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ABSTRACT Trajectory uncertainty presents a major challenge for air traffic management. In order to
improving the predictability of flights to facilitate air traffic management while also considering the
economic benefits of airlines, in this paper, a trajectory multi-objective optimization method based on robust
optimal control with flexible chosen horizontal route is proposed. Both the trajectory predictability and
trajectory economic cost are taken as the optimization objectives. The method takes the ensemble weather
forecast data as input to consider the impact of wind uncertainty on trajectory operation. To consider the
accumulated predictability of arrival time at important sampling points throughout the entire trajectory
and the impacts of increased predictability on the passed through sectors with different busyness levels,
the concept of robustness coefficient based on sector busyness weighting is proposed and new trajectory
predictability objective functions are established. A scenario from Hong Kong to Amsterdam is constructed
to verify the effectiveness of the proposed model and algorithm. The results show that the proposed method
can improve the predictability of the arrival time at the destination by 67.30%when compared with the initial
flight plan, and can further improve the accumulated predictability for the entire trajectory predictability by
21.30% using the entire trajectory predictability metric as the objective. The robustness coefficient’s effect
on improving the arrival time predictability for busy sectors traversed by the trajectory without bringing
unacceptable costs to the trajectory predictability in other sectors is also verified. By the experiments results,
we can draw the conclusions that the proposed method can obtain wind optimized trajectory with both
economy efficiency and improved predictability.

INDEX TERMS Air traffic management, robust optimal control, trajectory optimization, high-altitude wind,
ensemble prediction system.

I. INTRODUCTION
Air traffic is currently in a rapid growth phase, and although
there is a small decline in traffic in 2020 and 2021 due to
COVID-19, there is already a rebound in 2022 [1], and air
traffic will continue to grow in the long run. To accom-
modate the continued growth of air traffic in the future,
the new generation of Air Traffic Control (ATC) will adopt
the Trajectory-Based Operation (TBO) approach [2]. Under

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianxiang Xi .

TBO, each flight is represented by a four-dimensional trajec-
tory, which is expressed by a series of points from departure to
arrival, each of which includes a three-dimensional position
and time [3]. The basic feature of TBO is Controlled Time
of Arrival (CTA) [4], which is a time constraint imposed
on a series of points on the four-dimensional trajectory, i.e.,
the fourth dimension in the four-dimensional trajectory in
addition to the three-dimensional position, and the use of
feedback control to control the aircraft within the allowable
control accuracy can effectively ensure the aircraft reaches
the specified position within the CTA range [5].
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Airlines and ATC interact through mutual trajectory nego-
tiation to enable safe and efficient flight operations. Airlines
submit initial planned flight trajectories, called Business
Development Trajectories (BDTs). Based on the BDT sub-
mitted by the airline, ATC detects the air traffic capacity
imbalance, identifies the air traffic bottleneck areas over time,
and releases them to the airline. The airlines can adjust the
trajectory according to the bottleneck area and generate the
shared business trajectory (SBT). And the ATC will gen-
erate the SBT based on. According to the newly generated
trajectory, ATC manages the new capacity flow balance and
generates reference business trajectory (RBT).

In the background of TBO, the traditional airspace oper-
ation mode is difficult to meet the operation requirements,
so FRA was born. Free Route Airspace is a flexible use of
airspace. In the FRA, users can plan their trajectory more
flexibly between the given approach and exit points [6],
which extends the operational space available for flights from
the route to the whole airspace, helping to further improve
flight operation efficiency, and save flight operation cost.
The method of grid discretization of the airspace is usually
used for route planning within the airspace of flexible flight
paths to convert the continuous space into discrete space,
thus facilitating route optimization. This paper focuses on
the method of generating optimized trajectories considering
the bottleneck areas issued by the ATC side, considering the
demand of the flight division for economy and punctuality
on the one hand, and the demand of the ATC for high safety
and predictability on the other hand, and studying the method
of multi-objective optimization of trajectories in the environ-
ment of FRA.

