
Received 11 August 2023, accepted 8 September 2023, date of publication 19 September 2023, date of current version 3 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3317293

Efficient and Compact Representations of Deep
Neural Networks via Entropy Coding
GIOSUÈ CATALDO MARINÒ, FLAVIO FURIA, DARIO MALCHIODI, AND MARCO FRASCA
Department of Computer Science, University of Milan, 20133 Milan, Italy

Corresponding author: Marco Frasca (marco.frasca@unimi.it)

This work has been supported by the Italian MUR PRIN project ‘‘Multicriteria data structures and algorithms: from compressed to learned
indexes, and beyond’’, under Grant 2017WR7SHH.

ABSTRACT Matrix operations are nowadays central in many Machine Learning techniques, including
in particular Deep Neural Networks (DNNs), whose core of any inference is represented by a sequence
of dot product operations. An increasingly emerging problem is how to efficiently engineer their storage
and operations. In this article we propose two new lossless compression schemes for real-valued matrices,
supporting efficient vector-matrix multiplications in the compressed format, and specifically suitable for
DNNs compression. Exploiting several recent studies that use weight pruning and quantization techniques
to reduce the complexity of DNN inference, our schemes are expressly designed to benefit from both, that
is from input matrices characterized by low entropy. In particular, our solutions are able to take advantage
from the depth of the model, and the deeper the model, the higher the efficiency. Moreover, we derived space
upper bounds for both variants in terms of the source entropy. Experiments show that our tools favourably
compare in terms of energy and space efficiency against state-of-the-art matrix compression approaches,
including Compressed Linear Algebra (CLA) and Compressed Shared Elements Row (CSER), the latter
explicitly proposed in the context of DNN compression.

INDEX TERMS Neural network compression, space-conscious data structures, weight pruning, weight
quantization, source coding, sparse matrices.

I. INTRODUCTION
Deep neural networks (DNNs) achieved state-of-the-art per-
formance in several real world applications [1], ranging from
speech [2] and image [3] recognition, to self-driving cars [4]
or playing complex games [5]. To achieve such notable
results, DNNmodels have often been over-parameterized [6],
which hampers their efficiency due to both an increase of
their memory demand, and of the complexity of matrix
multiplications required in their inference (forward) step,
typically in most layers of the network. Note that tensor
products, characterizing convolutional layers, fall in this
category, since they can be suitably reshaped into matrix
products. As a well-known example, the VGG19 network [7],
made up by 16 convolutional and 3 fully-connected (FC)
layers, requires 19 matrix operations for a single inference.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mostafa M. Fouda .

As a consequence, lowering the algorithmic complexity of
this operation and increasing the efficiency of its storage is
receiving lots of attention [8], [9], and several challenges
arose w.r.t. this target. Indeed, attempting to reduce the space
required to store the matrix, by leveraging some suitable
compressed formats, is not enough to enable efficient and fast
matrix-vector operations, if the compressed format does not
support it. To achieve this goal, instead, a frequent approach
is that of complying with two tasks: lossy compression of
a DNN weight layer matrix to lower the complexity, and
its subsequent lossless compact representation supporting
the matrix-vector multiplication. The first task consists in
altering or approximating the information contained in the
matrix to attain a size reduction, e.g., via low precision stor-
age, pruning/sparsification (that is, increasing the number of
zero-valued entries in the matrix), or quantization (reduction
of the number of distinct values). The second task, instead,
does not alter the matrix information, and it can achieve space

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

106103

https://orcid.org/0000-0002-4170-0922
https://orcid.org/0000-0003-1790-8640

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

reduction by reorganizing this information into appropriate
data structures, e.g., those used by the CSR or CSC formats
for sparse matrices. However, in order to be more efficient,
the input matrix should exhibit specific characteristics about
the probability mass distribution of its elements, which are
indeed induced by the prior lossy compression.

Many studies have already shown how most state-of-
the-art DNNs in various contexts can often undergo to
lossy compression to the detriment of negligible accuracy
drops [10], [11], [12], which encouraged researchers to
explore the field of DNNs compression. Among the different
approaches proposed, a plethora of works focused on lossy
compression, see for instance [11], [13]. In particular, pruning
and quantization, which induceweightmatrices characterized
by low entropy, allow to achieve higher compression ratios
when combined with suitable lossless formats. We will get
back to such methods through the paper.

However, most existing approaches are not bound to
specifically designed storage formats able to maximally
leverage their peculiar characteristics, or they do not support
the vector-matrix multiplication in the compressed format,
necessary for the network inference. To overcome such
limitations, in this work we propose two lossless matrix
storage formats tailored to be coupled with weight pruning
and quantization methods, and which allows the network
inference without re-expanding the network. We adhere in
this study to the idea of designing lossless compression
formats under the implicit assumption that the entropy of
the distribution of the matrix elements is low. Indeed, being
the minimal bit length of a data representation bounded
by the entropy of its distribution [14], it is reasonable to
aim at storing low-entropy matrices via data structures that
do not require high memory and computational resources.
This task, however, is very challenging, and only a few
works describe lossless compression formats allowing to
perform efficient operations on the matrices without their
re-expansion [15], [16], [17], [18], [19]. Traditional lossless
compression techniques, such as Gzip, are not applicable
because decompression is too slow, while lightweight meth-
ods like Snappy or LZ4 achieve only modest compression
ratios on matrices [16]. In addition, they usually require
the full-matrix decompression in order to perform linear
algebra operations, thus resulting in no space reduction in the
computation phase.

Recently, new lossless compression schemes for matrices
in the ML context have been proposed, with the twofold
advantage of saving space and speeding up linear algebra
operations [15], [16]. This approach, named Compressed
Linear Algebra (CLA), leverages an appropriate grouping
of matrix columns to be compressed together through a
suitable scheme chosen, via an approximate compression
planning, among a set of predefined simple compression
schemes. CLA allows to efficiently execute matrix operations
in the compressed format, although it requires the columns to
present regularities and repeated patterns in order to attain

high compression ratios. Another recent study proposed an
extension of the Compressed Sparse Row (CSR) format,
named Compressed Shared Elements Row (CSER), to matri-
ces which are quantized as well as sparse [18]. This method,
specifically proposed in the context of DNN compression,
is able to benefit from repeated and consecutive elements
on the same row, both to save space and effectively reduce
the number of multiplications by leveraging the distributive
property of multiplication. However, it requires 0 to be the
most frequent element in the matrix.

In this work we propose two new lossless compression
formats, called Huffman Address Map (HAM) and sparse
Huffman Address Map (sHAM), specifically tailored to large
and low-entropy matrices, which do not need any further
assumptions on the distribution of the elements on the rows
or on the columns of the matrix, as well as on the frequency
of elements. These formats are based upon Huffman coding,
address maps, and compressed sparse representations. Our
main contributions can be summarized as follows:
1) we introduce new efficient lossless compression data

structures, supporting matrix-vector multiplication in
the compressed format, which leverage low-entropy
characteristics of the input matrices in order to reduce
storage space and energy costs required to execute
matrix operations;

2) unlike most existing methods, our formats do not
necessarily need the input matrix to be sparse, since
sparsity can be considered as a subclass of the more
general family of low-entropic distributions [20];

3) we provide a detailed analysis of space requirements
(including the corresponding upper bounds), as well as
of the algorithmic complexity and energy consumption
of performing a matrix-vector multiplication;

4) a multicriteria design regulating the space/time trade-off
can be exploited via dedicated features of the proposed
compression schemes;

5) the proposed data structures are validated against
state-of-the-art compression schemes, including CLA
and CSER, in terms of memory requirement, energy
and time efficiency for computing the matrix-vector
multiplication. Three different scenarios are considered:
(i) compressing synthetic matrices; (ii) compressing
benchmark matrices; (iii) compressing two publicly
available DNNs.

Our experiments show that when the input matrix is dense
(or just slightly sparse) and quantized, HAM achieves the
highest compression ratio and energy cost reduction in most
experiments, and competitive results in terms of matrix-
vector multiplication execution time. For a fair comparison
with CLA, we implemented the HAM and sHAM dot
procedures by leveraging multi-threading execution and pre-
compiled code. When the input matrix is sparser, HAM is
still among the best choices in terms of per-element storage
requirements (even till 90% of sparsity on DNNs data), but
its execution time becomes less competitive. Indeed, methods

106104 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

specifically designed for sparse data (like CSER) are able
to speed up more with an increase of the sparsity level.
In such cases, our HAM variant for sparse data, sHAM,
becomes more efficient, the best option along with CSER
method in the majority of cases, especially for extreme
sparsity levels. Our source code is publicly available at
https://github.com/AnacletoLAB/sHAM.

The paper is organized as follows: Sec. II describes
state-of-the-art methodologies for: (i) post-hoc processing
of the learnt weight matrices of a DNN in order to reduce
their entropy (Sec. II-B), and (ii) low-entropy matrices
representation formats able to reduce the resource demand
in terms of RAM and the computational burden of linear
algebra operations (Sec. II-C). Sections III-A and III-B
introduce two novel representation formats which we pro-
pose, namely HAM and sHAM, whereas a multi-threaded
version of their dot product procedures and some clues about
their potential extension via GPU devices are respectively
illustrated in Sects. III-C and III-D. The energy consumption
required by the compared compressed formats to execute
matrix-vector multiplication is analyzed in Sec. III-E. Finally,
the experimental comparison among the compression formats
is described and discussed in Sec. IV in terms of memory
requirements, as well as energy and time complexity of their
dot product procedures. Some concluding considerations end
the paper.

II. BACKGROUND AND RELATED WORK
The aim of this section is 1) to sketch existing DNN
compression approaches, 2) to briefly mention two main
lossy techniques, weight pruning and quantization, used in
the literature to reduce the DNN layer weights entropy, and
3) to describe some state-of-the-art lossless matrix storage
formats along with their per element storage requirements.

A. COMPRESSION OF DEEP NEURAL NETWORKS
The research advance in Deep Learning of the last twenty
years has led to increasingly sophisticated and resource-
hungry architectures, posing the problem of how to use avail-
able computing resources more sparingly. Accordingly, the
interest of the scientific community towards the compression
of deep neural networks has grown enormously in the last
decade. In principle, since the DNN inference is performed
through a sequence of vector-matrix multiplications, all
the general purpose methods to compress matrices can
be exploited for this task. Nevertheless, a plethora of
strategies specific for DNNs have also been introduced.
Structural compression, for instance, refers to a set of
‘lossy’ strategies which focus on detecting and removing
less relevant components from the architecture, like hidden
units in FC layers, or filters and channels in convolutional
layers, at the expense of contained accuracy drops [21], [22],
[23]. Despite their state-of-the-art performance in several
application domains, such approaches are limited by the fact
that no exact and tractable paradigm to estimate an optimally

or near-optimally performing neural network structure is
known [24], and much effort is to be dedicated to find
the best topological design. Indeed, most works in this
domain propose manual or automatic heuristics [25], which
typically ties their success also to the individual expertise
in choosing most promising topologies. The same limitation
affects also the so-called knowledge distillation, where an
initial ‘‘master’’, large model is trained, with the idea to get
rid of it after a smaller ‘‘student’’ model is trained from the
master outputs [26], [27]. Again, the bottleneck is represented
by the absence of clear and efficient paradigms to choose the
optimal architecture for the student network. To overcome
this limitation, several studies focused on reducing the DNN
resource usage by keeping the network topology unaltered. In
this sense, low-rank factorization of the weight matrix of each
network layer, which uncovers the latent compact structure of
the weight matrix, can be seen as an hybrid between structure
altering methods and the remaining ones, since it preserves
the input and out dimension of the layer, while introducing an
hidden lower-dimensional latent layer, allowing to reduce the
total number of parameters [28], [29]. Among lossy structure-
preserving approaches, weight pruning and quantization are
the most widely adopted approaches. The former consists
in removing neuronal connections likely to be irrelevant for
the overall network behavior [30], usually performed by
removing those having lowest absolute magnitude [31], in a
one-shot or an iterative scenario [32], [33]. The latter, instead,
refers to the process of reducing the number of bits used to
represent individual wights: one bit per weight in the extreme
case of binarization [34], and < 32 bits for a ‘‘smoother’’
quantization, where the most common approach is to group
weights by magnitude into k groups, and use a unique
representative weight for each group (see Section II-B3 for
more details). Both approaches are frequently followed by
a moderate weight re-training, and they can also be jointly
applied to further improve the compression rate [12]. In this
direction, some interesting studies are investigating how to
directly embed multiple lossy compression techniques in the
framework devoted to optimizing the model parameters, that
is during model training, rather than after this phase [35].
Unfortunately, many of the methods described are not
accompanied by appropriate formats to store the resulting
network, so that the network inference can be done directly
in the compressed format. Among the very few methods able
to do that, it is worth mentioning Index Map and Compressed
Shared Elements Row Format, that we describe in detail in
Section II-C. In light of the above-mentioned limitations,
we first focus on the structure-preserving compression
of existing pre-trained models, exploiting the huge effort
already done during the architecture optimization, and at the
same time attempting at mitigating their sub-optimality. In
particular, we propose two novel lossless formats for storing
DNN matrix weights and to efficiently perform the vector-
matrix multiplication, able to reduce the resource demand
of existing networks under the specific assumption that

VOLUME 11, 2023 106105

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

their weight matrices exhibit low-entropy features. In the
following, we first describe the methodologies we adopted
to reduce the entropy of layer weight matrices, then we
introduce our DNN lossless storage formats, along with
some state-of-the-art strategies in the same domain, that we
included in the theoretical and experimental evaluation.

