positions. Experimental results demonstrate
that this approach effectively enhances the stability and pre-
cision of the calibrated external parameters.

2) IMAGE PREPROCESSING
In the challenging environment of an underground com-
plex coal mine, ensuring the quality of images captured by
vision sensors becomes difficult due to factors such as high
coal dust concentration, low illumination, and strong vibra-
tions. Consequently, images obtained in such mines require
additional preprocessing operations compared to a normal
environment, aiming to eliminate interference information

and enhance the salient features. Commonly used prepro-
cessing operations include histogram equalization, image
denoising, image enhancement, and frequency domain fil-
tering. In underground engineering applications, numerous
experts and scholars have proposed specific preprocessing
methods according to the characteristics of actual captured
images and the feature information that needs to be extracted.

In order to address the issues related to uneven illumina-
tion, unclear details, and poor contrast in coal mine images
caused by large artificial light sources, Du et al. [43] put
forward an edge feature detection method based on the
Retinex theory and wavelet multiscale product after spec-
tral analysis of low-illumination images. In addition, during
image acquisition, camera vibrations may lead to inaccurate
or even incorrect measurement results. To compensate for
these deviations, Yang et al. [44] proposed an underground
camera nonuniform blur model by researching the change
in the imaging optical path under the influence of vibra-
tion. Furthermore, to mitigate the high-concentration coal
dust interference, based on a detailed analysis of the visual
characteristics in mines, Cui et al. [45] used four evaluation
indices - Energy of Gradient, Variance, Information Entropy,
and Volhths - to truly and objectively evaluate the image
sharpness of five dehazing algorithms. It was concluded that
the CLAHE algorithm exhibited the best dehazing effect in
actual coal mine scenes.

3) FEATURE EXTRACTION
Feature extraction can compress image information by cre-
ating feature vectors, which plays a crucial role in image
recognition. Commonly used features for visual recognition
include color, texture, and shape [46]. However, underground
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TABLE 3. Application examples of feature extraction underground.

images possess distinct characteristics compared to above-
ground images. For example, artificial lighting typically used
underground causes the collected image illumination to be
low and uneven. The presence of pseudo-edges caused by
such illumination further complicates the extraction of mean-
ingful features. In addition, symbolic objects in tunnels, such
as the roadway wall surface and coal rock, often exhibit
irregular geometric structures and inconspicuous texture
characteristics. Consequently, these features prove difficult to
utilize for target identification and positioning in later stages.
As a result, extraction algorithms based solely on color or
texture are not suitable for underground environments.

In mines, shape and geometric features, such as points,
lines, and multi-feature fusion, are commonly used for
visual measurement. Existing underground feature extrac-
tion approaches typically rely on artificial characteristics,
including laser points, laser lines, straight lines, circles, and
intersection points. With the aid of appropriate targets and

light sources, easily extracted points or line features, and
the established parameter solution model, feature extraction
and target positioning can be smoothly completed with high
detection accuracy and reliability. Table 3 provides some
actual examples of underground artificial feature extraction.
Compared to the natural features in mines, these artificial
geometric features are easier to extract, and helpful for later
parameter acquisition and target positionings.

4) VISION MATCHING
The function of the vision-matching algorithm is to identify
and align the target in different pictures to determine its
spatial position. It has been widely utilized in various fields
such as target identification, navigation and positioning, and
multicamera registration. There are three main types of vision
matching algorithms based on the feature information to be
matched: grayscale-based, transformation domain-based, and
image feature-based algorithms [52].
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Compared to the other two methods, the image
feature-based matching method requires the least amount
of information and offers faster matching speed. It uses the
points, lines, angles, edges, or other easily obtained features
to complete the recognition and matching of target objects
in different images with high accuracy and low complexity.
Due to these advantages, it has also been widely applied
in mines. In the process of the roadheader cutting head
position, [53] improved the MVM algorithm with skipping
and multiple matching penalties for the binocular system,
so that the algorithm can not only complete the multiple
(one-to-many or many-to-one) mapping but also skip existing
outliers in the matching sequence. As a result, it addresses the
issue of mismatching caused by the deformation of the same
contour from different perspectives. To realize stereo-vision
matching for a coal mine rescue robot, He et al. [54] proposed
an improved census algorithm by converting the original
image into a census image, which achieved a good balance in
terms of resource occupancy, processing speed, and matching
accuracy. During the roadway panoramic map acquisi-
tion procedure, to improve the image registration accuracy
and splicing effect, [55] employed the AANAP (Adaptive
As-Natural-As-Possible) algorithm to align and stitch the
images.

5) TARGET SEGMENTATION AND RECOGNITION
Target segmentation and recognition technology is also an
important technique for realizing visual detection. Based
on vision matching technology, it obtains space information
of the target object or point through the recognition of
image features extracted by various visual processing algo-
rithms. In recent years, remarkable advancements have been
achieved in the field of object recognition in complex mining
environments, all due to the adoption of deep learning-based
algorithms [56]. Representative models include R-CNN
(Convolutional Neural Network), Faster R-CNN [57], SSD,
YOLO, and GoogleNet [58].

For instance, after employing the depth-wise separable
convolution method to reduce the parameter count in the
SSD algorithm, [59] identified and detected possible for-
eign bodies in the process of coal mine belt transportation,
which effectively avoided the damage of foreign bodies to
the belt and reduced economic loss. Similarly, [60] and [61]
improved YOLOX and YOLOv5, respectively, for foreign
objects recognition on coal mine belt conveyors. Addition-
ally, to address the problem that traditional tunnel boring
machine (TBM) cutters cannot be automatically replaced
by robots, [62] proposed a cutter feature recognition and
extraction algorithm based on YOLO-SIFT. Reference [63]
presented a DL scheme to assist the navigation of Micro
Aerial Vehicles by using a CNN, which can be further utilized
as a supervised image classifier that has the ability to process
the image frames from a single on-board camera and to
prevent mine tunnel wall collisions. The above recognition
algorithms based on deep learning have greatly improved

the recognition accuracy and efficiency of targets in various
complex images, and have also become current research
hotspots and frontiers.

6) VISUAL MEASUREMENTS AND 3D RECONSTRUCTION
During fully mechanized roadway tunneling, the realizations
of many construction procedures are inseparable from the
distance information (depth) acquisition, such as roadway
construction according to the preset path, automatic and accu-
rate formation of roadway sections, IIID reconstruction of
unstructured environment, personnel localization, and target
object positioning [64]. As shown in Fig. 3, 3D vision recon-
struction technology can be classified into passive and active
visual measurements, depending on the presence or absence
of projection sources during the measurement process. Pas-
sive methods include monocular vision, binocular vision,
and multi-vision. The active ones mainly refer to structural-
light measurements. By eliminating the need for physical
contact with the measured object, many defects in the contact
measurement can be effectively avoided. Hence, active visual
measurements have been widely used in ranging, obstacle
avoidance, positioning, 3D reconstruction, and other fields
underground.

During 3D reconstruction, the quality of point cloud data
acquisition and processing determines the final space recon-
struction effect. Recently, the research focus has shifted
towards addressing outlier and mismatching points, aim-
ing to improve point cloud registration accuracy and obtain
dense point clouds within a high-precision world coordi-
nate system. Noteworthy methods, such as Clustering Views
for Multi-view Stereo(CMVS) [65] and Patch-based Multi-
view Stereo(PMVS) [66], can transform estimated sparse
point clouds into denser ones, which significantly improves
the modeling effect and makes the models resemble real
scenes more closely. For example, [26] demonstrated a rapid
photogrammetric reconstruction method for tunnels using a
360-degree camera positioned at 27 locations. They recon-
structed a 3D model of a tunnel section in an Underground
Research Laboratory in Finland using Structure-from-Motion
Multi-View Stereo (SfM-MVS) photogrammetry. Similarly,
Zhang et al. [67] proposed a dense reconstruction method
for tunnels using deep learning and double-line parallel
photography techniques, which overcomes the limitations
of conventional photography methods not having enough
venues to lay the baseline in a narrow environment.

III. APPLICATIONS AND STATUS OF MACHINE VISION IN
COAL MINE FULLY MECHANIZED TUNNELING FACES
In the entire coal mine production process, fully mechanized
roadway excavation stands at the forefront. It represents
the most challenging and high-risk stage of production.
Achieving intelligent and precise tunneling construction is an
essential step towards efficient unmanned mining and aligns
with the ongoing trend of technological advancements. Addi-
tionally, the tunnel fully mechanization is a systematic project
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FIGURE 3. Classification of 3D visual measurement methods [64].