The trajectory optimization is different from the path
planning problem, which needs to consider the performance
limitations of the aircraft and give a reasonable arrival
time at each point of the trajectory to ensure that the
aircraft can fly according to the arrival time within the
flight envelope. The currently used trajectory optimization
methods include dynamic planning [7], heuristic methods
(genetic algorithm [8], simulated annealing algorithm [9],
particle swarm algorithm [10], and differential evolution
algorithm [11]), and optimal control methods [12], etc. The
optimization objectives consider the flight time and fuel con-
sumption, etc., among which the optimal control algorithm
differs from other algorithms in that the motion model is con-
sidered, and there may be large errors between the trajectories
generated by other algorithms and the real flyable trajectories,
the generated trajectorymay be infeasible because the aircraft
equations of motion are ignored, while the optimal control
takes into account the aircraft equations of motion and can
generate a very accurate trajectory with guaranteed flyability,
which has become the main method used in recent years [13].
High-altitude winds have an important influence on tra-

jectory optimization, and some studies assume that the high-
altitude winds are deterministic, under which the trajectory
optimization problem under deterministic wind forecasting

conditions is studied [14], [15]. The actual high-altitude
winds usually differ from the forecasted high-altitude winds,
and the high-altitude wind forecast results usually have
uncertainties. Among the mainstream meteorological fore-
cast products, high-altitude wind forecast products such as
the ensemble forecast system (EPS) [16] give ensemble
forecasts of high-altitude winds, which are sets of possible
high-altitude wind forecast results, consisting of about 10 to
100 ‘‘ensemble members ’’Under TBO, for a single flight
trajectory, the uncertainty of high altitude winds can make it
difficult for the flight to follow the predefined 4D trajectory
and meet the planned CTA, thus affecting the flight’s opera-
tional safety and operational cost. For air traffic as a whole,
the impact of uncertainty in high-altitude wind forecasting is
reflected in the reduced predictability of the overall trajectory,
which makes it necessary to reserve more capacity to cope
with the uncertainty in airspace usage and reduces the actual
available capacity.

To quantify the effects of high-altitude wind uncertainty.
EPS data is used and a deterministic trajectory predictor is
constructed to obtain a trajectory set to quantify the impact
of high-altitude wind uncertainty over the North Atlantic,
and the results showed that high-altitude wind uncertainty
reduced the predictability of flight time and fuel consumption
and increased flight costs [17], [18]; And the effect of high-
altitude wind uncertainty has also been investigated using a
probabilistic trajectory prediction method, where the prob-
ability density functions of wind speed and direction are
obtained from discrete EPS data by probability distribution
fitting methods [19]; To quantify the additional economic
cost of uncertainty, data from 810,227 American Airlines
flights are collected to analyze the benefits of reducing fore-
cast uncertainty, which showed that reducing the dispersion
of flight time forecasts by one minute would save at least
120 million dollars [20]. Improving flight predictability can
effectively increase airspace capacity and thus improve the
efficiency of the entire air traffic network, and improving the
overall predictability of trajectories by reducing the effect of
wind uncertainty at high altitudes has an important impact
on the safe and efficient operation of the entire airspace,
especially the busy airspace where the capacity is close to
saturation [21], [22].

To reduce the impact of high-altitude wind uncertainty,
a series of studies have been conducted by researchers. Lind-
ner et al.. use historical meteorological data to pre-optimize
a flight corridor that includes all possible trajectories and
re-optimize the trajectory within the corridor in real-time
during the tactical trafficmanagement phase based on updates
of meteorological forecasts. the existence of flight corridors
improves flight [23] Álvaro Rodríguez-Sanz et al. quantified
the impact of uncertainty factors on flight times based on
Monte Carlo methods and used Bayesian networks to identify
flight parameters that are strongly associated with uncertainty
and achieved uncertainty management by changing these
parameters [24], [25]. Legrand et al. first used Bellman’s
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algorithm to plan the optimal trajectory in a deterministic
wind field, then combined it with EPS to obtain the optimal
trajectory set, and proposed a new method to calculate the
distance between trajectories, using a clustering method to
obtain a robust trajectory over the North Atlantic [26].