B. INDUCING LOW-ENTROPY IN DNN LAYER
CONNECTIONS
To ensure the generality of our approach, we focus on
techniques which operate on a pretrained network, without
altering its topology. Subsequently, the obtained weight
matrices will be stored using the compact formats described
in Section II-C, directly supporting the matrix multiplication
without re-expansion.

1) PRELIMINARY DEFINITIONS
Given a matrix Wo

∈ Rn×m, whose distinct entries have
relative frequencies denoted by (p1, . . . , pk), the entropy of
this matrix/source is HWo = −

∑k
i=1 pi log pi. The entropy

assumes its maximum value when all symbols have the same
probability/relative frequency, that is p1 = p2 = . . . = pk =
1/k. In such a case, HWo = − log k , and accordingly, for a
given matrix Wo with k distinct entries, we can define its
normalized entropy as

∑k
i=1 pi log pi/log k ∈ [0, 1]. When clear

from the context, in the following we will omit the subscript
and denote the entropy simply byH.
We will distinguish two experimental settings: 1) the input

matrix already shows regularities that induce a relatively low
normalized entropy; 2) the input matrix needs to undergo
specific lossy techniques (i.e., techniques that partially loose
information) that alter its content so as to induce low
entropy characteristics. Here, the distinction between low
and high entropy sources is not crisp, in the sense that we
are able to reduce the source entropy via lossy techniques
(e.g., sparsification), and the efficiency of the subsequent
lossless formats (no information is lost) adopted to represent
the input matrix is strictly related to the matrix entropy. In
case 2), which is for instance the case of layer connection
matrix in a DNNs, we can denote by W the low-entropy
matrix obtained from Wo after applying lossy compression
methods. Symbols wo and w will denote generic entries of
Wo and W , respectively. We assume that each element of
Wo is stored in one memory word, whose size is b bits. The
per-element storage requirement of a matrix X ∈ Rn×m is
defined asψ = size(X)/(nm) bits, where size(·) is an operator
returning the size of its argument, measured in bits. For
instance, the per-element storage requirement of the (dense)
matrix Wo is b. Italic boldface font is used for matrices
and vectors (e.g., X and x), while X I denotes the submatrix
obtained from X by only considering the columns whose
indices belong to the set I . According to the context, | · |
is an operator either denoting absolute value or cardinality,
returning in the latter case the length of a string or the
number of elements in a vector. The log function always
refers to the binary logarithm. Assuming a given lossless

matrix storage format F isable to exploit the characteristics
of W to reduce its bit-size, the compression ratio obtained
by F is defined as size(W)/size(F(W)) in setting 1), and as
size(Wo)/size(F(W)) in setting 2).
Finally, s ∈ [0, 1] denotes the ratio of non-zero elements in

a matrix X ∈ Rn×m (number of non-zero entries divided by
nm), and 1− s is its sparsity level.

2) WEIGHT PRUNING
Weight pruning is one of the lossy techniques used in the
literature to reduce the complexity of a matrix and also its
entropy, and it consists in setting to 0 a fixed fraction of the
matrix entries. This, in turn, reduces the entropy of thematrix,
since one symbol (0) becomes more frequent than the other
ones. There are many approaches to weight pruning (WP)
in DNNs, but by WP we usually mean ‘‘magnitude-based’’
WP, that is removing the connection weights that are ‘‘small’’
in absolute value [31]. Operationally speaking, after having
fixed the p-th empirical percentilewp of the entries ofWo,W
is derived by setting w = wo if |w| > wp, 0 otherwise. WP is
often followed by a fine tuning of the remaining connections,
involving a ‘short’ retraining of the DNNweights which have
not been set to zero.

3) QUANTIZATION
Weight quantization is another strategy, adopted in particular
for DNNs, to compress matrices and reduce their entropy.
This strategy consists in reducing the space needed to store
individual weights. . Quantization can be achieved in different
ways, including the weight sharing (WS) approach, which
expressly casts connection weights into k categories, and
substitutes all weights in i-th category with a representative
weight ci, for 1 ≤ i ≤ k . The way weights are partitioned dis-
tinguishes the different WS based quantization approaches.
In particular, in the context of DNN compression, weight
categories can be obtained using clustering techniques [36],
a probabilistic partitioning preserving the original weights
in expectation [10], uniform partitioning [37], [38], or by
jointly optimizing the quantization distortion and the entropy
of the resulting distribution of representatives [39], [40].
Also in this case, a fine tuning of the representatives is
typically performed [10], [36], [41]. Here we adopt the
clustering-based WS [36], which has been shown among the
top performing methods in this category [12].

In the context of deep neural network compression,
weight pruning and quantization can be applied in sequence,
even in an iterated fashion, and, surprisingly, it has been
shown that in some practical applications this does not
deteriorate the model performance, while yielding a higher
space reduction w.r.t. the sole application of pruning or
quantization [12], [38].

C. LOSSLESS MATRIX COMPRESSION FORMATS
Hereafter, we refer to an input matrixW assuming it already
shows characteristics like sparsity and/or quantization of

106106 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

its values, and we focus on how lossless formats can
allow its compression and the execution of vector-matrix
products without re-expanding the matrix itself. In particular,
we consider the CSC format as a baseline, and two state-of-
the-art formats specifically proposed for DNN compression,
Index Map and CSER. We selected CSC instead of the CSR
format because it is more suitable for the layer shapes in the
forward steps of DNNs, since non-zero values are stored by
columns; moreover, the two formats would provide the same
results up to simple transposing operations. In the following,
we describe each format in detail, also analysing their
performance in terms of per-elementstorage requirement,
leaving their comparisons in terms of energy and time
complexity to the next sections.

1) COMPRESSED SPARSE COLUMN
The Compressed Sparse Column (CSC) format [42] is a
well established standard for storing sparse matrices. It is
composed of 3 arrays:
• nz, containing the nonzero values, listed by columns;
• ri, containing the row indices of elements in nz;
• cb, where cbi is the number of non-zero elements in
column i.

Example 1: The CSC representation of the matrix

W =


1 0 1 0 0
0 1 0 0 0
1 3 0 0 5
0 0 0 0 0
0 0 0 0 5


is nz = (1, 1, 1, 3, 1, 5, 5), ri = (0, 2, 1, 2, 0, 2, 4), and cb =
(2, 2, 1, 0, 2).

Recalling that s ∈ [0, 1] is the ratio on non-zero elements
in W , storing the CSC representation requires the use of
snmb bits for nz, snm log n bits for ri, and m log n bits for
cb, leading to a per-element storage requirement

ψCSC =
snm(b+ log n)+ m log n

nm

= s(b+ log n))+
log n
n
. (1)

From now on we assume that log x bits1 are sufficient to
store elements whose value is at most equal to x. In the
theoretical discussion we prefer to use this notation, whereas
in practice, when we run our simulations and experiments,
log x is substituted with the smallest value among 8, 16 and
32 which is greater than the logarithm itself.

The dot product xTW can be computed when W is in
CSC format by using a custom procedure, having a time
complexity of O(snm) (see Algorithm S1 of Supplementary
Material), and which can be sped up through parallel
computing [42]. Using b bits for each element of nz
constitutes the main limitation of the CSC representation.

1To be precise, we shouldwrite ⌈log x⌉, but throughout the paper we prefer
to omit the ceiling operator to simplify the notation.

2) INDEX MAP
Index Map (IM) is a lossless format specifically designed
to store quantized matrices, and proposed to compress
fully-connected layers in DNNs [36]. It stores the represen-
tative weights in a vector c, and then it populates an index
matrix Π , having the same dimension of W , so that πij = r
when wij is associated with the representative cr . Recalling
that we denote by k the number of weight representatives,
each entry of Π requires log k bits (since its value can be at
most k); accordingly, we have

ψIM = log k +
kb
nm
. (2)

For low values of k , the first term is more relevant, whereas
when k increases, the second term grows linearly with it and
the format becomes inefficient. For instance, when k = 16,
b = 32 and n = m = 102, we obtain ψIM = 4.0512 which
means a compression ratio of around 7.9× with regard to
the space required by W , but for k = 256, we have ψIM =
8.8192 and a compression ratio of around 3.6×. This comes
at the price of two memory accesses in order to retrieve a
weight to perform the matrix-vector product (Algorithm S2).

3) COMPRESSED SHARED ELEMENTS ROW FORMAT
Compressed Shared Elements Row (CSER) is a recent format,
proposed in the context of DNN compression, to efficiently
representlow-entropy matrices and execute the matrix-vector
product directly in the compressed format [18]. It expressly
exploits the assumption that few distinct values appear in
the entire matrix, which is the case of quantized matrix.
This format improves w.r.t. CSC because the latter repeatedly
stores these distinct values, thus inducing high redundancies,
whereas CSER stores each distinct element only once. The
structures used by this format are described here below.
• Ω , vector containing the distinct elements ofW .
• colI, vector containing the column indices (starting
from 0) of the elements of the matrix in row order, and,
in each row, those relative to symbols in top-frequency
order (excluding 0, which must be the most frequent
symbol).

• ΩI, vector denoting the position (from 0) in Ω of the
distinct elements of Ω the colI indices refer to. For
each row, when an element occurs more than once, it is
reported just one time. Therefore, for each row we have
at most |Ω| − 1 entries in ΩI.

• ΩPtr , vector storing pointers that signal when, on each
row, the positions in colI of the next new element of Ω
start, with the requirement that the last element of this
vector be set to the first index outside colI.

• rowPtr, vector storing pointers that signal when a new
row starts; rowPtr points to entries in ΩPtr , with a
trailing element pointing to the last position of the same
vector.

Example 2: The CSER representation of the matrix intro-
duced in Example 1 is Ω = (0, 1, 3, 5), colI = (0, 2, 1, 0,
4, 1, 4), ΩI = (1, 1, 1, 3, 2, 3), ΩPtr = (0, 2, 3, 4, 5, 6, 7),

VOLUME 11, 2023 106107

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

and rowPtr = (0, 1, 2, 5, 5, 6). The value 5 in rowPtr is
repeated twice to allow detecting empty rows.

Clearly, this format benefits from the presence of iden-
tical consecutive elements (interleaved by 0, which is not
considered in the representation). Assuming that k̄ ≤ k is
the average number of distinct elements per row, to store the
CSER structures we need: (i) kb bits for Ω; (ii) snm logm
bits for colI; (iii) nk̄ log k forΩI; (iv) (nk̄+1) log snm bits for
ΩPtr ; (v) (n+1) log nk̄ bits for rowPtr. Overall we have the
following per-element average number of bits:

ψCSER = s logm+
k̄
m

(
log nk̄

k̄
+ log k + log snm

)
+
kb+ log snm+ log nk̄

nm
, (3)

where the first term, which is the heaviest one, linearly
increases with the fraction of non-zero elements in W , the
second term emphasizes the fact that this structure is efficient
when few distinct elements appearin average on each row,
and the last one is the least relevant, as long as the number of
distinct elements k inW is much smaller than nm.

III. METHODS
We are now ready to introduce our novel lossless matrix
compression formats.

A. HUFFMAN ADDRESS MAP COMPRESSION
This is the first novel method we propose here. It is based on
the idea that the weight source might exhibit features that can
be effectively compressed via Huffman coding after applying
pruning and quantization to Wo. This technique, that we
name Huffman Address Map compression (HAM), exploits
Huffman coding and address map logic to provide a lossless
compression of W . Here below we provide its description
and derive its space complexity upper bound. Address maps
organize the matrix entries as a row- or column-order based
sequence of bits, in which 0 identifies any null entry, and
each remaining element z is represented by a binary string
a(z) encoding its address.
Example 3: The bit sequence corresponding to the

column-order based address map for the matrix W of
Example 1 is

a(1)0 a(1)000 a(1)a(2)00a(1)00000000000a(3)0a(3).