FIGURE 4. System composition of coal mine tunneling face and a part of fully mechanized equipments
[own development].

that takes the roadheader as the key equipment and fuses
multiple functions, including excavation, anchor protection,
transportation, and dust removal. Through the coordinated
efforts of various mechanized equipment, it becomes pos-
sible to achieve continuous, balanced, and efficient coal
production.

As presented in Fig. 4, the tunneling face predominantly
encompasses three significant systems: the tunneling system,
the anchoring and supporting system, and the transportation
system [68]. The primary function of the tunneling system
lies in employing specialized equipment like boom-type road-
header for executing cutting operations along pre-established
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FIGURE 5. Schematic diagram of roadheader position based on machine vision technology [own development].

paths, thereby forming tunnels or chambers. The anchoring
and supporting system concentrates on implementing sup-
port technologies like rock bolts, steel sets, and shotcrete,
to ensure the stability and safety of the excavated space,
preventing potential roof falls or sidewall accidents. Respon-
sible for the efficient movement of coal and other materials
within the tunneling face, the transportation system employs
mechanisms like conveyor belts and shuttle cars. As can be
seen from the above figure, realizing the cooperative oper-
ation of ‘‘tunneling-supporting-transportation’’ is of great
significance for improving overall tunneling efficiency. Fur-
thermore, the application of machine vision technology in
fully mechanized tunneling faces necessitates the design of
appropriate visual systems that cater to diverse detection
requirements, in combination with the equipment structure,
detected object characteristics, measurement parameters,
environmental factors, and more. Therefore, this section
introduces the current development status of machine vision
technology in fully mechanized tunneling faces from four
different application scenarios: tunneling equipment, bolt
supporting system, transfer and transportation system, and
safety assistant system.

A. BOOM-TYPE ROADHEADER
A boom-type roadheader is a fully mechanized tunneling
machinery that incorporates various functions, including
independent walking, coal rock cutting, loading and trans-
portation, and spray dust control. As a crucial equipment
for roadway tunneling, its performance significantly impacts
tunneling efficiency and driving footage.

During the construction operations of a boom-type road-
header, the walking mechanism propels the crawler to
push the body forward, while the cutting mechanism
adjusts the cutting head’s position using hydraulic cylinders.
By coordinating these actions, the cutting head can per-
form drilling operations. Consequently, achieving automatic
roadway section cutting in accordance with the require-
ments necessitates resolving the spatial pose perception of
the roadheader’s body and the location of its cutting head.
Currently, the utilization of machine vision technology in
boom-type roadheaders predominantly focuses on these two
aspects [69].

1) ROADHEADER BODY VISUAL DETECTION
Real-time and automatic detection of the roadheader body
pose is an urgent problem to be solved in intelligent mining.
Existing detection methods, such as those based on total
station measurements, inertial sensors, and radio waves [70],
are vulnerable to adverse environmental factors encountered
underground. In the past decade, machine vision technology
has emerged as a viable solution due to its non-contact nature,
real-time performance, and ability to acquire comprehensive
information. As a result, it has been widely adopted for
roadheader fuselage positioning [71]. A schematic diagram of
the roadheader position based on machine vision technology
is as shown in Fig. 5.

As indicated above, the measuring equipment used for
image acquisition should be installed and fixed on the road-
way roof or the fuselage in accordance with the principle of
roadheader body pose positioning. Depending on the cap-
tured image’s content, existing methods can be categorized
into direct and indirect measurement schemes. In the direct
scheme, an image of the measured object is acquired directly.
On the other hand, the indirect scheme can only collect the
target image (not the measured object) after completing
the reference-signal selection and target installation. Once
the image is collected, it undergoes preprocessing follow-
ing vision system calibration, including distortion correction,
image denoising, contrast enhancement, and other operations.
Subsequently, image feature analysis takes place, involving
tasks like feature extraction, region segmentation, and target
recognition. Finally, by combining the established roadheader
fuselage pose calculation model, the fuselage’s pose param-
eters are determined. Key technologies employed in this
process include image denoising, image enhancement, fea-
ture detection and recognition, and the pose calculationmodel
building based on the camera projection. According to the
number of vision sensors, the current roadheader pose detec-
tion techniques utilizing machine vision can be categorized
as monocular or binocular.

The monocular measurement scheme uses a single cam-
era to capture mine images during the detection process.
After camera calibration, image processing, and other nec-
essary operations, the roadheader’s real-time six degrees-
of-freedom pose parameters in the tunnel space can be
determined when combined with the established fuselage
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FIGURE 6. Dual camera target structure and posture detection principle [47].

posture solution strategy. For instance, Chi et al. [72] installed
a chessboard target at the rear of a tunneling machine to
capture the laser ray from the starting point. The offset of the
machine can be calculated by segmenting the target markers
and laser spot in a single monocular image and detecting their
coordinates. In addition, the team led by Professor Xuhui
Zhang at Xi’an University of Science and Technology [73],
[74] utilized the monocular visual measurement principle and
laser point-line characteristics to construct different types of
roadheader position solution models. To address the issue of
unsharp images captured by fixed-focus lens cameras at vary-
ing working distances, the authors of [75] used an autofocus
camera to ensure image sharpness at any distance. Then, they
proposed amultiscale variational autoencoder-aided convolu-
tional neural network model to estimate the current poses of
the tunneling machine, which was robust to different camera
intrinsic parameters and did not require access to camera
parameters.

Compared to themonocular system, depth feature informa-
tion can be obtainedmore easily in the binocular stereo-visual
system. In addition to calibrating the internal parameters
of each camera, the acquisition of external parameters for
the binocular system and stereo vision matching must be
completed prior to body positioning. The calibration accuracy
and matching effectiveness of these two key technologies
significantly impact the positioning accuracy and 3D recon-
struction precision [9]. In a study by [21], two cameras were
used to capture double cross-lasers projected onto left and
right laser targets. By setting up a machine body position cal-
culation model and employing space matrix transformation,
it achieved the real-time automatic machine pose detection.
Although this method employed two cameras, it does not
strictly qualify as a binocular system. By analyzing laser
spots projected by the total station in two images and per-
forming Euler angle calculation, the method proposed in [47]
successfully measures the machine’s spatial deviation for
guidance. Fig.6 illustrates the measurement setup, compris-
ing two cameras and two photosensitive imaging screens

installed in opposite directions. In [48], a binocular system
was fixed on the roadheader with a lens directed toward the
afterbody, which was convenient for capturing images of
the infrared-led targets behind the fuselage. To overcome the
limited distance of binocular vision measurement, a dual-
target moving measurement strategy was designed to realize
continuous and uninterrupted measurements.

In addition, RGB-D (red, green, blue, and depth) cameras
offer advantages over monocular and binocular cameras as
they are unaffected by ambient lighting changes and textures.
Using active ranging technology, the authors in [76] collected
environmental data with an airborne RGB-D camera and
constructed the RANSAC+ICP model for autonomous pose
measurement, which can effectively solve the difficult posi-
tioning and orientation problem of roadheaders in a restricted
space.

When it comes to target positioning, identification, and
tracking, the single-source measurement scheme suffers
from certain drawbacks, including low accuracy, low cred-
ibility, time lag, weak robustness, and limited measure-
ment dimension. In contrast, the multi-source combined
measurement and positioning scheme often yields better
results [77]. As a result, experts and scholars worldwide
have been exploring the integration of visual sensors with
other types of sensors to achieve multisensor combination
positioning of the roadheader body. Some examples include
visual/inertial combinations [45], [78], [79], visual/lidar com-
binations [76], visual/infrared combinations [17], [80], and
visual/inertial/lidar combinations [9]. These combinations
aim to leverage the strengths of different sensors to enhance
the overall positioning performance and address the limita-
tions associated with single-source measurements.

Different visual position measurement systems adopt
specific techniques and projection models based on their
requirements and the nature of the measurements. In current
researches, various types of visual position measurement sys-
tems exist. In addition to the image-processing algorithm,
the key technology lies in establishing the pose calculation
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FIGURE 7. Perspective projection models for the roadheader pose detection in different literatures.

model. As depicted in Fig. 7, different optical systems use
different perspective projection models for the parameter
measurements. The contents of the collected images also
vary. According to statistics, the images collected by existing
roadheader body pose measurement systems include targets
with light sources, targets receiving laser projection, line
lasers, and point lasers (projected onto the lane wall).