Although the above studies reduce the effect of high-
altitude wind uncertainty, the consideration of aircraft motion
models is not sufficient to ensure the flyability of the trajec-
tory, therefore, a large number of studies have started to use
optimal control methods for trajectory optimization in recent
years. González-Arribas et al. considered the effect of high-
altitude wind uncertainty on the North Atlantic route and used
a robust optimal control method to improve the predictability
of the flight arrival destination moment by changing the
horizontal path in a static high-altitude wind forecast wind
field [27]. Manuel et al., also based on static forecast data,
optimized the horizontal path over the North Atlantic and
increased the flight cost as an optimization objective to obtain
a Pareto optimal trajectorywith different preferences between
time predictability and average cost [28]. The advantage
of using static forecast data is to reduce the computational
effort in the optimization process, but the second half of the
optimized trajectory gradually decreases in flyability with
flight time, making it difficult to ensure effective application
on long-haul flights. In order to solve the flyability problem
of the trajectory planned before takeoff in the second half of
the operation, Ramon et al. used the meteorological obser-
vation data shared by ADS-B in the tactical phase with the
optimization objective of minimizing the arrival time error
at the airport, and updated the 4D trajectory of the aircraft
in the terminal area during continuous descent in real-time,
which effectively improved the flyability of the second half
of the trajectory, but this method requires high continuity
and timeliness of the ADS-B data of the nearby aircraft,
which is difficult to be applied in the high-altitude flight path
phase [15]. Shumpei Kamo et al. similarly used the opti-
mal control method to achieve continuous descent trajectory
optimization for flights within the terminal area 1-2 h before
the flight arrives at the TOD point for re-optimization of
the trajectory within the terminal area in case of significant
weather changes, but it is also limited by the forecast data
source and faces the same problem of difficulty in extending
to the airway stage [29].

Although recent research has yielded notable achieve-
ments, it exhibits certain deficiencies. Primarily, current
studies predominantly employ static weather data for fore-
casts, disregarding the temporal evolution of weather pat-
terns. Additionally, existing optimization models prioritize
enhancing flight arrival time predictability at the destination,
neglecting the significance of predictability at intermediate
waypoints within the route sector. This oversight lacks com-
prehensive investigation into trajectory optimization methods
that account for robustness in waypoint arrival times.

Therefore, to address the above shortcomings, this paper
focuses on the trajectory optimization problem of FRA under

the influence of uncertain and time-varying high-altitude
wind forecasts, and investigates the robust trajectory opti-
mizationmethod based on optimal control theme, considering
the improvement of flight operation efficiency and trajectory
predictability. The main contributions of this paper include
the following three points: First, considering the impact of
time-varying high-altitude wind forecasts with uncertainty on
the trajectory and the aircraft motion constraints, a multi-
objective robust trajectory optimization model for aircraft
is established based on the optimal control; Then, because
the optimization objective of the existing robust trajectory
optimization model only considers the predictability of the
arrival time of the flight to the destination, but not the pre-
dictability of the arrival time of the waypoints during the
flight, the robustness of the entire crossing time of the opti-
mized trajectory is proposed as one of the objective functions.
Finally, considering the fact that the flight passes through
different airspace with different levels of busyness during
the actual operation, the concept of robustness weight factor
is introduced, and the effectiveness of the weight factor to
improve the predictability of the critical flight phases of
the flight path passing through busy sectors is investigated.
The effectiveness of the weight coefficients in improving the
predictability of the critical flight phases of the trajectory
through busy sectors is investigated.