In order to achieve efficiency, it is necessary to rely on
compact representations for addresses. Taking inspiration
from [36], we implement a(z) via the corresponding Huffman
coding of z, in view of its well-known properties: it is
instantaneous, uniquely decodable and it has a near-optimal
compression rate [43]. More precisely, let Z = (z1, . . . , zk)
be a source of symbols, whose corresponding probabilities
are (p1, . . . , pk), and HZ = −

∑k
i=1 pi log pi be the source

entropy (see Section II-B1), which, by Shannon’s source
coding theorem, corresponds to the minimal average number
of bits per symbol necessary to represent Z [14]. Moreover,
let’s denote by HZ a Huffman code for this source, and

by HZ (z) the codeword of a symbol z (abuse of notation).
Finally, let HZ :=

∑k
i=1 pi|HZ (zi)| be the average number

of codeword bits per symbol used by HZ . It can be shown
that HZ ≤ |HZ | ≤ HZ + 1 [44]. To get uniquely decodable
strings we also include zeroes in the source symbols.

In our setting, Z is composed of the distinct weights in the
matrixW . We denote by HAM (W) the bitstream resulting by
the column-order Huffman encode of entries in W , and split
the former into N = ⌈|HAM (W)|/b⌉ memory words, in turn
denoted as HAM (W)1, . . . ,HAM (W)N and represented as
an array CHAM (W) of N unsigned integers. Zero-padding is
added to the last word when |HAM (W)| is not a multiple of
b. We adopt the canonical variant of Huffman codes (CHCs),
which allows fast decode and efficient use of memory, since
it does not need to store pointers and tree structures. In
particular, we leverage the implementation presented in [45],
which we briefly report in the following. This selection
is also supported by experiments conducted to evaluate
other implementation variants of CHCs (Section IV-B). The
multiplication of a matrix in the compressed format is based
only on the decode phase, thus we need to store exclusively
the Huffman code structures involved in this operation. For
this reason, here we omit the description of the encode
process. In particular, the following structures are used to
decode codewords from the compressed bitstream, where
lmax is the length of the longest codeword.
• symbols, vector of length k , where symbols[i] = zi, for
1 ≤ i ≤ k .

• first_symbol, vector indexed by a codeword length l,
where first_symbol[l] is the index (in symbols) of the
symbol having the first codeword of length l.

• first_code_l, vector indexed by a codeword length
l, where first_code_l[l] contains the integer value of
the codeword associated to first_symbol[l], possibly
zero-padded on the right to ensure a length equal to lmax.
The algorithm requires that the position lmax + 1 of this
structure contains a sentinel, initialized with 2lmax .

The ‘‘canonical’’ property imposes integers associated to
codewords of the same length to be consecutive, thus allowing
to store just the first codeword of a given length in the array
first_code_l. Moreover, in this variant symbols need to be
sorted in non-increasing probability order (for further details
see [45]), and the bitstream is accessed by chunks of length
lmax, contained in a bit array buff. The decoding steps are
represented at lines 5-10 of Algorithm 1. In order to correctly
decode the next symbol, it is necessary to know the length l
of the next codeword contained in buff. This can be achieved
by scanning first_code_l to find the first l satisfying

first_code_l[l] ≤ dec(buff) < first_code_l[l + 1], (4)

where dec(buff) is the decimal value of the binary string buff.
Since the search of l can be time consuming, an efficient
variant described in the same paper exploits a direct lookup
table of size 2lmax , addressed directly by dec(buff) to get the
corresponding l. The entries in this table have value at most
lmax, hence requiring log lmax ≤ log k bits per entry. We elect

106108 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

TABLE 1. Example of a CHC having 7 codewords such that lmax = 5, together with the corresponding decode structures, using a hybrid lookup table T
with t = ⌈log lmax⌉ = 3. An asterisk denotes an entry not directly corresponding to a codeword length, and the need of a scan in first_code_l to find it,
starting at the position preceding the asterisk.

as final CHC an hybrid variant using a partial lookup table
T having 2t entries, with t < lmax, which is referred using
the first t bits of buff, and whose entries might contain a
codeword length or the initial position in first_code_l from
which starting the search as described above (see Eq. 4).
Table 1 shows an example of a canonical Huffman code with
hybrid lookup table. In [46], this solution has been shown to
be a better compromise in practice between search speed-
up and extra space complexity, even for very small values
of t . This is confirmed by our experiments, as discussed in
Section IV. To store the array first_symbol we need lmax log k
bits, which is upper bounded by (k − 1) log k , since k − 1 is
the maximum depth of the involved Huffman tree. The array
first_code_l requires (lmax+1)lmax bits, since we have lmax+

1 integers (including the above-mentioned sentinel), each
taking lmax bits, which is upper bounded by k(k−1). By fixing
t = log lmax (see Section IV-B for the rationale of this choice),
the lookup table requires lmax log k ≤ (k − 1) log k bits.
Moreover, this way the table size only linearly grows with
lmax, and accordingly, in the worst case, with k . This is a loose
upper bound, and a tighter bound can be derived by knowing
the minimum probability of a symbol (see Section III-F for
details). Finally, we need kb bits to store the array symbols,
leading to an overall overhead for the Huffman code of at
most Bk := k(k + 2 log k + b − 1) − 2 log k bits. For the
sake of completeness, it is worth noting that, when needed,
the overhead can be still reduced at the expense of decoding
speed, as there are methods storing a Huffman code for n
symbols using at most ⌈10.75n⌉ − 3 bits [47].
We are now ready to theoretically characterize the

per-element storage requirements of the HAM format.
Fact 1 (HAM Worst Case): If W is dense and it does not

contain repeated entries,

ψHAM ≤ 3 log nm+ nm+ b−
2 log nm
nm

.

Proof: By hypothesis each of the nm symbols of W
appear exactly once, thusH = log nm and the corresponding
Huffman code HW has an average codeword length upper
bounded by 1+ log nm. Accordingly, at most nm(1+ log nm)
bits are needed for the bitstream |HAM (W)|. Considered that
the decoding arrays need nm(nm+2 log nm+b−1)−2 log nm

bits, the thesis follows by summing up bitstream andHuffman
overhead, and dividing by the number of elements nm. □
Fact 1 shows that alternative representations should be

used when the matrix is dense and nearly composed of
all distinct elements. Indeed, in this case ψHAM is always
greater than b, the number of bits used to store each element
of W . On the other hand, in the next corollary we show that
the HAM format becomes much more convenient when a
relatively small number k of distinct values are contained in
W , as customary with quantized matrices (see Sect. II-B).
Corollary 1: If W is dense and composed of k < nm

distinct values (including 0),

ψHAM ≤ 1+ log k +
Bk
nm
. (5)

Proof: In the worst case, all symbols are equally
probable, the source entropy is H = log k , and the length
of |HAM (W)| is at most nm(1+ log k) bits. Then, by adding
the CHC overhead of Bk bits and dividing by nm, the thesis
follows. □
As expected, the smaller k , the higher the compression. On

the contrary, when k increases, the last term becomes bigger
and dominates the overall bound. As an example, if we set
b = 32, and nm = 104, from Corollary 1 all the values
k < 448 yield ψHAM < b; when nm = 105, the same
result is obtained for all k < 1408. This is quite impressive,
considering that, in most real-world experiments, k has a
magnitude of the order of hundreds, and we are assuming that
the longest possible average codeword length is obtained.

1) DOT PRODUCT
The procedure DotHAM (Algorithm 1) shows how the dot
product xTW can be computed when W is stored using the
HAM format. The dot product is realized in the outer loop
(lines 2–18), where each iteration examines a column of W .
The inner loop (lines 4–15) computes the dot product between
the current column (indexed by col) and x. The variable lmax
(line 5) contains at each step the first lmax bits not yet read
from the bitstream. The procedure GetBuff also returns the
next starting point in the bitstream (start) to be used to read
the next nbits bits. The procedure GetEntry then accesses the
partial lookup table T , indexed by the first t bits of buff, and

VOLUME 11, 2023 106109

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

Algorithm 1 Dot Procedure for Canonical Hybrid HAM
Representation
Procedure DotHAM

Input:
– compressed array CHAM (W)
– first_code_l array
– first_symbol array
– symbols array
– the partial lookup table T
– maximum codeword length lmax
– n,m ∈ N, number of rows and columns ofW
– vector x ∈ Rn×1

begin algorithm

1: Initialize: out←zeros(n), col← 1, start← 1
nbits← lmax, t ← ⌈log lmax⌉

2: while col ≤ m do
3: sum← 0, row← 1
4: while row ≤ n do
5: buff, start← GetBuff(CHAM (W), start, nbits)
6: l ← GetEntry(T , buff, t)
7: l ← SearchLength(lmax, first_code_l, l)
8: nbits← lmax − l
9: oset← (lmax−first_code_l[l])≫ (lmax − l)
10: val← symbols

[
first_symbol[l]+ oset

]
11: if val ̸= 0 then
12: sum← sum+ x[row] ∗ val
13: end if
14: row← row+ 1
15: end while
16: out[col]← sum
17: col← col+ 1
18: end while
end algorithm
Output: out = xTW .

provides the next codeword length l. At line 7, in case the
entry of T is not directly the length of the next codeword
(remind that T is partial, see Table 1), l is used as starting
position to operate a binary search in the vector first_code_l.
Once the length of the next codeword is obtained, at line 8 the
number of bits to be read in the next iteration is updated,
and the offset oset to access the array symbols is computed
(line 9). Here≫ denotes the right-shift operator. Finally, the
corresponding weight val is computed (line 10), and used to
update the partial sum of the current column if val is not zero
(lines 11− 13). Line 16 writes the result in the output vector
out.

As previously stated, this procedure does not increase the
order of memory requirements described by Corollary 1,
since only one weight at a time is decoded and kept in
memory (precisely, in the val variable). On the other side,
the time complexity depends on the number of iterations
of the inner loop, which is exactly the number of symbols

encoded, that is, nm. Each iteration is made up by constant
operations, except for line 7: when the entry of T contains the
special character ’*’, this line is executed in O(log lmax) <
O(log k) time. Overall, this procedure has a time complexity
upper bounded byO(nm log k) (the case occurring when line
7 always performs the binary search).

In Sect. III-C we describe how the procedure DotHAM can
be reworked in order to speed up the computations.

2) RIGHT MULTIPLICATION FOR HAM-COMPRESSED
MATRICES
The HAM format is designed to serve as a neural net
compression format, where the left matrix multiplication
xTW is run at each layer of the network in the forward
step. However, it is easy to adapt this format for a generic
right multiplication Wz. Indeed, it suffices to symmetrically
construct the bitstream HAM (W) in row-order instead of
column-order, and exchange the semantic of variables col
and row in the dot procedure described in Algorithm 1. The
complexity of both HAM construction and its dot procedure
remains the same.

B. SPARSE HUFFMAN ADDRESS MAP COMPRESSION
One potential limitation of HAM is that it marginally benefits
from sparsity: indeed, in such a case the per-element space
is only indirectly reduced—typically the source entropy is
lower, having the symbol 0 a higher frequency. But whenW is
sparse and very large, wewould use in any case a high amount
of memory to store the 0s: for instance, assuming a 1-bit
codeword for the symbol 0 (which is the best case), more than
10(1 − s) GBits for a 105 × 105 matrix are used. To address
this issue, we introduce an extension of HAM, named sparse
Huffman Address Map compression (sHAM), in which the
bitstream and the Huffman code is computed excluding the
symbol 0. More precisely, W is represented using a bitwise
CSC format, obtaining nz, ri, cb as in Sect. II-C1: the first
vector is stored using the HAM format, the others are kept
uncompressed. The Huffman code Hnz for non-null elements
is computed, subsequently obtaining by concatenation the
bitstream HAM (nz) = Hnz(nz1) . . .Hnz(nzq). The latter is
stored in the array CHAM (nz) of N1 = ⌈|HAM (nz)|/b⌉
memory words. Finally, we build the sHAM representation
of W , denoted by sHAM (W), as the sequence of vectors
CHAM (nz), ri, cb. The following fact establishes an upper
bound for |sHAM (W)|.
Fact 2: (sHAM worst case) If W contains snm non-null

distinct elements (excluding 0), the per-element average
number of bits of the sHAM format is

ψsHAM ≤ 3s log snm+ s(snm+ b+ log n)

+
log n
n
−

2 log snm
nm

.