In Fig. 7 (a), Pro. Zhang’s team fixed two laser-pointing
instruments parallel to the roof of a roadway [44]. By con-
structing a monocular visual position measurement model
called 2P3L (two-points-three-lines) for a dynamic target in
a coal mine based on the characteristics of laser points and
lines, they calculated the position and attitude parameters
of the boom-type roadheader fuselage. However, maintain-
ing the parallelism of the two laser beams during the
measurement process is challenging in actual underground
projects. Additionally, the external parameter calibration pro-
cess for the visual system is complex and difficult. Therefore,
there is a need to further improve positioning accuracy
and stability through algorithm optimization. Building upon
previous research, [81] constructed a three-point three-line
(3P3L) pose estimation model (shown in Fig. 7 (b)) utilizing
three line-lasers as positioning references. By segmenting
and extracting laser beam dot-line features, they effectively
improved the accuracy and stability of the system. In addition
to point lasers, line lasers are also frequently used references
in mines. Fig. 7 (c) illustrates two cross-lasers in different
colors (red and green) as positioning references [21]. The
system captures the coordinates of ten characteristic points
projected by the cross lasers on the double targets to obtain the
fuselage position through coordinate transformation. When a

target with light sources is affixed to the measured object,
the position of the moving object can be obtained from
the target position using coordinate transformation. On the
basis of back shield pose in real time, [82] measured the
position and orientation between the front and back shields
of a double-shield universal compact TBM by designing a
spatial distribution model consisting of six crossing optical
characteristic points (as shown in Fig. 7 (d)). Similarly, as the
first roadheader visual positioning model (Fig. 7 (e)), the
model in [83] consisted of a 3 × 3 feature-dot light source
matrix (the light target) mounted at the fuselage afterbody,
which belongs to the passive measurement mode. In practical
applications, the above models should also be robust enough
to handle mining vibrations, dense dust, and low-illumination
environments underground [45].

On the working surface of a coal mine roadway excavation,
the real-time position perception of boom-type roadheaders
serves as the foundation for unmanned fully mechanized tun-
neling. Accurate positioning of the fuselage enables various
operations and research to be conducted, including real-time
positioning of the cutting-head, roadheader trajectory plan-
ning, path tracking [76], [84], and simultaneous localization
and mapping (SLAM) [33], [80]. These capabilities are
essential for efficient and effective excavation processes in
coal mine roadways.

2) CUTTING HEAD VISUAL DETECTION
The ultimate operational goal of the boom-type roadheader is
to ensure that the roadway section can be cut off and formed
precisely in accordance with the predetermined trajectory.
The cutting process involves the roadheader body rotation
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FIGURE 8. Schematic diagram of roadheader cutting head position based on machine vision technology [own
development].

and the all-direction turning of the cutting arm, which collec-
tively shape the cutting section of the tunnel. Therefore, it is
necessary to accurately measure the cutting head position and
realize the local positioning of mining equipment, even under
complex working conditions. It is of great significance to
improve the section-forming quality and tunneling efficiency
of the roadway. Fortunately, many existing visual detection
techniques for cutting mechanisms have also focused on this
field.

Existing methods can be classified into contact and non-
contact ones. In the contact measurement method, various
sensors are installed on the cutting arm, such as inertial,
inclination, and cylinder displacement sensors. It has been
widely used and has shown promising application results.
However, it is susceptible to device vibrations and other harsh
underground working conditions, which can lead to data
instability or sensor failure [85], [86]. Among non-contact
measurement methods, visual systems are the most promi-
nent. As early as 2003, to avoid cost-intensive corrections
at the customer site, [87] developed a vision measurement
system for testing the cutting profile of roadheaders during
the final stages of machine assembly at the manufacturer’s
facility. The visual-based system does not require any struc-
tural modifications to the roadheader, but only needs to install
a camera in an appropriate position to obtain cutting head
images, which exhibits strong adaptability to the harsh envi-
ronment, with high accuracy and low cost. It is particularly
significant for numerous boom-type roadheaders that are
already in service. Fig. 8 illustrates a schematic diagram of
the vision-based roadheader cutting head positioning system.

Furthermore, according to the target objects in the cam-
era’s field of view, visual-based cutting-head positioning
techniques can be divided into direct measurement and indi-
rect measurement. Direct measurement directly collects the

cutting head image and determine its position in real time
without the need for additional equipment. As an illustra-
tion, [53] employed matching algorithms to directly discern
the outline of the cutting head. Through binocular camera
disparities calculation and coordinate transformations, they
successfully achieved real-time and precise positioning of the
cutting head within the roadway coordinate system. However,
during tunnel excavation, the cutting head often becomes
indistinguishable from background elements, substantially
intensifying the recognition challenge. By contrast, indirect
measurement relies on a reference object, such as a target,
installed on the cutting mechanism. It obtains the real-time
position of the cutting head indirectly by calculating the
relative pose between the camera and the reference object.
The method in [17] utilized an infrared LED rectangular
target mounted on the roadheader cutting arm to address low-
illumination, high-dust, and complex background conditions.
By collecting the image of the square infrared dot array on
the target through a monocular camera, it can obtain the
attitude angles of the cutting head using the pre-constructed
calculation model. Nevertheless, there are various types of
roadheader, which may not provide a suitable position for
infrared target installation. In addition, the target may be
occluded during the measurement process. Therefore, it is
necessary to adjust the target installation position according
to the actual roadheader structure in practical applications.

To improve the efficiency and quality of roadway tun-
neling, after the cutting mechanism positioning, many other
advanced technologies are employed to realize the automatic
formation of coal mine roadway sections, such as cutting
trajectory planning [88], servo control, and digital twin. In the
European Commission-supported research project ‘‘Advance
drivage and roadheading intelligent systems (ADRIS,
2007-2010)’’ [89], an automatic cutting path planning
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algorithm was proposed based on real-time coal rock iden-
tification using laser scanners. Cheluszka et al. [90] from
the Silesian University of Technology, Poland, discussed the
concept of automatic control for the cutting head movement
of a boom-type roadheader, which can reduce the cutting
energy consumption and improve the machine’s dynamic
performance. The team led by Prof. Xuhui Zhang intro-
duced several notable contributions in this field, such as
the visual servo cutting control system for the cantilever
roadheader [91], the digital twin-driven remote automatic
formation and cutting control [92], and the automatic cutting
speed control system [93]. These studies can provide an
inspiration for the monitoring and control of underground
roadway tunneling.

In addition to cutting head pose detection, machine vision
has various other applications in roadheader cutting mech-
anisms. In an underground potash mine near Barcelona,
Spain [94], researchers employed visual techniques to ana-
lyze rock structures. This approach enables the automatic
mining of rocks with varying hardness. In [61], a TBM
cutter-changing robot was designed using binocular visual
recognition and positioning. In Poland, extensive research
has been conducted on the application of machine vision
technology in roadheader cutting institutions. For instance,
[95] discussed the possibility of utilizing a stereovision sys-
tem to calculate the distance between the pick holder base
and the roadheader cutting head side surface. Similarly, [49]
and [96] presented a method for detecting the side surface
shape of the cutting head. They also determined the boom
[97] and cutting head [98] vibrations of the roadheader during
cutting based on an analysis of the time-lapse pictures of the
recorded footage obtained from high-speed cameras using
dedicated TEMA 3D software. The aforementioned studies
significantly contribute to enhancing the intelligence level
of tunneling equipment and enabling automatic mining of
underground roadways.

B. ANCHORING AND SUPPORTING SYSTEM
In addition to roadway excavation, roadway support is also
a crucial technique in underground coal-mining engineering.
As depicted in Fig. 9, the current coal roadway supporting
methods encompass both passive and active supporting tech-
niques [99]. Among various methods, the bolt-supporting
system is the most widely used one at present, accounting
for over 60% of the proportion in China. In some coal mines,
this proportion has even exceeded 90% [100]. The bolt sup-
port involves several operation steps, such as net-lapping,
steel belt installation, drilling, anchoring agent loading, and
bolt nut pre-tightening. Among them, many require manual
operation, which reduces support efficiency and significantly
restricts the speed of roadway tunneling. Therefore, improv-
ing the automation of coal mine support operations is an
important task in the coal mine intelligence process [101].

According to statistics in the literature, the application
of machine vision technology in tunnel anchoring systems
can be roughly divided into two categories: bolting support

FIGURE 9. Coal roadway support patterns [99].

theory and bolting support equipment. The first method uses
the digital image correlation (DIC) method to explore road-
way bolt support theory and investigate the mechanism of
anchor-solid characteristics in different environments. The
other focuses on applying machine vision technology to
anchoring protection equipment to improve the intelligence
level of underground anchoring engineering.