The rest of the paper is organized as follows: Section II
describes and analyzes the problem in detail and gives
the assumptions of the model developed in this paper.
Section III provides an introduction to the models devel-
oped in this paper. Section IV describes the non-dominated
ranking genetic algorithm (NSGA-II) with an elite policy,
which is used to solve the discretized optimal model in
Section III-E. Section V analyzes the trajectory of VHHH-
EHAM long-range domestic cruise flight as an example
solution to explore the effect of the optimization model on
improving the robustness of the trajectory under different
scenarios. The conclusions and future research prospects are
shown in Section VI.

II. PROBLEM DESCRIPTION AND ANALYSIS
In the concept of TBO, the 4D trajectory consists of a
three-dimensional position with CTA. Influenced by the
uncertainty of high-altitude wind forecast, the arrival time
of each point on the trajectory also has uncertainty. The
purpose of this paper is to establish a robust trajectory opti-
mization model for aircraft considering the uncertainty of
high-altitude wind forecast, and to enhance the predictability
of the arrival time of the destination and the arrival time
of waypoints along the optimized trajectory affected by the
uncertainty of high-altitude wind forecast, while improving
the operational efficiency of the trajectory. In this paper, the
optimization model is proposed based on the robust optimal
control approach, and the model is based on the following
assumptions:
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(1) Considering only the effect of uncertainty in high-
altitude wind forecasts, without considering other uncertain-
ties such as convective weather and human factors;

(2) Considering only the cruise phase of the flight without
considering the limitations of the approach and departure
procedures within the terminal area, helps us to focus on the
cruise phase, which is more affected by the uncertainty of the
wind forecast at high altitudes, and to ignore the effects of
the other phases of the flight;

(3) The aircraft is in a glossy configuration, additional fuel
consumption due to different configurations is not taken into
account;

(4) The model uses the ensemble wind forecast data of
ECMWF, and the forecast ensemble contains all possible
time-varying high-altitude wind scenarios, but the model is
also applicable to other sources of EPS data;

(5) The airspace environment is free route airspace (FRA),
so that the flight route can be planned freely without consid-
ering the fixed route network;

(6) With the help of the existing CNS technology, the
aircraft can be guaranteed to operate autonomously according
to the set trajectory, which ensures that the aircraft meets the
operational requirements under TBO;

(7) Excluding restricted areas and exclusion zones due to
traffic control, military activities, etc.

The above assumptions can help us exclude the interfer-
ence of other factors and focus on the analysis of the impact
of high-altitude wind forecast uncertainty on trajectory
optimization.

III. ROBUST TRAJECTORY OPTIMIZATION MODEL
BASED ON OPTIMAL CONTROL
The construction of a robust trajectory optimization model
for aircraft, taking into account the effect of high-altitude
wind, involves several key components: the wind effect on
the ground speedmodel, aircraft motionmodel, and trajectory
ensemble model under the influence of high-altitude wind.
The wind model captures the relationship between wind
speed, aircraft ground speed, heading angle, track angle, and
wind direction. It provides insights into how the wind affects
the aircraft’s motion and helps in understanding the impact of
wind on the trajectory. The aircraft motion model describes
the state equations that govern the aircraft’s motion. It consid-
ers various factors such as aerodynamics, thrust, and control
inputs to determine the aircraft’s position, velocity, and other
state variables as a function of time. The trajectory ensemble
model, influenced by high-altitude wind, represents a set of
motion equations associated with the aircraft’s ground speed
under different sets of high-altitude wind forecasts. This
model accounts for the uncertainties in wind forecasts and
allows for the generation of multiple trajectories correspond-
ing to different wind scenarios. To optimize the trajectory,
an optimal control model is developed, and it is discretized
to convert it into a numerical optimization problem. The
discretization process involves dividing the trajectory into a

finite number of points, and the optimization problem is then
solved using numerical optimization techniques.

FIGURE 1. Diagram of the relationship between wind speed and ground
speed, heading angle and track angle.