Proof: Being all snm symbols distinct, they are
equally probable, accordingly the entropy of nz source is
maximum, that isHnz = log snm, and:

106110 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

1) the average codeword length ofHnz is upper bounded by
1+ log snm, thus |CHAM (nz)| ≤ snm(1+ log snm);

2) the Huffman decoding structures require snm(snm +
2 log snm+ b− 1)− 2 log snm bits;

3) vectors ri and cb need snm log n+ m log n bits.
The thesis follows by summing up the contributions in 1–3
and dividing by nm. □

For example, given n = m = 102, and assuming b = 32,
Fact 2 implies that, in the worst case for the Huffman code,
we need around s < 0.01 to have ψsHAM < b, which is
also clearly less efficient than the CSC format in the same
conditions (cfr. (1)). Notwithstanding, Fact 2, analogously to
Fact 1 for HAM, induces the following corollary showing
how sHAM benefits from the matrix quantization.
Corollary 2: Given a matrix W containing snm non-null

elements, and k < snm distinct values (excluding the 0),
it holds:

ψsHAM ≤ s(1+ log k + log n)+
log n
n
+
Bk
nm
. (6)

Proof: As in Corollary 1, in the worst case Hnz =

log k , and the snm values can be represented using at most
snm(1 + log k) bits. Then we add the Bk bits for the CHC
and snm log n + m log n bits for the CSC structures. The
thesis follows by dividing the sum of each component space
by nm. □
Considering for example n = m = 102, b = 32,

and s = 0.5, in the hypotheses of Fact 2 it is guaranteed
that ψsHAM < b for all k < 463. Moreover, under the
same assumptions, ψsHAM < ψCSC when k < 324, which
represent quite a feeble quantization, considering that it yields
in average that each distinct weight is shared only around
30 times. Noticeably, this means that our method, even in its
worst case, can gain over the CSC representation even with
quite low quantization levels.

Corollary 2 points out that the per-element average number
of bits of sHAM is similar to that of HAM (see Corollary 1),
where the first term is scaled by s, and two additional
quantities s log n and log n

n are added for representing the
indices of the CSC format. Thus, as expected, the lower s,
the more convenient is sHAM w.r.t. HAM.

1) DOT PRODUCT
Algorithm 2 describes how to perform the dot product xTW
when W is in sHAM format. Like in Algorithm 1, the loop
at lines 2–16 scans the columns of W , whereas the inner
loop 4–13 computes the dot product between x and the
current column col. The only difference with the HAM dot
procedure is that this loop only considers non-zero elements
in the current column. When the latter has been parsed, line
14 writes the result in the output vector out. The inner loop is
executed snm times, and the heaviest operation in its body is
SearchLength, having complexityO(log k) when the entry of
T does not contain an exact codeword length, for an overall
time complexity O(snm log k). Analogously to Algorithm 1,

Algorithm 2 Dot Procedure for sHAM Representation
Procedure DotsHAM

Input:
– compressed array CHAM (nz)
– q = |nz| number of non-zero elements inW
– row index vector ri
– vector cb
– vector x ∈ Rn×1

– first_code_l array
– first_symbol array
– symbols array
– the partial lookup table T
– maximum codeword length lmax
– n,m ∈ N, number of rows and columns ofW

begin algorithm

1: Initialize: out←zeros(m), read← 1, col← 1,
t ← ⌈log lmax⌉, nbits← lmax, pos← 1
start← 0

2: while col ≤ m do
3: celem← 0, sum← 0
4: while celem ≤ cb[col] do
5: buff, start ← GetBuff(CHAM (nz), start, nbits)
6: l ← GetEntry(T , buff, t)
7: l ← SearchLength(lmax, first_code_l, l)
8: nbits← lmax − l
9: oset← (lmax − first_code_l[l])≫ (lmax − l)
10: val← symbols

[
first_symbol[l]+ oset

]
11: sum← sum+ x[ri[pos]] ∗ val
12: pos← pos+ 1, celem← celem+ 1
13: end while
14: out[col]← sum
15: col← col+ 1
16: end while
end algorithm
Output: out = xTW .

this procedure is sequential, and in Sect. III-C we show how
to parallelize it.

2) RIGHT MULTIPLICATION FOR SHAM-COMPRESSED
MATRICES
In analogy with the HAM format, also sHAM can be easily
adapted to support right multiplications of the form Wz.
Indeed, it suffices to represent W using the Compressed
Sparse Row (CSR) format instead of CSC, which means
that also the vector nz will list non-zero values of W
in row-order. The corresponding dot product will simply
extend the CSR dot procedure analogously to what we have
done in Algorithm 2 for the CSC dot procedure. Also in
this case, this does not alter the complexity of building
the sHAM representation of W and of running the related
dot procedure.

VOLUME 11, 2023 106111

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

Algorithm 3 Pseudocode of the parallel Matrix multiplica-
tion for HAM Representation.
Procedure ParDotHAM

Input: Same input of Algorithm 1 and
– column offsets o = (o1, . . . , om)
– number of computing units g
– sets of column indices G1, . . . ,Gg

begin algorithm

1: Initialize: out[Gj]←zeros(|Gj|), o0← 1
2: for j = 1 to g in parallel do
3:

out[Gj]←DotHamCol(CHAM (W), o[Gj], T , lmax, n,m

x,first_code_l,first_symbol, symbols)

4: end for
end algorithm

Output: out = xTWGj in parallel.

C. MULTI-THREADED MEMORY-SHARED DOT PRODUCT
OFHAM AND SHAM
To take advantage of modern multi-core architectures, the
procedures DotHAM and DotsHAM can be adapted to
parallel computation by exploiting the nature of matrix
multiplication, since xT can undergo, in parallel, the dot
product with individual columns of W . The evaluation of
xTW can be distributed across 1 < g ≤ m computing
units, each assigned to a chunk Gi of contiguous column
indices, with 1 ≤ i ≤ m, such that Gi ∩ Gj = ∅ for any
1 ≤ i, j ≤ m, with i ̸= j, and ∪gi=1Gi = {1, . . . ,m}. In
order to allow the g units to work in parallel, when growing
the bitstream HAM (W) we keep trace of the offsets or when
column r ends, for each r ∈ {1, . . . ,m}, so that each unit
can retrieve the portion of HAM (W) corresponding to the
columns assigned to it. For instance, if G1 = {3, 4}, the unit
1 will parse the substringHAM (W), suitably derived from the
array CHAM (W), starting from position o2 + 1 and ending in
position o4.
The pseudocode of the parallel procedure is shown in

Algorithm 3, where the procedure DotHamCol realizes the
dot procedure of Algorithm 1, with two differences: at
line 5 a variant of GetBuff is called, receiving the oj−1, oj
offsets, fetching buff just in that portion of the bitstream,
and returning the dot product xTWGj . While this procedure
allows a speed-up bounded by g× (ideal case without shared
resources and parallel overhead), it just slightly increases
the demand of memory, roughly up to (g − 1)b bits for
the weights fetched in parallel by individual units, plus the
space for storing the offsets. We implement this strategy
by means of CPU multi-threading, where the bitstream is
split among the available threads in such a way that each
thread is responsible for the same amount of contiguous

columns. Being column-independent, the dot product is
executed through the SIMT paradigm, and the result of each
thread is then combined in order to obtain the final output.
The implementation leverages the C multitreading pthread
library, and shares memory across thread to strongly limit the
memory overhead induced by multithreading. The design of
a parallel version for sHAM is derived analogously.

D. EXTENSION TO GPU DEVICES
The efficient implementation of sparse matrix-vector
multiplication (SpMV) is crucial in scientific computing
applications, and the introduction of General Purpose
Graphics Processing Units (GPGPUs) renewed the interest
in high-performance computing architectures to solve
this task [48]. Huge ongoing efforts are attempting to
develop SpMV kernel on GPGPUs{- for existing SpMV
formats, e.g., for CSR [49] and CSC [50]. This constitutes
a big challenge which does not admit a one-size-fits-
all solution, since GPGPU sparse matrix representations
require to be tailored for particular sparsity patterns, or for
specific architectures, with dedicated performance tuning
procedures [48]. On the other hand, early research works
are focusing also on extending Huffman coding to GPGPUs
architectures [51], and merging this two lines of research
deserves accurate and dedicated studies, which are beyond
the scope on this work. We leave it to future extensions.

E. EVALUATION OF THE ENERGY EFFICIENCY
The compact representations considered in this paper have
already been evaluated in terms of space and time complexity,
but in this section, following emerging trends in algorithm
performance assessment, we also investigate their energy
consumption. Due to the ever increasing power demand
of modern systems, energy has become a leading design
constraint for both computing devices and algorithms, and
nowadays the research community is paying more and
more attention to efficient algorithms that reduce energy
consumption while minimizing the related compromises to
effectiveness [52]. However, exactly measuring the energy
demand of an algorithm is rather difficult, given its con-
nection with different factors, including the programming
language used in its implementation, as well as the underlying
hardware architecture [53].

For these reasons, we adhere in this study to an energy
evaluation framework recently proposed in the context of
neural network compression, which models the energy
costs in a way which is easily adaptable across different
software platforms, as well as hardware architectures [18].2

In this model, the energy is computed on the basis of
four elementary operations, namely: 1) mul, the binary
multiplication operator, 2) sum, the binary addition operator,
3) read, which reads a value from memory, and 4) write,

2By modelling the energy costs of individual elementary operations,
we can potentially adapt the framework to any different experimental setting,
simulating—albeit approximately—the energy consumption variation of
specific hardware platforms.

106112 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

which writes a value into memory. This model assimilates the
costs of read/write operations from/into low-level memory
(like caches and registers) that stores temporary runtime
values directly into the costs of the corresponding elementary
operations.

Then, each of these operations is associated with an
energy cost, and the total energy required for a given dot
product algorithm sums up the overall costs of the elementary
operations. Furthermore, this model also takes into account
the possibility of operating on values of different size in
bits, as happening for the compressed formats described in
Section II-C. Indeed, the cost of elementary operations might
vary when the size of the input values changes. To this end,
four cost functions fm, fs, fr , fw : N → R+ are considered,
taking as input the size in bits and returning the corresponding
cost, respectively for themul, sum, read and write operations.
Finally, when two inputs have different size for sum and mul,
the maximum size is elected as input for the cost function.

1) ENERGY EFFICIENCY OF CSC, IM AND CSER
Here we briefly report the energy computation of the dot pro-
cedures for the CSC, IM and CSER formats. The pseudocode
of these procedures can be found in the Supplementary
Section I-A, along with further details about their energy
computation. As mentioned above, the energy cost is based
upon the real need of memory for each structure required by
compressed formats. To avoid an overly complex notation,
in the following we denote by by the smallest size (expressed
in bits) in the set {8, 16, 32} which is sufficient either to store
an element of vector y, or to store elements of a vector whose
components are less or equal than y (when it is possible to
estimate it), ensuring the distinction is always clear from the
text.

a: CSC
To execute the dot product xTW when W is in CSC format,
the following per-element energy costis needed:

ECSC = s
(
fs(b)+ fm(b)+ fr (bn)+ fr (b)+ fr (bx)

)
+
fw(b)+ fr (bn)

n
(7)

where bn is the size required to store an element of vectors
cb (value ≤ n) and ri (value ≤ n), whereas bx is the bit
size to store an element of x. Here and hereafter, to simplify
the notation we assume the output size is b, since writing the
output affects the energy only for a O(1/n) term. Reminding
that s is the ratio on non-zero elements, the cost (7) is derived
by considering the following steps, whose energy cost is
written in brackets: (i) loading the elements of the input
vector (sfr (bx)), which in turn requires sfr (bn) for loading an
index from ri; (ii) loading the elements of the matrix (sfr (b));
(iii) multiplying them (sfm(b)); (iv) summing the products
(sfs(b)); (v) writing the result (fw(b)/n); (vi) checking a given
column is ended (fr (bn)/n).

b: INDEX MAP
The per-element energy cost of IM format is

EIM = fr (b)+ fr (bk)+ s
(
fs(b)+ fm(b)+ fr (bx)

)
+
fw(b)
n

(8)

where bk is the size necessary to store an element of matrix
Π (value ≤ k). The factor s derives from the check that
the current weight Wij is not null (line 6 of Algorithm S2,
Supplementary Material).

c: CSER
For CSER format it holds

ECSER = s
(
fs(bx)+ fr (bx)+ fr (bn)

)
+

k̄
(
fs(b)+ fm(b)+ fr (bsnm)+ fr (bk)+ fr (b)

)
n

+
fw(b)+ fr (browPtr)

n
(9)

where browPtr and bsnm represent respectively the bit size
of an element of the vectors rowPtr and of ΩPtr (value
at most snm). Since CSER is designed to perform right
matrixmultiplications, for a fair comparison herewe compute
WT x = xTW . Accordingly, k̄ is the average number of
distinct weights per row ofWT .