During the tunnel anchoring operation, various factors
inside the coal rock will affect the strength and stability of the
anchoring effect, such as rock creep deformation, corrosion
factors, rock cracks [102], and the surrounding rock loose
circle. Therefore, it is necessary to study the characteris-
tics of anchor solids and bolting support theory. The digital
image correlation (DIC) method can determine the correla-
tion between the deformed and undeformed images of the
object [103], which has also been widely used in the study
of anchor solid characteristics. For instance, to investigate
the reinforcement effects of specimens containing a single
fissure, [104] employed the DIC method to monitor the dis-
placement fields, strain fields, and other parameters of unre-
inforced and reinforced specimens, respectively. To study
the anchoring characteristics of anchors in a non-uniform
restricted state, which often exists in anchoring engineering,
[105] used DIC technology to establish an indoor half-anchor
model and obtained the load-displacement relationship and
failure mode in a pull-out test. The above studies on the
mechanism of anchor solids in deep-rock geomechanics play
a positive guiding role in practical projects of bolt support
in underground engineering. They contribute to the develop-
ment of relevant theories and enhance the effectiveness of
anchoring systems in real-world applications.

In roadway construction, the extensive use of tunnel-
ing equipment has greatly improved the tunneling speed.
However, as described above, the process of anchoring and
supporting is intricate and time-consuming, contributing to
the occurrence of the ‘‘mining and excavation imbalance’’
phenomenon, which significantly affects the efficiency of
coal production. Therefore, many enterprises and researchers
at home and abroad are actively researching anchorage tech-
nology and equipment, seeking solutions to these challenges,
and improving the automation and intelligence degree of
anchorage operations [106].
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The application of machine vision technology in automatic
and intelligent anchorage construction primarily focuses
on two aspects. One is the automatic renovation of tradi-
tional anchoring techniques. For example, [107] proposed
an improved YOLOv5s model to realize intelligent iden-
tification and spatial positioning of the steel belt anchor
hole during roadway support. Coincidentally, [108] pro-
posed a YOLOv7 bolt mesh-detection algorithm combining
the image enhancement and convolutional block attention
module. In the anchoring process of rock bolting jumbos,
it is essential to consider deformation errors caused by
mechanical arm loads and dead weights. Through real-time
monitoring of the compliance deformation of the boom, [109]
completed the bolting jumbo boom positioning, ensuring the
efficiency and quality of roof bolting construction. After
tunnel anchoring, with the passage of time and the progress
of production, the bolt support function might decrease or
even fail, posing risks to miners’ safety. Utilizing a roadway
inspection robot as the platform, [110] proposed a rapid visual
bolt-anomaly detection method that assesses whether the bolt
is loose by measuring changing characteristics of the bolt.

With the proposal of the ‘‘Mine Equipments Robotization’’
strategy, the other application direction of machine vision
in the automatic bolt construction is to abandon traditional
technics and develop new anchoring equipments, such as
the integrated tunneling supporting machine, drilling anchor
robot, etc. Employing a laser radar sensor and camera, Pro-
fessor Ma’s team [111] designed a gantry drill-anchor robot
to calculate the motion control quantity of each part of
the robot to avoid collisions between the boring crown and
the anchor network and ensure the accurate alignment of the
drilling rig. Based on the principle of monocular vision, [112]
proposed a method of body positioning measurement of a
bolting robot, laying the foundation for the localization con-
trol of the mining face and the automation and unmanned
bolting. In the process of ‘‘mine equipment robotization’’, the
anchoring operation robot still has plenty of room for further
development.

With the rapid development of vision recognition and
processing technology, the visual measurement technique
has also been applied to monitor the roadway surround-
ing rock deformation. For instance, [113] proposed a visual
multi-dimensional deformation monitoring system for tunnel
primary support, which can monitor and analyze the crown
settlement 2D deformation, peripheral convergence, and the
3D overall supporting effect. Focusing on the research goal of
‘‘intelligent sensing of roof quality at coal entry tunneling’’,
[114] constructed a fully automatic statistical system for
discontinuity parameter analysis based on digital image pro-
cessing technology and verified the reliability of this system
through industrial tests.

C. MINING TRANSPORTATION SYSTEM
As one of the threemajor tunneling systems, themining trans-
portation system mainly consists of the main transportation
and auxiliary transportation systems. The main transportation

system is responsible for conveying the coal and gangue cut
by the roadheader, while the auxiliary transportation system
handles the transportation of support materials. Depending on
the excavation line, commonly used transportation equipment
in fully mechanized tunneling faces can be categorized into
two types: belt conveyors and mineral shuttle trucks. Belt
conveyors are suitable for long-distance and high-volume
transportation with high reliability. While, mineral shuttle
trucks are suitable for short-distance and low-volume trans-
portation, offering convenient turnover.

With the proposal of the ‘‘Intelligent Mine’’ concept,
advanced technologies such as the Internet of Things, big
data, sensing detection, and information processing can be
utilized to ensure safe, reliable, green, and efficient operation.
In the process of intelligent transportation, fault monitoring
plays a crucial role. Perception of transportation parameters,
such as coal flow and belt speed, forms the basis for intelli-
gent speed regulation of the belt conveyor [115]. In addition,
it is necessary to improve the intelligence level of aux-
iliary technologies, including energy-saving, transportation
scheduling, and personnel safety behavior monitoring. The
specific workflow of the visual intelligent monitoring sys-
tem in the transfer and transportation system in a mine is
shown in Fig. 10, encompassing three main steps [116]. First,
target-detection technology is used to extract target objects
from the collected images. The objects are then automatically
classified according to the extracted features. Finally, event
identification technology is employed to determine whether
the detected information triggers a set of event identification
rules. If triggered, alarms and control actions are initiated.
Otherwise, cycle detection continues.

1) ANOMALY INTELLIGENT MONITORING
As the main transportation equipments in mine production,
belt conveyors can easily get out of order when operating
continuously under high intensity in the harsh environment
of a coal mine. For instance, the wire rope core inside the
conveyor belt may tear or become damaged due to driv-
ing tension. Prolonged usage can also result in longitudinal
tearing, scratching, off tracking, skidding, roller damage
and other faults. Any issues can disrupt normal production
and even threaten miners’ safety. Therefore, automatic fault
monitoring of conveying systems is crucial for ensuring
the realization of intelligent transportation system operation.
Equipment safety is also a critical aspect of mine video
monitoring and management [7]. At present, machine vision
technology is widely applied in intelligent fault monitoring
of transfer and transportation systems, with the following key
applications.

(1) Identification and positioning of longitudinal tearing of
conveyor belt.

In the material transportation of coal mines, hard impuri-
ties like schistose gangue and metal anchors may scratch or
even break the conveyor belt, leading to longitudinal tear-
ing. In general, the damage distance of the belt increases
rapidly if the damaged part cannot be detected or repressed in
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FIGURE 10. The workflow of visual intelligent monitoring system in the transfer and transportation system in mine [116].

time. Subsequently, during maintenance, the entire belt must
be removed and replaced, resulting in prolonged production
interruptions. In recent years, machine vision has emerged
as a popular research direction for identifying and locat-
ing longitudinal tears in conveyor belts. Ponsa et al. [117]
used four area array cameras to capture conveyor belt
images and developed a computer-vision detection system.
Li et al. [118] proposed a modified SSR algorithm for detect-
ing tear features. Yang et al. [119] proposed an algorithm
to obtain and analyze the characteristic function of a lon-
gitudinal tear by transforming a grayscale image into a
one-dimensional vector. Some deep learning algorithms have
also been applied [120]. By deeply integrating the Mobile
Net and Yolov4 networks, [121] identified multiple types
of belt damage, such as belt tearing and surface wear. The
lightweight network design enables identification speeds of
up to 70.26 FPS. However, due to the challenging under-
ground working conditions, as well as the presence of surface
residual coal and belt surface scratches, it is hard to achieve
good detection effects robustly, if the edge or region is
directly extracted from the original images. To address these

issues, researchers have explored various new visual detec-
tion methods, as depicted in Fig. 11.

The utilization of thermal imaging [122] in the mining
industry offers a wide range of research opportunities in view
of heat production, simultaneously reducing the influence
of environmental interference factors. Tiezhu Qiao’s team at
Taiyuan University of Technology in China has conducted
extensive research on this topic. For example, [19] used an
individual infrared camera to extract the connection domain
of tear features for early warning of conveyor belt longitudi-
nal tearing. Reference [123] proposed an integrated binocular
visual detection (IBVD) method to highlight the characteris-
tics of the longitudinal tear part by merging synchronously
collected infrared images and visible light images. Soon after-
wards, [124] proposed a dual-band infrared detection (DBID)
method to extract tear features by combining the complemen-
tary characteristics of mid-infrared and long-infrared vision.
The experiments verified that DBID achieves higher accu-
racy in dark environments compared to the previous IBVD
method. Besides, to improve the robustness caused by drastic
changes and uneven illumination, Wang et al. [125] proposed
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FIGURE 11. Visual detection methods of conveyor belt longitudinal tearing. (a) visible light imaging [120], (b) thermal imaging [19],
(c) line laser detection [127], (d, e, f) detection results of above methods.

a classifier training method based on the Haar-AdaBoost and
Cascade algorithm.