A. WIND EFFECT ON GROUND SPEED MODEL
Within the aircraft operation process, wind uncertainty stands
as the primary source of uncertainty. Before constructing
the aircraft dynamics model, it is crucial to establish the
model for the influence of wind on ground speed. As depicted
in Fig.1, the ground speed −→vG is determined by calculating
the vector sum of the true airspeed vector −→v and the wind
velocity vector −→vw , resulting in the following equation:

−→vG =
−→v +

−→vW (1)

To ensure the aircraft stays on a predetermined course,
specifically tomaintain a constant trajectory angle, it is neces-
sary to decompose the velocity vector into two components
aligned with the east-west and north-south directions. This
decomposition is achieved by altering the direction of the
airspeed vector, known as the heading angle. Equation (1)can
be expressed as follows:

v · cos(χ ) + wsn(t, φ, λ, h) = vG · cos(ψ) (2)

v · sin(χ ) + wew(t, φ, λ, h) = vG · sin(ψ) (3)

where, v is the true air speed, vG(m/s) is the ground speed,
ψ(◦) is the track angle, χ (◦) is the heading angle, wsn(m/s)
is the wind component of wind velocity in the north-south
direction, andwew(m/s) is the wind component of wind veloc-
ity in the east-west direction, φ(◦) is the latitude, λ(◦) is the
longitude, h(m) is the flight altitude, t(s) is the time, wsn and
wew are both functions of t, φ, λ, and h, which can be obtained
in a 4D wind field by the 3D position expressed by longitude,
latitude, and altitude, and the time helps us to deal with the
time variation in high altitude wind forecast.

B. AIRCRAFT MOTION MODEL
The impact of high-altitude wind uncertainty on the tra-
jectory has a cumulative effect, and the impact of wind
forecast uncertainty on long-haul flights is more obvious.
In the case of long-haul flights, the cruise phase comprises
a significant portion of the journey, and the distribution of
high-altitude wind forecast uncertainty is not significant in
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the vertical direction. Therefore, our focus lies on the cruise
phase, assuming that the aircraft maintains a consistent alti-
tude throughout the flight.Whenwe take the aircraft’s motion
model into account, we treat the Earth as a uniform sphere and
do not consider variations in gravitational acceleration across
different positions. In the model, the wind force is considered
as a parameter and is obtained through the ensemble forecast-
ing system (EPS).

Our initial focus is on the aircraft dynamics model in
the presence of a deterministic wind field. To simplify the
analysis of forces acting on the aircraft, we adopt the point
mass model. This assumes that all forces act on the aircraft’s
center of gravity, while neglecting the influence of aircraft
slope on operations. We consider the aircraft as a controlled
dynamic system, with the aircraft operation time serving as
the independent variable for the system. The motion model
of the aircraft system can be represented by the following set
of differential equations:

dφ
dt

=
vG · cos(ψ)
R+ h

(4)

dλ
dt

=
vG · sin(ψ)

(R+ h) · cos(φ)
(5)

dv
dt

= v̇ =
1
m
(Thr − D) (6)

dm
dt

= ṁ = −FF (7)

where φ(◦) is the latitude, λ(◦) is the longitude, R(m) is
the earth radius, h(m) is the flight altitude, m is the aircraft
weight, Thr(N) is the aircraft engine thrust, and FF(kg/s) is
the fuel flow rate.

In the aircraft motion model described above, time is
used as the independent variable and all state variables are
described as functions concerning time. The robust optimal
control framework in this paper aims to plan a robust tra-
jectory for the aircraft that adapts to all high-altitude wind
forecast scenarios, where the aircraft follows the planned
unique trajectory in all high-altitude wind scenarios, and the
uncertainty of the arrival time due to the uncertainty of the
high-altitude wind forecast scenarios cannot be represented
if time is used as the independent variable.