F. ENERGY EFFICIENCY OF HAM AND SHAM
This section discusses the energy computation of the dot
procedures for the proposedmethodsHAMand sHAM, under
the same assumptions made for the other formats. We can
prove the following result.
Fact 3: Let W ∈ Rn×m a sparse and quantized matrix,

with a fraction s ∈ [0, 1] of non-zero entries and k >

1 distinct weights, and x ∈ Rn×1 be an input vector. The per-
element energy cost for computing the product xTW whenW
is in the HAM format is

EHAM =
(
1+

N
nm

)
fr (b)+ fr (blmax)+ fr (bk)

+

(
1+

D log lmax

nm

)
fr (bfirst_code_l)

+ s
(
fs(b)+ fm(b)+ fr (bx)

)
+ fw(b)/n, (10)

where N is the number of memory words in CHAM , and D is
the number of times we need a binary search in first_code_l
at line 7 of Algorithm 1.

The proof of Fact 3 is given in the Supplementary
Section II. Here we remind that lmax is the maximum length
in bits of a codeword, while bfirst_code_l and blmax are the sizes
to store elements of first_code_l and T , respectively. Also in
this case, the factor s for the costs fm, fs and fr (bx) is due to the
check that the value read from the matrix is non null (line 11).
The array first_code_l stores values having lmax bits, which
in principle could induce bfirst_code_l to be larger than b.

VOLUME 11, 2023 106113

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

Nevertheless, in practice this never happens: indeed, in [54]
it was proved that lmax depends on the minimum symbol
probability pmin := mini∈{1,...,k} pi, and that in order to have
lmax = 33, it must hold 1/F33+3 < pmin ≤ 1/F33+2, where
Fj is the j-th Fibonacci number. This means 6.697 · 10−8 <
pmin ≤ 1.084 · 10−7. Accordingly, in most real cases we can
expect lmax ≤ 16, since this happens when pmin > 0.00024.
This is confirmed by our experiments, where we frequently
found even lmax ≤ 8.
Overall, the energy efficiency of the HAM dot procedure

mainly depends on N and D, which are related to the read
operations on the two largest bit sizes, and which are not
scaled by s. In turn, their value depends on the Huffman code.
In particular, we know that, for a Huffman code, H + 1 is
an upper bound to the average codeword length in bits (see
Section III-A), and accordingly |HAM (W)| ≤ nm(H + 1)
bits. Therefore,

N ≤
⌈nm
b
(H+ 1)

⌉
.

Instead, D depends on the chosen value of t . In our case,
rather, we have 0 < t < lmax, as we used t =
⌈log lmax⌉. Such a choice of t typically covers the majority
of codeword lengths [46], as we also empirically verified
in our experiments, meanwhile saving much space w.r.t. the
full lookup table: as mentioned above, the number of entries
increases only linearly with lmax.
Analogously, for sHAM we can prove the following fact,

whose proof is given in the Supplementary Section II.
Fact 4: IfW , x, bx , bfirst_code_l and blmax are defined as in

Fact 3, the per-element energy cost for computing the product
xTW whenW is stored in the sHAM format is

EsHAM =
(
s+

N1

nm

)
fr (b)

+

(
s+

D1 log lmax

nm

)
fr (bfirst_code_l)

+ s
(
fs(b)+ fm(b)+ fr (bx)+ fr (bn)

+ fr (blmax)+ fr (bk)
)

+
fr (bn)+ fw(b)

n
, (11)

where N1 is the number of memory words in CsHAM , and D1 is
the number of times we need a binary search in first_code_l
at line 7 of Algorithm 2.

We point out that the symbols bfirst_code_l , lmax and
consequently blmax have the same semantics as for HAM,
but in principle they can have different values, since in this
case the Huffman code is constructed only on the non-zero
elements. Comparing to HAM energy and coherently aiming
to leverage sparsity, the terms fr (b), fr (bfirst_code_l), frblmax

and fr (bk) are now scaled by s, whereas the additional costs
sfr (bn) and fr (bn)/n are due to the accesses to vectors ri and
cb. Furthermore, denoted by H1 the entropy of the source

when the 0 symbol is excluded, similarly to HAM it follows

N1 ≤

⌈ snm
b

(H1 + 1)
⌉
,

which further benefits from the sparsity of W . Concerning
D1, the same considerations made for D hold here.

IV. EXPERIMENTS AND RESULTS
In this section we initially test four variants of canonical
Huffman coding on synthetic data, then we compare the
various compression formats on some benchmark low-
entropy matrices, and on two publicly available pretrained
DNN models, proposed respectively for image classification
and drug-target affinity prediction.

TABLE 2. Energy costs in pJ (Picojoule) of different elementary
operations for a 45-nm CMOS processor [18], [55]. MB and KB denotes
megabytes and kilobytes, respectively.

A. PERFORMANCE CRITERIA
All compression methods are compared using the following
three criteria.
1) Memory Requirements: the average number of bits per

matrix entry required by the various matrix compression
formats, namely according to the measure ψ as in
Section II-C. We recall that, in practice, any value
x is stored in a memory variable whose size in bits
is the smallest among 8, 16, 32 which is greater than
log x. This size is the one practically counted in the
computation of ψ .

2) Energy Complexity: the average energy cost per-matrix
element measured according to Equations (7–11). To
fully adhere to the energy framework discussed so far
and proposed in [18], we also utilize the energy cost
estimates reported therein, and shown in Table 2. The
costs of read and write operations largely depend on
the size of the object which they are applied to. This
means that the theoretical energy formulas do not suffice
to compare two methods, since for instance the same
function fr (b), for a given b ∈ {8, 16, 32}, actually
depends on a second input, the size S of the object it
is applied to. Thus a more correct notation would be
fr (b,S), de facto adopted in practice. Notwithstanding,
to not further complicate the discussion, we keep the
notation originally proposed.
Note that this framework does not include the com-
plexity of converting the dense representation into
the different formats, with the rationale that this can

106114 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

be considered a una tantum operation like for deep
neural networks, where this step can be applied a
priori, subsequently performing all inferences using the
compressed format.

3) TimeComplexity: the average time in seconds to perform
the dot procedure once. It is measured on multiple
runs, executed on the same hardware architecture for all
compared compression formats. We differ in this from
the original framework, where each operation is timed
and then the overall time complexity is obtained from
the energy by substituting the time of each operation.
In this way, the time complexity would have been
only a surrogate of the energy, reflecting also the same
assumptions and simplifications (all operations but the
four elementary ones are omitted). In addition, neither
the estimated operation time, nor the procedure adopted
for it has been made available in the original framework.
Such an estimation is well-known being error prone,
particularly to obtain the estimate for sizes smaller than
one memory word [56].
The experiments have been carried out on an Ubuntu
machine equipped with 2 Intel(R) Xeon(R) Bronze 3106
CPU @ 1.70GHz with a total of 16 cores, and 256 GB
of RAM.

Finally, concerning criterion 1), when useful to better
understand the results, we also report the compression ratio,
as described in Section II-B1. In the following we use b = 32,
as in most neural network architectures and as adopted in
the original framework. However, on the benchmark matrices
some studies used b = 64 (see, e.g., [57]), which should
be taken into consideration since it clearly yields higher
compression ratios than b = 32.

B. ANALYSING CANONICAL HUFFMAN CODE VARIANTS
We test some alternative variants of Canonical Huffman
codes used in the HAM and sHAM formats. In particular,
we refer henceforth to the CHC version described in
Section III-A using the adjective partial, and we consider
two alternatives of the latter: full, characterized by a full
lookup table (t = lmax), and no-table, in which no lookup
table is used. Moreover, we also test a classical canonical
variant which fetches one bit at a time from the bitstream,
here named bitwise. Here below we briefly describe the
latter, then we show a comparison on synthetic matrices
suitably generated to test those variants on different levels
of sparsity/quantization and source entropy. As a remark, for
a fair comparison we always include 0 among the k distinct
symbols, since HAM does so.

1) BITWISE CANONICAL HUFFMAN CODE
This variant [19] needs the following decoding structures:
i) an array fc, whose size is lmax, with fc[l] being the first
codeword of length l; ii) a table of symbols symb, where
symb[l] is the list of symbols having a codeword of l
bits. Note that symb[l] must be initialized with consecutive
codewords starting from fc[l] (in the sense of the integer

value associated with them). We recall lmax is the maximum
length in bits of a codeword. Like for the buffered variants,
the decoding procedure is still fast since it does not require
storing and traversing the tree structure (see [19] for details).

2) TIME/SPACE TRADE-OFFS FOR BUFFERED CANONICAL
CODES
The choice of parameter t , leading to the three buffered
CHC variants full, partial and no-table, allows meantime to
partially control the trade-off between space and dot product
time. With reference to Equations (1) (for HAM) and (2)
(for sHAM), the term Bk is affected by the dimension of
the lookup table T , expressly with the upper bound term
(k − 1) log k , when t = log lmax. Meanwhile, the choice of
t affects the execution time of the dot procedures of HAM
and sHAM (cfr. (10) and (11), respectively), specifically in
the values of D and D1. Therefore, when using t = lmax (full
variant) we have D = D1 = 0, being a binary search in array
first_code_l necessary only for the codewords longer than t ,
while the size of the lookup table increases up to 2k−1 log k .
Conversely, the no-table variant allows us to save room, since
the lookup table is no longer used (formally equivalent to
t = −∞). Nevertheless, this choice of t slows down the
dot execution, inducing the maximum possible number of
searches in first_code_l, namely D = nm and D1 = snm.
It is worth noting that, in principle, the energy consumption
should behave similarly to execution time, but in practice this
is not guaranteed, since the cost for read and write operations
might vary with the size of the object on which they are
performed on (see Section IV-A), in this case the lookup table.

3) EXPERIMENTAL COMPARISON OF CHC VARIANTS
Since the efficiency of Huffman coding depends on the source
entropy, we aim at investigating the behavior of the four
aforementioned CHC variants (bitwise, no-table, partial, and
full) when the matrix weights induce sources with different
levels of entropy. In addition, we also study their performance
in relation to the quantization and pruning levels of the input
matrix. The data generation procedure adopted is described
here below.

a: SYNTHETIC DATA GENERATION
In order to compare only the storage formats, we already
generate matrices showing low entropy characteristics. In
particular, synthetic matrices are generated to exhibit three
different entropy levels, named low, medium and high,
and multiple quantization choices, initially without applying
pruning. More precisely, for any fixed choice of k ∈

{5, 10, 15, 20, 25, 30}, we randomly generate three square
matrices of dimension n = 5000 having different entropy
levels, corresponding to sources Z = (z1, . . . , zk) whose
probabilities (p1, . . . , pk) are fixed as follows:
• low: set two initial values p̄1 and p̄2, with p̄1 < p̄2;
then, for a given small 0 < q ≪ 1, iteratively set
p̄i = p̄i−1+p̄i−2+q, with i = 3, . . . , k; finally, for each i

VOLUME 11, 2023 106115

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

FIGURE 1. Per-element storage requirement ψ (above), per-element energy cost (middle), and dot time (below),
averaged across multiple dot products xT W with different synthetically generated W . The matrix is represented via
HAM CHC variants. Here, n = m = 5000, and k is the number of distinct weights in W . Red lines represent the
normalized entropy of the generated matrices.

set pi = p̄i/
∑

j p̄j; the resulting distribution is obviously
unbalanced, and in particular it also yields a CHC with
the maximum possible lmax, that is lmax = k − 1;

• medium: set pi according to a truncated geometric
distribution of parameter p, selected to ensure that
the minimum probability is large enough to have
at least one occurrence in the generated matrix of
the corresponding symbol, and an intermediate nor-
malized entropy between 0 and 1: namely pi =(
p(1− p)(i−1)

)
/
(
1− (1− p)k

)
;

• high: set pi = 1/k for each i.
In order to assess the performance of the CHC variants
in presence of sparsity along with quantization, we further
generate matrices with different levels of sparsity (1 − s): in
particular, we keep n = 5000 and fix k = 10, a low enough
value to guarantee each symbol has at least one occurrence.
We generate three matrices having sparsity 0.6, 0.75 and 0.9,
respectively. Note that by fixing n and k , the variation of s
implicitly induces a variation in the entropy: the higher the
sparsity, the lower the entropy of the corresponding source.
As a consequence, fixed the probability of symbol 0 to 1− s,

we extract the remaining symbols as in the case of medium
entropy.

b: RESULTS
For dense matrices only HAM format has been tested, being
sHAM inefficient in this case. The corresponding results
are shown in Figure 1, in which the energy complexity of
the bitwise CHC variant cannot be shown, as its energy
computation is not available. Red lines show the normalized
entropy of the matrix/source, computed as in Section II-B1:
in the case of high entropy the distribution is uniform, hence
we don’t show the normalized entropy because it always
equals 1. Moreover, being results in each column related to
the same input matrices, the entropy value is shown only in
the first row, in a second axis.