In addition to thermal imaging, another approach is the
utilization of a line laser as a strong light source to minimize
the impact of environmental interference factors. When a
longitudinal tear occurs in the conveyor belt, the contour
line formed by the laser source presents fracture features.
A visual recognition system, incorporating both laser and area
light sources, was designed in [126] to prevent longitudinal
tears based on multi-feature information such as abrasions,
incomplete tears, and complete tears. Li et al. [127] designed
a monitoring system based on a line laser and ARM. In this
system, the skeleton representation of the stripe centerline
was first extracted using the maximum pixel value method.
By employing multiple sets of lasers, the algorithm presented
in [128] effectively expanded the detection area, capturing
complete and more pronounced tear characteristics. To fur-
ther improve detection accuracy, deep learning methods can
be used to identify conveyor belt damage. The audio-visual
fusion (AVF) detection method in [129] used both a vis-
ible light CCD and a microphone array to collect images
and sounds of the conveyor belt in different running states.
Then, the principal component analysis (PCA) method was
employed tomerge and classify the image and sound features,
which improves the detection accuracy and reliability.

(2) Deviation monitoring of the conveyor belt
In addition to belt tearing, belt-off tracking and skidding

are among the most common and influential faults in the
belt conveyor operation process. As early as 1990, Australian
scientist Pro. Harrison [130] conducted an extensive study on
this topic. He emphasized that when the belt center deviates
from the original geometric center line, it results in uneven
force distribution across the belt, leading to deviations in the

driving direction, material leakage, belt tearing, or skidding.
To effectively reduce pecuniary loss, the belt off-tracking
fault should be detected and restrained as soon as possible.
In recent years, machine vision technology has also been
applied to the deviation detection of belt operation. The
process typically involves three steps:1) conveyor belt area
segmentation, 2) edge contour extraction, and 3) linear fea-
ture extraction and deviation determination of the conveyor
belt edge. Literature [131] proposed a belt deviation detection
system based on computer vision by increasing the mine con-
veyor image clarity under high dustiness. Collecting real-time
images of the conveyor belt using a linear-array CCD camera,
[132] proposed the average graying method as a rapid image
segmentation algorithm and designed a deviation feature vec-
tor composed of deviation degrees and offsets to inspect
the belt offset. Treating two vertically aligned laser beams
as reference lines, [133] measured the distance between the
conveyor belt edge and them to provide an intuitive indication
of belt deviation.

Although the machine vision detection method has made
some progress in detection accuracy, timeliness is not guaran-
teed owing to the large amount of calculation. Consequently,
deep learning has been gradually employed for compre-
hensive fault detection in coal conveyor belts. Reference
[134] tackled the challenge of rapidly extracting features
and determining deviations in conveyor belt edges within
complex backgrounds by enhancing the general-purpose
object detection network YOLOv5. Similarly, [135] pre-
sented a real-time conveyor belt detection algorithm that
relies on a multi-scale feature fusion network. This
algorithm showcases outstanding performance, particularly
in accurately segmenting the conveyor edge with minimal
breakpoints.
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(3) Damage detection of conveyor belt wire rope core
Steel rope core belts are widely used to enhance the tensile

strength of long-distance mining belt conveyors. However,
after prolonged usage, they are susceptible to various forms of
damage, such as internal steel core rust, core fractures, or con-
veyor joint elongation. These failures can lead to major safety
accidents and significantly impact production. To effectively
conduct nondestructive testing and maintenance of wire rope
core conveyor belts, numerous researchers worldwide have
conducted extensive researches [136]. Aport [137] proposed
an artificial neural network diagnostic method based on
image processing for identifying belt splices and damages,
which was successfully implemented at the Richards Bay
Coal Terminal in South Africa. With the rapid development
of X-ray detection and image processing, many scholars
have attempted to detect wire rope cores and joints using
X-rays [138], [139].

(4) Fault diagnosis of belt conveyor roller
The belt conveyor roller is also a critical structural com-

ponent responsible for transporting and carrying materials.
It rotates by friction with the conveyor belt, playing the role
of material bearing and reducing friction during the trans-
porting process. In a noisy environment at the tunneling face,
commonly used roller-running state detection methods, such
as sound-, pressure-, and temperature-based detection, might
fail. Therefore, noncontact measurement technologies, such
as thermal imaging and computer vision, have emerged as the
primary research focus for detecting roller faults. Utilizing an
infrared thermal imager to capture images of key mechanical
components of the conveyor, [140] realized the automatic
classification and identification of the motor, cylinder, and
roller based on the improved regional growthmethod. Obtain-
ing infrared (IR) and RGB videos of a conveyor system from
amobile robot, [141] proposed an automatedmethod to deter-
mine overheated idlers. In a similar vein, [142] employed an
inspection robot to take video of the roller, enabling fault
diagnosis by comparing the estimated linear velocity of the
roller from the video with the actual belt speed. Analogously,
[143] designed a conveyor inspection robot based on a UGV
platform. It combined RGB images and IR data to segment
the area of overheated rollers.

(5) Foreign object recognition of belt conveyor
Belt tear testing primarily focuses on early detection

of longitudinal tears in order to promptly mitigate their
length and impact on mine production. However, it cannot
fundamentally prevent the problem of longitudinal belt tear-
ing [144]. During normal delivery, this phenomenon rarely
occurs. They typically occur only when the belt seriously
deviates or when external sharp objects, such as anchor rods,
angle steel, or large gangue, penetrate the belt, potentially
causing scratches and tears [145]. Therefore, in line with the
cause of the accident, if the foreign object can be accurately
detected and removed in the early stage, it can effectively
prevent longitudinal tearing to a certain extent and ensure
the safe and stable operation of belt transportation [146].
Traditional foreign body detection methods for coal mine

belt conveyors include manual, metal, and radar detection.
However, these methods suffer from low detection effi-
ciency, limited applicability, and high cost. In recent years,
with the continuous research on machine vision [147] and
deep learning, vision-based detection has become the main-
stream method in the field of artificial intelligence. Another
approach [148] used a multimodal imaging system (polar-
ization camera) to generate two images and differentiate the
material and color properties of foreign objects from the raw
coal conveyor belt. Reference [149] proposed a modified
YOLOv4 algorithm for foreign-object detection on a belt
conveyor in a low-illumination underground environment.
Similarly, based on the SSD algorithm, [59] proposed the
video detection of foreign objects on a belt surface.

As can be seen from the above, target identification and
positioning based on machine vision technology have rapidly
developed in the field of fault monitoring of conveyor belts
and their components. To realize intelligent fault monitor-
ing of the transfer and transportation system, in addition
to installing detection devices within the machinery, if the
field environment is spacious, an autonomous robot can be
employed for auxiliary detection. For example, [150] used
an autonomous legged inspection robot to monitor the belts
of conveyors in particularly dangerous and inaccessible loca-
tions. Moreover, based on an Unmanned Aerial Vehicle
(UAV), [151] used a thermographic inspection and signal
processing technique to automatically identify belt conveyor
roller failures in the mining industry. Similarly, [143] pro-
posed an Unmanned Ground Vehicle (UGV) platform as
a virtual miner that will ride along the belt conveyor and
collect information about conveyor operation using infrared
thermography for belt conveyor maintenance.

2) TRANSPORT PARAMETERS INTELLIGENT SENSING
The intelligent perception of transportation parameters and
states is the basis for ensuring the safe and stable operation of
the transportation system. It is also the premise of realizing an
‘‘Intelligent Mine’’. According to statistics in the literature,
the applications of vision in the transportation parameters
of intelligent sensing mainly include coal flow parameter
monitoring and coal gangue identification.

(1) Coal flow parameters monitoring
In the main transportation system, the coal flow parameters

serve as key indicators for measuring the transport capacity
and regulating system speed. Realizing the parameter online
detection can effectively reduce operating costs and achieve
energy conservation and emission reduction goals [152].
The coal flow parameters encompass height, sectional area,
volume of the coal pile, and coal flow movement speed.
Monitoring methods based on vision can be divided into
monocular, binocular, and structured light methods.

The monocular vision monitoring method uses only a
single camera to complete positioning tasks, which limits
its depth perception ability. However, it offers a wide field
of vision. By employing the Swin Transformer attention
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FIGURE 12. Vision recognition methods of coal and gangue [160].

mechanism to address the limitations of the traditional con-
volutional receptive field, [153] introduced an enhanced
YOLOv5 real-time coal flow detection algorithm. This
improvement aims to prevent power loss and belt damage.
Nevertheless, the monocular method can only carry out
qualitative detection of coal flow to realize coal amount clas-
sification. Quantitative detection cannot be achieved, which
can only be used for belt conveyor fuzzy control.