To address this, the independent variable of the system in
this paper is taken as the distance ‘s’ traveled by the aircraft
along the route. The time ‘t’ is then considered as a state
variable, and the relationship between time ‘t’ and distance
‘s’ is expressed as follows:

ds
dt

= vG (8)

Correspondingly, the expression conversion of the motion
model of the above aircraft according to (8) is expressed as
the following equation:

dφ
ds

=
cosψ
R+ h

(9)

dλ
ds

=
sinψ

(R+ h) · cosφ
(10)

dv
ds

=
thr − D

m
·
1
vG

(11)

dm
ds

=
−FF
vG

(12)

dt
ds

=
1
vG

(13)

C. TRAJECTORY ENSEMBLE MODEL UNDER THE
INFLUENCE OF HIGH-ALTITUDE WIND
EPS contains several high-altitude wind forecast members
forming an ensemble of high-altitude wind forecasts, and the
high-altitude wind forecast uncertainty is represented in the
form of discrete high-altitude wind scenarios through the en
semble forecast members. The optimization model in this
paper aims to plan a 4D trajectory for the aircraft consisting
of a 3D position and a TAS, with the trajectory remaining
unique in all high-altitude wind forecast scenarios.

The model assumes that the aircraft remains at the same
altitude level at all times, so it is also required that the state
variables, φ, λ and v are consistent across different high-
altitude wind forecast members. To satisfy the consistency
of the above state variables for the planned 4D trajectory
under different members, the aircraft needs to have different
heading angles and thrusts for each forecast member. In the
state equation, the variable directly affected by the high-
altitude wind is the ground speed of the aircraft, and the
equation of the state equation of the aircraft system regarding
the ground speed needs to be expressed as a set of equations
corresponding to the high-altitude wind scenario, i.e., equa-
tions (11) to (13) need to be written as

dvi
ds

=
thri − Di

mi
·

1
vG,i

, i ∈ [1, . . .N ] (14)

dmi
ds

=
−FFi
vG,i

, i ∈ [1, . . .N ] (15)

dti
ds

=
1
vG,i

, i ∈ [1, . . .N ] (16)

where N denotes the number of members in the set forecast.

D. OPTIMAL CONTROL MODEL FOR AIRCRAFT
TRAJECTORY OPTIMIZATION
Considering the flight process of an aircraft as a con-
trolled dynamic system, the motion model described in
Section III-B is the state equation of this system, and
this set of differential equations can model the nonlinear
motion equations well, in which the control vector is u =

[Thr1, . . . ,ThrN , χ1, . . . , χN ] and the state vector is x =

[φ, λ,ψ, v,m1, . . . ,mN , t1, . . . , tN ]
Before defining the objective function of the optimization

problem, first define ‘‘time window of arrival’’ (TWA):

tw(s) = max(t(s)) − min(t(s)) (17)

where, tw is a function of the flight distance s and represents
the difference between the time of the earliest and the latest
two trajectories in the set of trajectories at s. It is used to
measure the predictability of the aircraft’s arrival time at this
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location, i.e., tomeasure the robustness of the trajectory under
different sets of high-altitude winds, and the smaller the value
of TWA, the higher the robustness of the trajectory at this
location.

The optimization objectives in optimal control are
employed to assess the effectiveness of the control strat-
egy. In the robust trajectory optimization model for aircraft
presented in this paper, the following three optimization
objectives are proposed, the first of these optimization objec-
tives is related to the efficiency of the trajectory operation,
while the second and third optimization objectives are related
to the robustness of the trajectory under the influence of high-
altitude wind uncertainty:

1) MINIMIZE FUEL CONSUMPTION
The fuel consumption objective is used to evaluate the flight
cost of the trajectory, and the fuel consumption is obtained
by calculating the difference between the initial mass of the
aircraft and the mass at the destination, and the average of the
fuel consumption of all trajectories in the set of minimized
trajectories is used as the optimization objective, i.e.:

min J1 = m0 −
1
N

N∑
i=1

mi(sf ) (18)

2) MINIMIZE TWA OF THE DESTINATION
This objective is used to evaluate the robustness of the aircraft
arrival time at the destination by calculating the TWA created
by all trajectories at the destination, and minimizing the TWA
at the destination is taken as the optimization objective, i.e.:

min J2 = tw(sf ) (19)

3) MINIMIZE TWA OF WHOLE ROUTE POINT
In response to the fact that most of the existing studies focus
on the robustness of destination arrival time and lack of
studies on the robustness of the arrival time of the whole route
point of the trajectory, the robustness of the arrival time of the
whole flight is defined as the optimization objective.