In terms of space, there is no significant difference across
CHC variants, except for the full one, where for k > 20 we
observe in the low-entropy case a sensible increment in the
per element storage (ψ), due to the exponential growth of the
lookup table. Indeed, its dimension increases with lmax, that in
this case is equal to k − 1, differently from the medium- and

106116 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

high-entropy cases. This means that in remaining cases the
bitstream takes up the large majority of the overall memory.
The variant must be thereby selected banking upon time and
energy behaviors. The dot product time (averaged across
40 repetitions) reveals that the no-table variant is always the
slowest,3 as expected, while the comparison between bitwise
and buffered variants significantly depends on the source
entropy. In particular, bitwise is faster in low-entropy cases,
but it becomes much slower when the entropy increases. This
behavior is likely to depend on the decoding procedure of
the variant, which fetches one bit at a time, and consequently
the higher the average codeword length, the higher the time
needed to retrieve the next codeword. Indeed, in low-entropy
cases we have small lmax values, which mitigates this effect.
Moreover, the buffered variants using a lookup table (partial
and full) are more robust than bitwise to the value of k ,
remaining their time almost the same when k increases.
Finally, the energy complexity estimates reflect somehow
the behavior noted w.r.t. space complexity, although now
the differences between the three buffered variants are not
negligible, with the best results attained by partial variant in
the low case, and by full in the remaining settings.

In the experiment adding sparsity to the generated matri-
ces, we apply both HAM and sHAM, since with increasing
sparsity the latter becomes a more efficient option. Figure 2
shows the results of this experiment, w.r.t. three different
levels of sparsity: HAM still attains the best results both in
terms of space and energy. It is worth noting that some of
the Y-axes of the involved plots are broken, and the correct
interpretation is that HAM is still more efficient than sHAM,
but their gap is going to reduce when the sparsity increases
(till 1 − s = 0.9). For larger values of sparsity, sHAM
would become more efficient than HAM, as observed in
the experiments involving benchmark matrices and neural
networks (cfr. Sect. IV-C). Moreover, we are showing the
entropy of the whole matrix, zeroes included, which does not
directly impact of sHAMperformance, since only the entropy
of nz source affects its efficiency. Therefore, the entropy of nz
can be high even in the lowest-entropy case forW (rightmost
column), and accordingly we should not aim at definitive
conclusions about the comparison of HAM and sHAM from
this experiment.

Concerning dot time, instead, sHAM is consistently
superior to HAM in all the tested variants, attaining in some
cases a very relevant improvement. With reference to the
behavior of the different variants, we note a very similar space
and energy trends for both HAM and sHAM. The energy
of HAM still slightly decreases when increasing the size of
the lookup table (from no-table to full variants), confirming
the behaviour observed in Figure 1, while sHAM is almost
insensible to it. This might depend on the fact that, being
D1 < D and N1 < N , passing from no-table to full does not

3The case low entropy and k = 30 is an exception, since the full lookup
table becomes very large, with a consequent degradation even in direct access
time.

grant to save a significant number of accesses to first_code_l.
Finally, we note that bitwise can exploit sparsity in a better
way w.r.t. the ‘‘chunked’’ variants, although it becomes much
slower when dealing with dense matrices (see Figure 1).

In summary, these results suggest the partial variant must
be selected, because: 1) it has almost the same ψ and energy
cost of the no-table variant, but it is much faster, mainly in
dense cases; 2) the full variant is very unstable in low-entropy
cases under all performance criteria. Further, in the sparse
case it is only slightly slower that bitwise when using sHAM
(variant to be used typically on sparse data); conversely,
on dense data it is much faster than bitwise in conjunction
with HAM, format preferable on dense inputs.

C. STATE-OF-THE-ART COMPARISON
We compare all matrix compression formats described in
Sect. II-C, with the addition of Compressed Linear Algebra
(CLA) [15], [16], which is, as anticipated in the text, a com-
pendium of effective column compression schemes, cache-
conscious operations, and a sampling-based compression
algorithm to select the compression scheme more suitable for
each column or group of columns. CLA, available as a multi-
threaded Java implementation, outperformed state-of-the-art
methods like CSR-VI, D-VI, Gzip, LZ4, Snappy [16]. We
set up two experiments: 1) compressing sparse and quantized
benchmark matrices, 2) compressing deep neural networks.

TABLE 3. Benchmark matrices used in the experiments of Sect. IV-C1. The
columns report, respectively, the number of rows and columns (n and m),
the ratio of non-null entries (s), and the number of distinct entries (k).

1) COMPRESSING BENCHMARK MATRICES
We selected five matrices used as benchmark in previous
works in this context [16], [61], and offering a wide spectrum
of matrix characteristics: namely, dimension, sparsity, and
number of distinct values, as detailed in Table 3. Since the
matrices already are sparse and/or quantized at different
levels, we just compare the algorithmic features and per-
formance of all storage formats described so far, without
applying any lossy compression. To compare the methods
also in terms of dot product execution time, we ran 50 vector
matrix multiplications xTW using 50 randomly generated x,
and averaged the results.

a: RESULTS.
The obtained compression ratios are shown in Table 4,
while Figure 3 illustrates the analogous results in terms of
per-element storage and energy requirements. The average

VOLUME 11, 2023 106117

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

FIGURE 2. Per-element storage requirement ψ (above), per-element energy cost (middle) and dot
time (below) averaged across multiple dot products xT W with different synthetically generated W ,
quantized (with k = 5) and sparsified (sparsity coefficients are 0.6, 0.75 and 0.9, from left to right, and
shown as label of each column, alongside the normalized entropy value). The HAM and sHAM formats are
represented via plain and dotted bars, respectively.

FIGURE 3. Per-element storage requirement ψ (left) and per-element energy cost (right) w.r.t. the representation of the benchmark
matrices listed in Table 3. Bars having the suffix ‘‘ub’’ refer to the theoretical upper bounds computed for HAM/sHAM, respectively in
Corollaries 1 and 2. Values are reported in logarithmic scale. For the uncompressed matrix, ψ = b = 32.

time required for executing a dot product (we remark,
once again, without re-expanding the matrix) are shown
in Figure 4, where CSER is not included because its
implementation is not available. We can distinguish two main
scenarios, basically related to sparsity, as described below.
• In case of the highly sparse matrices SiNa and osreg_1,
sHAM always attains the best compression ratio, and
only CSER has a comparable (though sensibly worse)
performance. The situation is reversed when we focus

on energy consumption: indeed, these two formats
outperform the remaining ones, although CSER has
slightly lower requirements than sHAM (CLA not
shown because its energy consumption is not provided).
sHAM is, by far, also the fastest method, with the only
exception of CSC, which in any case has worse results
in terms of space and, especially, energy.

• Within the remaining category of denser matrices, HAM
is the top performer in terms compression ratio on

106118 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

ImageNet data, and the second one after CLA on
Covtype and Census data. It also exhibits the lowest
energy consumption, at the detriment of an execution
time for the dot product, which is around one order of
magnitude higher than CLA.

As a further interesting behaviour, in Figure 3 we also
computed the corresponding space upper bounds for HAM
and sHAM according to (5) and (6), respectively. Since HAM
depends more on the entropy than sHAM (the overhead for
the CSC structures is entropy-invariant), the HAM upper
bound tends to be looser in general w.r.t sHAM. SiNA data
is an exception due to its very large k , that makes the space
upper bound much higher than the actual per element space,
even for sHAM: In this case, we observe a larger gap also for
HAM, because the elevated sparsity induces entropy values
much smaller than the maximum (log k), assumed instead in
the upper bounds.

TABLE 4. Compression ratios obtained by the methods of Sec. II-C on the
benchmark matrices listed in Table 3. Values in bold highlight the best
method for each matrix.

FIGURE 4. Average dot product time (in seconds) for the experiments
shown in Figure 3.

2) COMPRESSING DEEP NEURAL NETWORKS
Being DNNs the most effective solution nowadays in several
application domains, we test the efficiency of the compared
methodologies in compressing publicly available DNNs.
Using pre-trained networks allows a fair analysis of the
compression and storage techniques, without introducing
potential biases in the procedures devoted to training, model
selection, and model assessment. Interestingly, two of the
compared methods (precisely, IM and CSER) have been pro-
posed specifically for this task. The comparison is performed
by calculating the dot product without expanding the matrix.
For this reason we exclude from this evaluation other DNN
compression techniques that need to expand the matrix to

perform the dot product, or to fine-tune weights, such as
the Tensorflow Lite Converter.4 In the following we provide
details about the selected DNN models, the corresponding
dataset and learning problems, some implementation details
and the overall results which we obtain.

a: MODELS
We retrieved the following two publicly available pre-trained
deep neural networks.
(i) VGG19 [7], a classification model consisting of 16 con-

volutional layers followed by a FC block, in turn
containing two dense layers of 4096 neurons each,
and a 10-units softmax output layer.5 It was proposed
for the ImageNet Large Scale Visual Recognition
Challenge [62], and subsequently also used in the realm
of handwritten digits classification, which is the case
we consider here, focusing in particular on the MNIST
dataset [63].

(ii) DeepDTA [64], a regression model having two separate
input blocks for proteins and ligands, both containing
three convolutional layers followed by a max pool
layer, and merged in a FC block consisting of three
dense layers, respectively containing 1024, 1024 and
512 units, and a single-neuron output layer.6 We use the
same dataset on which the model was originally trained,
namely the DAVIS dataset [65] storing affinities
between proteins and ligands (that the models aim to
predict).

Reminding that the storage formats which we compare
directly support the vector-matrix multiplication required to
compute the output of the FC layers, we only compress the
latter, underlying that they contain a vast majority of the
learnt parameters in both models. In addition, when reporting
the compression ratios related to these layers, we also
analyse how this impacts on the memory requirements of the
overall network (that is including the space of convolutional
layers, which are not compressed). Both networks undergo
pruning and quantization of their FC layers via the techniques
describes in Section II-B, with a subsequent fine-tuning of
weights which preserves the same training configurations
adopted in the original works. Finally, we represent the
resulting weight matrices using the compressed formats
under study and test the efficiency of the latter with regard
to the criteria described in Sec. IV-A.
We adhere here with the following aspects of the frame-

work suggested in [12]:
• we select the compression configurations (p-th empirical
percentile of weights and number k of distinct
weights) so as to guarantee no performance decay
w.r.t. the original model (in terms of accuracy and
mean squared error, respectively, for classification and
regression), namely p ∈ {30, 40, 50, 60, 70, 80, 90, 95,

4https://www.tensorflow.org/lite/convert
5https://github.com/BIGBALLON/cifar-10-cnn
6https://github.com/hkmztrk/DeepDTA

VOLUME 11, 2023 106119

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

FIGURE 5. Performance obtained when compressing the dense layers of the VGG19 network. Horizontal axis shows the empirical weight
percentile of pruning. Matrices are quantized using k = 32 (first row) and k = 256 (second row) distinct weights. The ‘‘ub’’ suffix has the
same meaning of Figure 3. Values are reported in logarithmic scale.

FIGURE 6. Performance obtained when compressing the dense layers of the DeepDTA network. Same notation used in Figure 5. Matrices
are quantized using k = 16 (first row) and k = 256 (second row) distinct weights.

96, 97, 98, 99}, k ∈ {32, 256} for VGG19, and p ∈
{30, 40, 50, 60, 70, 80}, k ∈ {16, 256} for DeepDTA;

• we use unified quantization, i.e., sharing the k distinct
weights across all the compressed network layers.