Applying binocular vision method to coal flow volume
measurement [20], it is easy to calculate the coal flow rate
with the advantages of simple operation and light equip-
ment. Based on the mathematical model of the coal quantity
distribution of the entire coal flow transportation system,
an intelligent control system with a self-learning function
developed in [154] can make the belt operate at the most eco-
nomical speed. By accurately measuring the instantaneous
coal quantity and belt speed, energy savings and green pro-
duction can be achieved. Reference [155] developed a coal
weight detection system using 3D scene reconstruction and
T-S fuzzy reasoning based on a binocular 3D information
extraction module. Although the binocular visual method can
realize the quantitative detection of coal flow, it is currently
not suitable for practical applications due to its low measure-
ment accuracy and slow speed.

The structured light vision method [156] first actively
projects structured light to the surface of the measured object
and subsequently determines its size parameters by measur-
ing the pattern deformation before and after the modulation.
On the basis of 3D point cloud reconstruction of the coal stack
and yard in the absolute coordinate system, volume calcula-
tion and weight estimation systems were established in [157]
based on image processing. Reference [34] used point cloud
data collected through a speckle-structured light acquisition
system to calculate the volume of the coal mass and monitor
the coal flow of the conveyor. Using an industrial camera to
collect dynamic images of a conveyor belt irradiated by a
laser transmitter, [158] presented a method for coal quantity
detection and classification based onmachine vision and deep
learning. In order to improve the accuracy and efficiency, the
structured light vision method can also be combined with
monocular or binocular vision. Li et al. [159] employed a

method that combines binocular stereo vision with structured
vision to calculate coal flow rate by uniformly sampling and
integrating coal pile point clouds within a given time frame.

(2) Coal gangue identification
In the coal quality management system undermines, the

quality management of the tunneling face is much more
difficult than that of the mining face. During the tunneling
process, to ensure roadway height and stability, sometimes a
part of the roof rock must be broken additionally, resulting in
more gangue mixed with coal [160]. According to statistics,
the coal output of the tunneling face generally accounts for
10% to 20% of the total mine output. It is estimated that
owing to the influence of the tunneling face, the ash content
of the coal in the entire mine can increase by 1% to 2%.
This demonstrates that the mixing of coal and gangue in the
heading face directly affects the coal quality of the mine.
Therefore, it is essential to implement feasible measures for
the identification and sorting of gangue in the heading face.

Commonly used methods for coal gangue separa-
tion include radiation identification and visual identifica-
tion [161]. According to the degree of intelligence, visual
identification methods can be further divided into traditional
methods that require artificial feature extraction and intel-
ligent methods that can automatically extract characteristics
through deep learning and neural networks. The specific steps
are illustrated in Fig. 12 [160].

Traditional recognition methods achieve the purpose of
distinguish coal and gangue by extracting artificially selected
image features. In 2009, Ma [16] used wavelet moments to
extract gangue histogram characteristics, laying the ground-
work for automatic gangue separation. Applying least squares
support vector machine (LS-SVM) as the image classifier,
[162] trained three classifiers using the features of grayscale,
texture, and the joint feature combining skewness with con-
trast to reduce the average coordinate errors for coal and
gangue sorting robots. To avoid the shortcomings of tradi-
tional methods (radiation, pollution, etc.) effectively, [163]
proposed a new solution for the recognition of coal and
gangue using multispectral imaging. By combining LBP
feature extraction with GS-SVM, the model achieved a pre-
diction accuracy of 96.25%.
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In contrast to traditional methods, deep learning recog-
nition methods efficiently identify coal and gangue by
independently extracting features and learning network
parameters through a deep learning convolutional neural
network model. Reference [164] proposed an improved
YOLOv4 algorithm as a classic deep learning method for the
intelligent and highly accurate recognition of coal and coal
gangue. By applying cluster analysis to different datasets,
this approach achieved better anchor values. Reference [165]
improved the classic convolution neural network LeNet-5
from the input sample size, activation function, network
depth, size and number of convolution kernels, classification
function, etc., to solve the problems of traditional coal gangue
image recognition methods, such as difficult extraction of
artificial features and low accuracy of recognition. For seg-
regating coal and gangue, in [166], based on a powerful
trained image recognition model, VGG16, the concept of
transfer learning was introduced to build a custom CNN
model. This approach overcame the challenges of massive
trainable parameters and limited computing power linked to
the building of a brand-new model from scratch. Coal gangue
identification methods based on deep learning exhibit higher
efficiency than traditional methods. However, because of the
specificity and complexity of the gangue classification envi-
ronment, it is still necessary to build efficient gangue datasets
and conduct extensive research on the generalization, real-
time performance, and robustness of recognition algorithms.

3) AUXILIARY FACILITIES INTELLIGENCE
Ensuring the safe, reliable, and energy-efficient operation of
the transportation system is crucial for the overall production
of a mine, making it an important aspect at the fully mecha-
nized tunneling face. Apart from system failures, intelligent
monitoring, and parameter perception, improving the intelli-
gence level of auxiliary facilities is necessary. This includes
optimizing energy savings, transportation scheduling, and
monitoring personnel safety behavior.

For a coal mine transportation system, the essence of vision
applications in optimal energy saving still lies in the mon-
itoring of coal flow information. Based on the actual coal
flow on the belt conveyor, conveyor frequency control can be
realized to achieve energy savings in the main transportation
system of coal mines. Reference [167] proposed an opti-
mized energy-saving control system for a mine belt conveyor
based on laser-assisted binocular vision technology, which
can adjust the belt’s operating speed intelligently according
to the coal flow size through a PLC fuzzy controller.

In terms of intelligent transportation scheduling, [168]
devised a video-assisted monitoring system with the capabil-
ity to extract vehicle information using license plate data from
the control system’s database This functionality enhances
decision-making support for intelligent scheduling.

In coal production, there are also many conveyer-
transportation accidents caused by unsafe personnel behav-
ior. Utilizing infrared images, [169] applied the enhanced

Lucas-Kanade optical flow method to extract the motion
characteristics of moving objects. This approach facilitates
the detection of moving personnel for trackless rubber-tyred
vehicles in coal mines, thereby ensuring personnel safety.
Addressing personnel management in belt and winch lanes,
Ma et al. [170] applied their designed intelligent monitoring
and recognition system underground. This system achieves
personnel intrusion identification, personnel crossing detec-
tion, and personnel presence recognition, ensuring the safety
of individuals throughout the production process.

Equipment robotization is also an important development
direction for intelligent transportation systems. To address
this, [171] proposed a novel robotic method for belt con-
veyor structure inspection with a set of sensors, including a
microphone, accelerometers, laser, and cameras. To achieve
coal gangue image recognition and robot sorting control,
[172] presented an automatic coal and gangue separation
robot system based on visual information, machine learning,
and deep learning. With the in-depth development of mine
intelligent construction and the continuous improvement of
mining management level, it is gradually possible to realize
green energy saving and efficient intelligent operation of the
transfer and transportation system at the tunneling face by
using new materials, processes, and technologies.

D. SAFETY AUXILIARY SYSTEM
The comprehensive mechanized rapid tunneling of roadways
is a systematic project that involves the coordinated operation
of tunneling, anchoring, and transportation equipment, form-
ing an integrated ‘‘Dig-Anchor-Transport’’ system. These
three equipment components work together to achieve con-
tinuous, balanced, and efficient production of coal mine
roadways. However, in automation and intelligence pro-
cesses, various factors restrict the development of fully
mechanized tunneling technologies at the working face.
Apart from the performance of large-scale equipment, the
advancement of safety assistance equipment also plays a cru-
cial role. Machine vision technology has found applications
in underground tunneling safety auxiliary systems, including
personnel safety monitoring, tunnel deformation monitoring,
and fire monitoring and prevention.

1) PERSONNEL SAFETY MONITORING
In recent years, the safety production techniques of coal
mines have been greatly improved, resulting in a reduction
in mining accidents to some extent. However, due to the
high-risk nature of the industry and the challenging under-
ground environments, ensuring coal mine safety remains a
persistent challenge. Mining accidents continue to occur.
Ensuring personnel safety remains a primary task of mining.
The high concentration of dust and noise produced in the
roadway tunneling process will make it difficult for the staff
to effectively identify people and objects in their surround-
ings. The dreadful condition keeps the machine driver and
persons in the vision limited vision zone in dangerous envi-
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ronments because it can easily cause casualties or damage.
In addition, some dangerous areas in coal mines are prohib-
ited from entering. Therefore, effective personnel detection
methods are essential to ensure safety. Machine vision tech-
nology has been widely applied in underground personnel
safety and security systems, primarily focused on disaster
prevention through personnel identification and tracking.
After comprehensively considering various actual influenc-
ing factors, such as large vibration, high dust concentration,
and explosion suppression, [173] proposed a personnel iden-
tification system at the tunneling face to monitor workers in
hazardous areas during operations, aiming to reduce safety
accidents like squeeze injuries. To meet the demands of
real-time monitoring and precise localization of underground
mining personnel, [174] introduced an enhanced YOLOv4
network based on thermal infrared images, enabling the
recognition of underground personnel identities. Similarly,
[175] devised a real-time video analysis system for coal mine
surveillance. Through collaborative cloud-edge processing,
they notably improved the AP value of the FL-YOLO single-
scene pedestrian dataset to an impressive 80.7%. Based on the
real-time acquisition of a human skeleton point map by depth
vision, [176] constructed a sphere-swept convex hull collision
detection model for auxiliary personnel. Then, a human-
machine safety collision avoidance method was proposed
from the perspective of the drilling anchor robot control sys-
tem. Evidently, these methods effectively ensure personnel
safety through personnel identification and detection.

2) TUNNEL DEFORMATION MONITORING
The pressure exerted by surrounding rocks on roadways
increases as mining depth increases, which easily causes
strata deformation and failure and hinders underground trans-
portation and ventilation.When the situation is serious, it may
result in equipment damage and even personnel casualties.
Therefore, it is of great significance to ensure the safe produc-
tion of coal mines by timelymonitoring roadway deformation
and accurately assessing the state and changing trends of
the surrounding rock. Machine vision technology enables the
monitoring of roadway deformation by observing the ‘target’
within the visual field. Based on the ‘target’, which could be
either an artificial or existing structural feature, commonly
used application methods can be divided into the indirect and
direct types.

Indirect methods need to preinstall markers, LED lamps,
or targets with special patterns on the roadway surface and
indirectly monitor the deformation of the roadway by ana-
lyzing changes in artificial features in the captured video.
As a result, the obtained data points are relatively sparse.
However, compared to the direct method, the amount of data
is smaller, and the processing speed is faster. Xu et al. [177]
proposed a real-time monitoring method based on monocular
vision. This method utilized fixed circular diagonal markers
on the roadway wall as the information transmission medium
to reflect tunnel deformation. By restoring the geometric

characteristics and deformation parameters of the roadway
section, deformation indices were acquired and processed.
Subsequently, they [178] extended their approach by utilizing
indicators such as surrounding rock deformation, velocity,
and acceleration as parameters to enable real-time tunnel
monitoring. This was undertaken with the aim of achieving
early warning for surrounding rock dynamic deformation and
potential failure in deep roadway. By using monocular vision
to detect the 3D coordinates of designed artificial target points
coated with fluorescent paint, [50] achieved automatic and
accurate monitoring of roadway surface displacement during
TBM tunneling.

In contrast, direct methods use cameras to capture tunnel
images directly. After performing feature matching and point
cloud registration, these methods reconstruct the tunnel’s
3D information, offering a visual representation of roadway
deformation. The accuracy of monitoring and information
obtained through direct methods is notably higher than that
achieved through indirect methods, which, in comparison,
demandmore intensive computational processing capabilities
[179]. By harnessing DIC, [180] introduced an innovative
approach using the image coefficient of variation (ICV) to
detect early signs of surrounding rock damage, thereby pre-
senting a novel warning indicator for tunnel instability. In a
similar vein, [181] employed a handheld structured light
scanner for precise 3Dmapping within mining environments.
Addressing the challenges posed by low-light conditions on
point cloud quality, [182] proposed a Zero-reference Deep
Learningmodel customized for underground scene 3D recon-
struction, achieving an impressive reconstruction accuracy of
up to 98.58%. Meanwhile, [183] employed a Kinect depth
camera for image capture, accompanied by an improved iter-
ative closest point algorithm, facilitating 3D reconstruction
in mining contexts. Additionally, [184] collected mining data
and reconstructed point clouds using RGB-D cameras to
repair the holes in the original point clouds obtained from 3D
laser scanner. Moreover, [185] applied machine vision recon-
struction methods to underground patrol robots to monitor
deformation in coal mine tunnels.

3) FIRE MONITORING AND PREVENTION
Mine fires pose a significant threat to the safety of coal
production. According to the cause and formation conditions,
they can be categorized into two main types: spontaneous
combustion fires and exogenous fires [186]. Spontaneous
combustion fires account for approximately 90% of the
total number of mine fires in China, as reported by survey
statistics. On the other hand, exogenous fires mainly refer
to electrical fires, which mostly occur in electromechanical
chambers, conveyor belts, and electric cables.

For detecting spontaneous coal combustion, the primary
methods mainly involve using infrared thermal (IR) imag-
ing cameras for identifying fire sources. Reference [187]
improved monitoring production capacities with portable
thermal imaging cameras, which greatly simplified the efforts
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and costs associated with coal self-ignition prevention. While
infrared detection is highly sensitive to temperature mea-
surements compared to other methods, its accuracy can be
influenced by factors such as detection depth and radiation
heat from coal self-ignition. Moreover, it can detect many
other temperature changes that are not caused by spontaneous
combustion, leading to potential misjudgments. Therefore,
to enhance monitoring accuracy, it is necessary to employ
a multi-sensor information fusion technology to fuse it with
others.

Electric sparks in mines can lead to thermodynamic dis-
asters, including leakage electric sparks, induction electric
sparks, and electric sparks in the shell. Detecting these sparks
promptly allows for the implementation of preventive mea-
sures and control actions to reduce or even avoid disaster
accidents. To efficiently identify early fire sources, [188]
employed an infrared CCD as a sensor. By inputting the
extracted flame characteristics into a neural network, real-
time fire detection can be accomplished. During transporta-
tion, the friction between the belt conveyor tape and coal
or gangue generates heat, which also poses a hidden risk of
fire [189]. Nevertheless, the accuracy of fire identification
and positioning may be affected by some factors, such as
high-concentrate smoke, long measurement distance, uneven
illumination, and even red clothes, which need to be further
improved by intelligent algorithms. Reference [190] applied
an artificial neural network to mine conveyor fire detection,
which effectively improved the accuracy of the existingmeth-
ods.

Coal mine fires are often accidental. Rapid and accurate
detection of early fires is of great practical significance for
reducing disasters. In this regard, [18] designed a structure
for early fire detection based on image and video processing.
By utilizing color information to extract the flame region
and employing the Bayes classifier to recognize dynamic
fire features, the accuracy of early fire prediction in coal
mines was significantly improved. Similarly, [191] also found
that video-based fire detection (VBFD) is a more effective
and robust approach for providing timely fire detection and
warning than traditional CO detectors in typical Australian
underground mines. Another study [192] treated smoke as
an indicator of early fire and employed the optical flow
method to predict the predominant motion direction of
smoke. By studying the characteristics of underground smoke
and training an SVM smoke classifier, it successfully pre-
dicted early coal mine fires.

In addition to using fixed devices to monitor fire sources,
if the underground environment and space permit, coal mine
fire inspection robots can be employed to perform environ-
mental detection tasks [9]. For instance, [193] employed the
high-definition camera mounted on an inspection robot to
capture video images. By extracting and analyzing multiple
flame features and integrating information from an infrared
thermal imager and a smoke sensor, precise recognition
and monitoring of smoke and flames within mines were

successfully achieved. Similarly, [194] utilized a particle
system-based simulation algorithm to process flame images,
offering an efficient fire hazard early warning for intelligent
patrol robots in mines. In the past decade, although fire
inspection robots have been extensively researched, devel-
oped, and applied on a small scale, most of these efforts
remain in the initial exploration stage. Accordingly, achiev-
ing intelligent unmanned inspection of the entire mine still
requires further advancements.

IV. RESEARCH CHALLENGES AND FUTURE
PERSPECTIVES OF MACHINE VISION IN FULLY
MECHANIZED TUNNELING FACES
A. RESEARCH CHALLENGES
1) LOW ENVIRONMENTAL ADAPTABILITY
Obtaining complete, effective, and clear image information is
crucial for accurate detection in the visual system. However,
the unique underground environment in coal mines presents
challenges for machine vision systems. The fully mechanized
tunneling process often requires artificial lighting to compen-
sate for the lack of natural light underground, resulting in
images with low light levels and uneven illumination distri-
bution compared to surface environments. In addition, during
coal rock cutting, the strong vibration from the roadheader
and the presence of high-concentration mine dust contribute
to noise and reduced image resolution. These harsh condi-
tionsmake later feature extraction and image processingmore
challenging. Therefore, when applying visual technology to
coal mines, it is essential to consider the influence of complex
environmental factors on the system. Furthermore, during
the design and selection process, it is beneficial to choose
systems that not onlymeet explosion prevention requirements
but also have functions such as dust removal, image stabiliza-
tion, and illumination adaptation. These features can improve
the quality of digital images and reduce the difficulty of
feature extraction.