The latter property allows HAM and sHAM to use a
unique Huffman code for all network layers, thereby sensibly
reducing the related overhead.

b: SOFTWARE IMPLEMENTATION
The code retrieved VGG19 and DeepDTA is implemented
in Python 3, using Tensorflow and Keras. We use the same
environment for implementing and applying the pruning

and quantization techniques described in Section II-B. The
resulting software is distributed as a standalone Python
3 package.7

c: RESULTS
Figures 5 and 6 summarize the results on VGG19 and Deep-
DTA, respectively, in terms of space and energy requirements,
whereas the execution time is shown in Figure 7. Moreover,
in Tables 5 and 6 we show the obtained compression
ratios. On both DNNs, HAM always has the lowest space

7Source code, datasets and trained baseline networks are available at
https://github.com/AnacletoLAB/sHAM

106120 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

FIGURE 7. Average execution time (in seconds) for computing the dense layers of VGG19 (first row) and DeepDTA (second row). Layer
weights undergo pruning(with the levels shown on the X axis) and quantization using k distinct weights for all layers (shown under each
graphic).

requirement, except when applying a very high pruning level
(say, p > 90, or equivalently s ≤ 0.9) to VGG19. To some
extent, this confirms the results obtained on benchmark
matrices, but here such a trend is even more marked, since
CLA is no more competitive with HAM. The reasons of this
result likely reside in the following properties: i) the sparsity
is, in any case, not high enough to allow sparse formats to
become more efficient; ii) HAM is indirectly able to leverage
sparsity, since the source entropy becomes lower when one
symbol is largely over-represented (as in this case 0 is
always represented using just 1 bit); iii) HAM does not need
any additional structure to store indices, whereas the other
formats should use auxiliary index vectors for the matrix of
each compressed layer (apart CLA, which adaptively selects
the formats to be used); iv) lower k values induce shorter
Huffman decoding arrays; v) HAM (like sHAM) can use
a unique Huffman code for all compressed network layers,
and the bigger the number of such layers, the higher the
corresponding benefit.

The lack of additional structures, instead, makes the dot
product computation in HAM slower; however, considering
that our formats have been developed and optimized mainly
to gain in terms of compression ratios when pruning and
quantization is applied, and not directly to achieve time
efficiency, it is quite surprising to see that the time of HAM
dot product is close to that of CLA in this setting, or even
better (DeepDTA). CSC and IM are faster, but they are
the worst methods in terms of memory requirements (CSC
for p < 80, IM in the remaining cases). An analogous

situation occurs with reference to energy consumption: CSC
is the worst method for all pruning levels (except for p >
96 on VGG19), while IM becomes the worst method in
the remaining cases. It is worth nothing that there are some
marked drops in the energy for contiguous choices of the
pruning level, e.g., from p = 96 to p = 97 for both sHAM
and CSC when using VGG19, and analogously in DeepDTA
(now from p = 70 to p = 80 for CSC and from p = 40 to
p = 50 for sHAM). Such sudden jumps are due to the
change of the memory size of the operands involved in the
elementary operations listed in Table 2, which, as already
mentioned, directly impacts on the energy cost. HAM has the
lowest energy consumption till p = 90 forVGG19 and around
p = 70 for DeepDTA.
When the weight matrices are highly sparse (p > 90)

CSER and sHAM are, as expected, the formats which
realize the best compression in terms of space. Indeed, the
compression ratios obtained by the two methods are very
similar, and they are definitely higher than those of the
remaining compression formats. More precisely, CSER is the
top performer when pruning is not pushed to an extreme level
(95 ≤ p ≤ 97), while sHAM becomes the best method when
sparsification is very high (p ≥ 98). In general, CSER is more
energy-efficient, behaving slightly better than sHAM for the
overall class of sparse weight matrices (that is, p > 90),
although sHAM is the fastest among all methods (with the
only exception of CSC,which anyway is not viable in terms of
space and energy). Interestingly, although we only compress
dense layers, the overall size of VGG19 (Table 5) can be

VOLUME 11, 2023 106121

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

TABLE 5. Compression ratios obtained by the storage formats compared
in this study on VGG19 model. Different configurations of pruning and
quantization are applied to the dense layers of the network. Column
Config is in the format p-k . Values outside (inside) parentheses are the
compression ratios w.r.t. only dense layers (all layers). Index map method,
whose space is constant k <= 256, achieves a compression ratio
of ≃ 4.00 (1.57) on this data. In boldface font the best results for each
configuration.

almost halved, and that of DeepDTA (Table 6) reduced more
than 5.5×.

Finally, it is worth noting that Figures 5 and 6 also show
the space upper bounds introduced in Sects III-A and III-B,
evaluated using Corollaries 1 and 2. Confirming the trends of
benchmark data, HAM upper bounds are looser w.r.t. sHAM,
and this gap consistently tends to augment with the sparsity,
for the reasons already explained in the text. In this sense, the

TABLE 6. Compression ratios on DeepDTA model. Same notation of
Table 5. Index map in this case exhibits a (constant) compression ratio
of ≃ 4.00 (2.93).

assumption of weights having the same frequency (used to
compute upper bounds) seems far from being realistic, and in
practice the proposed formats are definitely more effective.
Tighter bounds might be found if more practical assumptions
are considered, which could be the subject of future studies.

V. DISCUSSION
The experiments investigating the role of the CHC variants in
the performances obtained by HAM and sHAM reveal that,
in general, the partial variant emerges as a general purpose
solution for building these compression formats, representing
a good compromise among the used performance metrics.
Indeed, it generally exhibits analogous results w.r.t. the
other variants in terms of compression ratio and energy
consumption, meanwhile optimizing the execution time of
the dot product operations. As exception to this generic
advice, the bitwise variant attains a faster dot product
execution when working in a low entropy regime, while the
full variant performs the best energy optimization.

In the remaining experiments, concerning the compression
of benchmark matrices and of two DNNs, HAM emerges as
the most efficient format to compress matrices with low to
moderate sparsity levels (roughly p ≤ 90). Indeed, while it
is slightly outperformed by CLA (in terms of compression
ratio) on two of the considered benchmark matrices (Covtype
and Census), on DNNs data it is to a great degree better than
CLA:the best compression for both formats is obtained on
VGG19 when p = 90 and k = 32, with a compression ratio
of 24.468× for HAM vs 16.712× for CLA, and 18.008×
(HAM) vs 6.399× (CLA) on DeepDTA (p = 80, k = 16).

106122 VOLUME 11, 2023

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

The dot execution time of HAM is related to the size of
Huffman decoding structures. Indeed, HAM is slower than
CLA on benchmark data where k values often are larger,
but its execution time is similar (VGG19) or even faster
(DeepDTA) than that of CLA when performing the DNN
inference. IM needs denser matrices and values of k ≤ 256 to
be competitive.Indeed, on benchmark matrices, which do not
have such characteristics, it poorly performs in terms of both
space and energy. On the other side, it becomes in both
metrics the second method on DNNs in all p ≤ 50 settings.
Conversely, sHAM and CSER are less competitive in such
cases, but they can exploit increasing levels of sparsity more
than CLA, HAM and IM. Actually, with high levels of
sparsity (roughly p > 90), sHAM and CSER are, by far, the
topmethods, performing very similarly in terms of both space
and energy, with sHAM compressing slightly more for more
extreme pruning (p > 97 of VGG19 and benchmark matrices
orsreg_1 and SiNa), at the expense of a slender higher energy
consumption. The best compression ratios for these two
methods are 180.845× and 466.08× (sHAM) vs 173.119×
and 277.61× (CSER), respectively on VGG19 (p = 99,
k = 32) and orsreg_1 data. In this setting, sHAM is even
faster than CLA (we remind no implementation is provided
for CSER), a nice feature considering also its compression
capabilities.

A special mention is reserved for the DNN compression,
where the possibility to share the Huffman code across
all FC layers substantially boosts the space efficiency of
HAM and sHAM: e.g., see how HAM improves w.r.t. CLA
from benchmark to DNN setting. As in the last decade the
most effective solutions in various application domains have
been achieved through deeper and deeper neural networks,
it becomes a fundamental feature that HAM and sHAM take
more advantage in terms of compression ratios over the other
methods as the depth of the models increases.

VI. CONCLUSION
We have presented two new lossless compression methods
for real-valued matrices, Huffman Address Map (HAM)
and sparse Huffman Address Map (sHAM), able to benefit
from low-entropy inputs (e.g., induced via sparsification
and quantization of the matrix) to attain high compression
ratios and energy savings, and to perform the vector-matrix
multiplication directly in the compressed format. We have
derived theoretical upper bounds to their space usage in
terms of the entropy of the input matrix. Moreover, the
proposed formats are particularly suitable to compress deep
neural networks, since the deeper the network, the higher
their efficiency. An extensive set of experiments, to compress
benchmark matrices and two public deep neural networks,
favourably compared our proposals with regard to state-of-
the-art solutions.

As a future work, an alternative source coding in place
of Huffman coding could be investigated, like asymmetric
numeral systems [66], largely used in data compression due to
their elevated performance. Moreover, a potential limitation

of HAM usage resides in the execution time of vector-
matrix multiplication, inherently induced by the sequential
nature of the decoding procedure. Although we have already
made it more competitive with existing solutions through
a multi-threaded extension, supplemental effort could be
devoted in designing and implementing variants which can
be executed on modern GPUs, so as to further increase their
time efficiency.

REFERENCES
[1] A. Hazra, P. Choudhary, and M. S. Singh, ‘‘Recent advances in deep

learning techniques and its applications: An overview,’’ in Advances in
Biomedical Engineering and Technology, A. A. Rizvanov, B. K. Singh,
and P. Ganasala, Eds. Singapore: Springer, 2021, pp. 103–122.

[2] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig,
X. He, J. Williams, Y. Gong, and A. Acero, ‘‘Recent advances in deep
learning for speech research at Microsoft,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., May 2013, pp. 8604–8608.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Advances in Neural
Information Processing Systems, vol. 25. Red Hook, NY, USA: Curran
Associates, 2012, pp. 1097–1105.

[4] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, ‘‘DeepDriving: Learning
affordance for direct perception in autonomous driving,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2722–2730.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[6] Z. Allen-Zhu, Y. Li, and Y. Liang, ‘‘Learning and generalization
in overparameterized neural networks, going beyond two layers,’’ in
Advances in Neural Information Processing Systems, vol. 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett,
Eds. Red Hook, NY, USA: Curran Associates, 2019.

[7] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ inProc. Int. Conf. Learn. Represent., 2015,
pp. 1–14.

[8] S. Afroz, M. Tahaseen, F. Ahmed, K. S. Farshee, andM. N. Huda, ‘‘Survey
on matrix multiplication algorithms,’’ in Proc. 5th Int. Conf. Informat.,
Electron. Vis. (ICIEV), May 2016, pp. 151–155.

[9] I. S. Duff, ‘‘A survey of sparse matrix research,’’ Proc. IEEE, vol. 65, no. 4,
pp. 500–535, Apr. 1977.

[10] G. C. Marinó, G. Ghidoli, M. Frasca, and D. Malchiodi, ‘‘Compres-
sion strategies and space-conscious representations for deep neural
networks,’’ in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021,
pp. 9835–9842, doi: 10.1109/ICPR48806.2021.9412209.

[11] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, ‘‘Model compression and
hardware acceleration for neural networks: A comprehensive survey,’’
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[12] G. C. Marinó, A. Petrini, D. Malchiodi, and M. Frasca, ‘‘Deep neural
networks compression: A comparative survey and choice recommen-
dations,’’ Neurocomputing, vol. 520, pp. 152–170, Feb. 2023, doi:
10.1016/j.neucom.2022.11.072.

[13] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, ‘‘A survey of model compres-
sion and acceleration for deep neural networks,’’ 2017, arXiv:1710.09282.

[14] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jul. 1948.

[15] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald,
‘‘Compressed linear algebra for large-scale machine learning,’’ Proc.
VLDB Endowment, vol. 9, no. 12, pp. 960–971, Aug. 2016.

[16] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald,
‘‘Compressed linear algebra for declarative large-scale machine learning,’’
Commun. ACM, vol. 62, no. 5, pp. 83–91, Apr. 2019.

[17] A. Francisco, T. Gagie, S. Ladra, and G. Navarro, ‘‘Exploiting
computation-friendly graph compression methods for adjacency-matrix
multiplication,’’ in Proc. Data Compress. Conf., Mar. 2018, pp. 307–314.