2) NARROW FIELD OF VIEW FOR IMAGING
In mines, the narrow roadway space and the presence of large
construction equipment often result in incomplete images
with missing information, as the light path can be easily
blocked. One approach to address this challenge is to use
extreme wide-angle lenses, which can effectively expand the
perspective to some extent. However, this may introduce
significant nonlinear distortion and increase the difficulty of
camera calibration. Another solution is to employ a mov-
able and rotatable visual platform or increase the number of
cameras to enhance the imaging range of the visual system
by improving its degree of freedom. However, in the subse-
quent stages, the collected images need to undergo motion
decoupling, feature extraction, and matching. Therefore, it is
currently a technical challenge to expand the perspective of
image acquisition equipment in order to efficiently capture
more scene information within a short measuring range.
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3) IMPROVEMENT OF INTELLIGENCE DEGREE
The core technology of visual detection at the tunneling
face is to obtain effective information through image feature
extraction, and then work out relevant parameters with the
parameter solution model, or complete the detection and
recognition of the target object using the artificial intelli-
gence algorithm. In the feature extraction stage, most existing
algorithms use fixed parameters that are unable to adapt to
changes in the environmental parameters. To ensure detec-
tion accuracy, the parameters should be adjusted in real-time
according to the actual situation. Therefore, in this stage,
an urgent problem to be solved is how to improve the intel-
ligence degree of the algorithm so that it can automatically
adjust the parameters according to the roadway environ-
ment, thereby increasing the precision and stability of feature
extraction. In the parameter solution stage, existing methods
primarily rely on predetermined solutionmodels to determine
relevant parameters by utilizing extracted feature informa-
tion. However, these solution models can fail when effective
feature information is partially occluded or cannot be col-
lected. Thus, a technical bottleneck in this stage is accurately
calculating specific parameter values using early-stage col-
lected images and intelligent algorithms when the manually
established solution model is inadequate. In the target detec-
tion and identification stage, existing recognition algorithms
exhibit limited adaptability in complex and unstructuredmine
environments. This limitation hampers their ability to meet
high real-time requirements, and they often exhibit hysteresis
and uncertainty. Consequently, the technical challenge in this
stage lies in improving the accuracy and efficiency of target
object recognition by incorporating new technologies such as
artificial intelligence algorithms, deep learning, and big data.

B. FUTURE PERSPECTIVES
Despite the challenges faced by machine vision applica-
tions in underground coal mines, the future holds promising
developments. Research is progressing towards multi-sensor
information fusion, equipment group collaborative control,
and digital twin-driven remote monitoring, as discussed
below.

1) MULTI-SENSOR INFORMATION FUSION TECHNOLOGY
Applying machine vision to roadway fully mechanized tun-
neling working faces offers several advantages, including
non-contact measurement, rich information acquisition, high
precision, and fast speed. However, the rugged environment
in mines, such as low illumination, uneven light distri-
bution, high coal dust concentration, and a large amount
of water mist floating in the air, can impact the qual-
ity of collected images and limit the generalization of the
visual system to some extent. To address these challenges,
underground visual detection systems can be equipped with
additional sensors, such as photoelectric sensors, ultrasonic
sensors, inertial measurement components, and electronic
total stations. By formulating the detection scheme of ‘‘Visual

Measurement +’’ and utilizing the sensor information fusion
technology with high robustness, it becomes possible to
effectively compensate for the limitations of visual measure-
ment, such as easily blocked measurement lines and poor
reliability. This approach improves the overall stability and
environmental adaptability of the detection system. Various
methods can be employed for sensor information fusion,
including neural networks, Bayesian estimation, Kalman fil-
ters, and D-S evidence theory. In addition, for the problems
of poor SNR and limited visual field range of a single vision
sensor, a multiple-view system can be employed to form
an informative synthetic image by integrating the original
captured images. This approach expands the visual coverage
and improves the overall understanding of the environment.
Nevertheless, it is important to note that there are still many
difficulties in multisensor information fusion. It has become a
hot topic of current research on how to effectively use redun-
dant information obtained from multi-source heterogeneous
sensors by combining their location, dynamic characteris-
tics, attribute parameters, and parameter selection or fusion
to form a reliable decision. These advancements will con-
tribute to the development of more reliable and accurate
decision-making systems in roadway fully mechanized tun-
neling working faces.

2) EQUIPMENT GROUP COLLABORATIVE CONTROL
TECHNOLOGY
The intelligent fully mechanized tunneling system in a coal
mine takes the roadheader as the leader, assisted by other
auxiliary equipment, to complete the roadway excavation
and the tunneling section accurate formation. Classified by
different work tasks, the system is comprised of various sub-
systems, including the cutting system, temporary supporting
system, drilling anchor system, transportation system, and
ventilation and dust removal system. According to the pro-
duction process of ‘‘tunneling-supporting-transportation’’,
realizing parallel operation between multiple systems has
been an effort direction for mining industries to improve the
efficiency of roadway tunneling. To achieve efficient and
intelligent completion of tasks in the multi-task and multi-
system environment, several challenges need to be addressed,
such as multi-task optimal matching, multi-task parallel
control and multi-system collaborative control. Therefore,
in addition to single-subsystem intelligent control, achieving
parallel operation of multiple tasks and intelligent collabora-
tive control among subsystems has become a crucial focus in
intelligent coal mine tunneling research. In view of the above
problems, the existing research methods mainly include rein-
forcement learning, genetic algorithms, agent algorithms,
P-learning, and PSO algorithms.

3) DIGITAL TWIN DRIVEN REMOTE MONITORING
TECHNOLOGY
The traditional remote control systems for roadway tunneling
mostly rely on surveillance videos and 2D planar informa-
tion. The forming quality of the roadway section depends
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entirely on manual operation experience with low reliability.
Recently, digital twin-driven remote monitoring technology
has been widely considered. It refers to creating a virtual
model of the physical system through virtual reality technol-
ogy, incorporating various sensors to gather equipment data.
The running state of the equipment is then replicated in the
virtual scene, enabling stable, reliable, and intuitive remote
monitoring. At present, in the field of coal mine equipment
remote control, digital twin technology has also obtained cer-
tain research results, such as the remote control systems for
coal winning machines and roadheaders [92]. While the orig-
inal remote monitoring systems relied on a single information
source with minimal transmitted data and low security risks,
digital twin-driven remote monitoring systems primarily rely
on visual sensors to obtain data source, supplemented by
numerous other sensors, which greatly increases the amount
of information data. As a result, there is a growing demand
for improved transmission speed, data quality, and infor-
mation security. Therefore, enhancing image transmission
efficiency and real-time data processing through computer
science, image compression, and other technologies, as well
as establishing a robust information security system, have
become crucial directions for advancing digital twin tech-
nology. These advancements are essential to ensure the safe
production of roadway excavation.

V. CONCLUSION
Due to the complex environment and low production effi-
ciency in fully mechanized mining working faces, the
adoption of intelligent and unmanned tunneling is becoming
an inevitable trend in the coal mining industry. Machine
vision technology, in the field of automatic detection, offers
advantages such as non-contact measurement, comprehen-
sive information acquisition, and fast data processing. Its
application in the roadway fully mechanized tunneling work-
ing face holds great significance in improving the efficiency
of fully mechanized mining, ensuring personnel and equip-
ment safety, and reducing accidents. This study focuses on
the application of machine vision technology in tunneling,
anchorage, transportation, and safety assistance equipment
based on task divisions at the tunneling face, supported by
specific engineering cases. By analyzing the structure and
detection principles of various visual detection systems in
different application scenarios, the technical performance,
workflow, merits, and drawbacks of machine vision tech-
nology in mines are clarified. However, due to the harsh
underground environment of coal mines, visual technology
encounters several challenges in specific applications, such as
environmental adaptability, narrow imaging fields, and insuf-
ficient intelligence. To address these challenges, the future
development of machine vision technology is expected to
focus on multi-sensor information fusion, equipment group
collaborative control, and digital twin-driven remote mon-
itoring technologies. As artificial intelligence algorithms
and image processing continue to advance rapidly, machine
vision technology will find wider applications in various

aspects of underground coal mines. These applications may
include equipment or personnel positioning, tracking, gaug-
ing, navigation, fault detection, disaster monitoring, and
rescue operations, enablingmore efficient detection and intel-
ligent feedback control. In the future, the intersection and
integration of machine vision with various new technologies
will continue to evolve, leading to innovative outcomes and
ultimately achieving the goal of unmanned intelligentmining.
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