[18] S. Wiedemann, K.-R. Müller, and W. Samek, ‘‘Compact and computation-
ally efficient representation of deep neural networks,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 31, no. 3, pp. 772–785, Mar. 2020.

VOLUME 11, 2023 106123

http://dx.doi.org/10.1109/ICPR48806.2021.9412209
http://dx.doi.org/10.1016/j.neucom.2022.11.072

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

[19] P. Ferragina, Pearls of Algorithm Engineering. Cambridge, U.K.:
Cambridge Univ. Press, 2022.

[20] A. Rényi, ‘‘Onmeasures of entropy and information,’’ inProc. 4th Berkeley
Symp. Math. Statist. Probab., vol. 1, 1961, pp. 547–561.

[21] W.Wen, C.Wu, Y.Wang, Y. Chen, andH. Li, ‘‘Learning structured sparsity
in deep neural networks,’’ in Proc. 30th Int. Conf. Neural Inf. Process. Syst.
(NIPS). Red Hook, NY, USA: Curran Associates, 2016, pp. 2082–2090.

[22] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and W. Lin, ‘‘ThiNet:
Pruning CNN filters for a thinner net,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 10, pp. 2525–2538, Oct. 2019.

[23] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y.
Wang, ‘‘A systematic dnn weight pruning framework using alternating
direction method of multipliers,’’ in Computer Vision—ECCV 2018,
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., Cham,
Switzerland: Springer, 2018, pp. 191–207.

[24] D. Stathakis, ‘‘How many hidden layers and nodes?’’ Int. J. Remote Sens.,
vol. 30, no. 8, pp. 2133–2147, 2009.

[25] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, ‘‘AutoCom-
press: An automatic DNN structured pruning framework for ultra-high
compression rates,’’ in Proc. AAAI Conf. Artif. Intell., 2019, vol. 34, no. 4,
pp. 4876–4883.

[26] J. Ba and R. Caruana, ‘‘Do deep nets really need to be deep?’’ in Advances
in Neural Information Processing Systems, vol. 27. Red Hook, NY, USA:
Curran Associates, 2014.

[27] R. Müller, S. Kornblith, and G. E. Hinton, ‘‘When does label smoothing
help?’’ in Advances in Neural Information Processing Systems, vol. 32.
Red Hook, NY, USA: Curran Associates, 2019.

[28] F. Mamalet and C. Garcia, ‘‘Simplifying ConvNets for fast learning,’’ in
Artificial Neural Networks and Machine Learning—ICANN, A. E. P. Villa,
W. Duch, P. Érdi, F. Masulli, and G. Palm, Eds. Berlin, Germany: Springer,
2012, pp. 58–65.

[29] S. Swaminathan, D. Garg, R. Kannan, and F. Andres, ‘‘Sparse low rank
factorization for deep neural network compression,’’ Neurocomputing,
vol. 398, pp. 185–196, Jul. 2020.

[30] Y. LeCun, J. Denker, and S. Solla, ‘‘Optimal brain damage,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 2, 1989, pp. 598–605.

[31] M. Hagiwara, ‘‘Removal of hidden units and weights for back propagation
networks,’’ in Proc. Int. Conf. Neural Net. (IJCNN-Nagoya, Japan), vol. 1,
1993, pp. 351–354.

[32] T. Zhang, X. Ma, Z. Zhan, S. Zhou, C. Ding, M. Fardad, and Y.
Wang, ‘‘A unified DNN weight pruning framework using reweighted
optimization methods,’’ in Proc. 58th ACM/IEEE Design Autom. Conf.
(DAC), Dec. 2021, pp. 493–498.

[33] J. Chang, Y. Lu, P. Xue, Y. Xu, and Z.Wei, ‘‘Iterative clustering pruning for
convolutional neural networks,’’ Knowl.-Based Syst., vol. 265, Apr. 2023,
Art. no. 110386.

[34] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘‘Bina-
rized neural networks,’’ in Advances in Neural Information Processing
Systems, vol. 29, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2016.

[35] M. Á. Carreira-Perpiñán and Y. Idelbayev, ‘‘Model compression as con-
strained optimization, with application to neural nets. Part V: Combining
compressions,’’ 2021, arXiv:2107.04380.

[36] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
in Proc. ICLR, 2016, pp. 1–14.

[37] H. Gish and J. Pierce, ‘‘Asymptotically efficient quantizing,’’ IEEE Trans.
Inf. Theory, vol. IT-14, no. 5, pp. 676–683, Sep. 1968.

[38] Y. Choi, M. El-Khamy, and J. Lee, ‘‘Universal deep neural network
compression,’’ IEEE J. Sel. Topics Signal Process., vol. 14, no. 4,
pp. 715–726, May 2020.

[39] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Norwell, MA, USA: Kluwer, 1991.

[40] P. A. Chou, T. Lookabaugh, and R. M. Gray, ‘‘Entropy-constrained vector
quantization,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 1,
pp. 31–42, Jan. 1989.

[41] G. C. Marinò, G. Ghidoli, M. Frasca, and D. Malchiodi, ‘‘Repro-
ducing the sparse Huffman address map compression for deep neural
networks,’’ in Reproducible Research in Pattern Recognition. Cham,
Switzerland: Springer, 2021, pp. 161–166, doi: 10.1007/978-3-030-76423-
4_12.

[42] Y. Saad, IterativeMethods for Sparse Linear Systems, 2nd ed. Philadelphia,
PA, USA: SIAM, 2003.

[43] D. Huffman, ‘‘A method for the construction of minimum-redundancy
codes,’’ Proc. IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952.

[44] D. A. Huffman, ‘‘A method for the construction of minimum-redundancy
codes,’’ Proc. Inst. Radio Eng., vol. 40, no. 9, pp. 1098–1101,
Sep. 1952.

[45] A. Moffat, ‘‘Huffman coding,’’ ACM Comput. Surv., vol. 52, no. 4,
pp. 1–35, Aug. 2019.

[46] A.Moffat andA. Turpin, ‘‘On the implementation ofminimum redundancy
prefix codes,’’ IEEE Trans. Commun., vol. 45, no. 10, pp. 1200–1207,
Oct. 1997.

[47] Z. Sultana and S. Akter, ‘‘A new approach of a memory efficient Huffman
tree representation technique,’’ in Proc. Int. Conf. Informat., Electron. Vis.
(ICIEV), May 2012, pp. 731–736.

[48] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo, ‘‘Sparse matrix-
vector multiplication on GPGPUs,’’ ACM Trans. Math. Softw., vol. 43,
no. 4, pp. 1–49, Jan. 2017.

[49] N. Bell and M. Garl, ‘‘Efficient sparse matrix-vector multiplication on
CUDA,’’ NVIDIA Corp., Tech. Rep. NVR-2008-004, 2008.

[50] M. R. Hugues and S. G. Petiton, ‘‘Sparse matrix formats evaluation and
optimization on a GPU,’’ in Proc. IEEE 12th Int. Conf. High Perform.
Comput. Commun. (HPCC), Sep. 2010, pp. 122–129.

[51] J. Tian, C. Rivera, S. Di, J. Chen, X. Liang, D. Tao, and F. Cappello,
‘‘Revisiting Huffman coding: Toward extreme performance on modern
GPU architectures,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2021, pp. 881–891.

[52] S. Albers, ‘‘Energy-efficient algorithms,’’ Commun. ACM, vol. 53, no. 5,
pp. 86–96, May 2010.

[53] M. Rashid, L. Ardito, and M. Torchiano, ‘‘Energy consumption analysis
of algorithms implementations,’’ in Proc. ACM/IEEE Int. Symp. Empirical
Softw. Eng. Meas. (ESEM), Oct. 2015, pp. 1–4.

[54] Y. S. Abu-Mostafa and R. J. McEliece, ‘‘Maximal codeword lengths in
Huffman codes,’’ Comput. Math. With Appl., vol. 39, no. 11, pp. 129–134,
Jun. 2000.

[55] M. Horowitz, ‘‘1.1 Computing’s energy problem (and what we can do
about it),’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2014, pp. 10–14.

[56] N. Frid, D. Ivošević, andV. Sruk, ‘‘Elementary operations: A novel concept
for source-level timing estimation,’’Automatika, vol. 60, no. 1, pp. 91–104,
Jan. 2019.

[57] P. Ferragina, G. Manzini, T. Gagie, D. Köppl, G. Navarro, M. Striani,
and F. Tosoni, ‘‘Improving matrix-vector multiplication via lossless
grammar-compressed matrices,’’ Proc. VLDB Endowment, vol. 15, no. 10,
pp. 2175–2187, Jun. 2022.

[58] T. A. Davis and Y. Hu, ‘‘The university of Florida sparse matrix
collection,’’ ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25,
Dec. 2011.

[59] D. Dua and C. Graff, ‘‘UCI machine learning repository,’’ 2017. Accessed:
Dec. 10, 2022. [Online]. Available: http://archive.ics.uci.edu/ml

[60] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain, ‘‘Approximate
kernel k-means: Solution to large scale kernel clustering,’’ in Proc.
17th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD).
New York, NY, USA: Association for Computing Machinery, 2011,
pp. 895–903.

[61] K. Kourtis, G. Goumas, and N. Koziris, ‘‘Optimizing sparse matrix-vector
multiplication using index and value compression,’’ in Proc. 5th Conf.
Comput. Frontiers, May 2008, pp. 86–97.

[62] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
‘‘ImageNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[63] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[64] H. Öztürk, A. Özgür, and E. Ozkirimli, ‘‘DeepDTA: Deep drug–target
binding affinity prediction,’’ Bioinformatics, vol. 34, no. 17, pp. i821–i829,
Sep. 2018.

[65] M. I. Davis, J. P. Hunt, S. Herrgard, P. Ciceri, L. M. Wodicka, G.
Pallares, M. Hocker, D. K. Treiber, and P. P. Zarrinkar, ‘‘Comprehensive
analysis of kinase inhibitor selectivity,’’Nature Biotechnol., vol. 29, no. 11,
pp. 1046–1051, Nov. 2011.

[66] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, ‘‘The use of asymmetric
numeral systems as an accurate replacement for Huffman coding,’’ in Proc.
Picture Coding Symp. (PCS), May 2015, pp. 65–69.

106124 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-030-76423-4_12
http://dx.doi.org/10.1007/978-3-030-76423-4_12

G. C. Marinò et al.: Efficient and Compact Representations of DNNs via Entropy Coding

GIOSUÈ CATALDO MARINÒ received the B.Sc. degree in computer
science from the University ofMilan, in 2021, where he is currently pursuing
the master’s degree in computer science. His research interests include
machine learning and compression of neural network models.

FLAVIO FURIA received themaster’s and Ph.D. degrees in computer science
from the University of Milan, in 2022. His master’s dissertation was titled,
‘‘Centrality in Undirected Networks: Proofs and Counterexamples.’’ His
research interests revolve around the study of graph theory and network
centrality. In particular, he is currently focusing on how different centrality
measures react to edge additions in terms of score and rank monotonicity of
nodes.

DARIO MALCHIODI received the M.Sc. degree in computing and the
Ph.D. degree in computational mathematics and operations research from
the University of Milan, in 1997 and 2000, respectively. Since 2002, he has
been an Assistant Professor with the Department of Computer Science,
University of Milan, where he was an Associate Professor, in 2011. He
teaches statistics and data analysis and algorithms for massive datasets.
He is the author of about 100 scientific publications and is actively
involved in the popularization of computing. His research interests include
the treatment of uncertainty in machine learning, with a particular focus
on data-driven induction of fuzzy sets, compression of machine-learning
models, mining of knowledge bases in the semantic web, negative example
selection in bioinformatics, and application of machine learning to the
medical, veterinary, and forensics fields.

MARCO FRASCA received the Ph.D. degree in computer science from the
University of Milan, in 2012. Since 2017, he has been an Assistant Professor
with the Department of Computer Science, University of Milan. He has been
an Invited Research Visitor at several universities, including the Terrence
Donnelly Centre for Cellular and Biomolecular Research, the University
of Toronto, and the Institute of Molecular Biology, Johannes Gutenberg
University of Mainz. He contributed to consolidating the application
of Hopfield networks to classification and ranking problems with the
development of single- and multi-task parametric Hopfield models. His
research interests include the design and analysis of new machine-learning
methods, with applications in bioinformatics, computational biology, and
medicine.

Open Access funding provided by ‘Università degli Studi di Milano’ within the CRUI CARE Agreement

VOLUME 11, 2023 106125