Considering that the busier airspace is affected by the
uncertainty of the trajectory during busy hours, the more
predictable the trajectory is required, so the trajectory robust-
ness weight factor is defined as W , which is a function of
longitude λ,latitude φ,and time t and is used to distinguish
the importance of the robustness of the trajectory at a specific
spatial location and at a specific time, and the larger the value
of the factor, the higher the requirement of the robustness of
the trajectory arrival time at that location, the optimization
objective can be written as:

min J3 =
1
sf

∫ sf

s0
tw(s) ·W (λ, φ, t)ds (20)

This equation expresses the integration of the TWA along
the trajectory over the flight distance and normalizes the
objective function by dividing it according to the total flight
distance.

Constraints are categorized into terminal constraints and
control constraints. Terminal constraints are used to repre-
sent constraints on the initial and end states of the aircraft,
including the following constraints:

(φ, λ)(0) = (φ0, λ0) (21)

(φ, λ)(sf ) = (φf , λf ) (22)

ti(0) = 0, ∀i ∈ {1, . . . ,N } (23)

mi(0) = mTOC , ∀i ∈ {1, . . . ,N } (24)

Equation (21) and (22) indicates that the position and
velocity of the starting and ending points of the trajectory
are equal to the given starting and ending points of the flight
optimization. Equation (23) indicates that the moment of the
starting position of the optimization process is 0. Equation
(24) indicates that the startingmass of all trajectories in the set
is equal to the mass at the beginning of the cruise phase of the
flight, i.e., when the flight reaches the top of the climb (TOC).

Control constraints are the aircraft performance and air-
craft actual operating rules and other constraints on the range
of values of aircraft control vectors, including:

Thr < Thrmax(h) (25)

0◦
≤ χ < 360◦ (26)

Equation(25) indicates that the thrust of the aircraft should
not exceed the maximum thrust corresponding to the current
altitude during the flight, and equation(26) indicates that the
heading angle of the aircraft takes a value range between 0◦

and 360◦.

E. MODEL DISCRETIZATION
Optimal control problems are typically solved using either
indirect or direct methods. The indirect method involves
deriving the solution through the variational method and
the principle of minimum value, which requires an initial
assumption about the solution structure, generally, it can
only handle linear models and cannot contain complex con-
straints. However, for the complex aircraft robust trajectory
optimization problem addressed in this paper, with intricate
coupling relationships among the system’s state variables, the
indirect method is not suitable. Instead, this paper adopts the
trapezoidal collocation method, which is a direct method,
to discretize the optimal control problem into a Nonlinear
Programming (NLP) problem for subsequent solutions.

To apply the trapezoidal collocation method in the direct
solution approach, the first step is to determine the number of
configuration points K. Then, the trajectory is discretized to
obtain a finite set of decision variables at each configuration
point. The trapezoidal matching point method is employed
to discretize the continuous system dynamics equation, also
known as the state equation, into a set of nonlinear con-
straints. These constraints ensure that the change of state
between any two adjacent configuration points is equivalent
to the integral of the continuous dynamics. As an example,
consider Eq.(12), which represents one of these nonlinear
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constraints resulting from the application of the trapezoidal
matching point method.∫ sk+1

sk

dm
ds
ds =

∫ sk+1

sk

−FF
vG

ds (27)

mk+1 − mk =
1sk
2

[(
−
FFk+1

vGk+1

)
+

(
−
FFk
vGk

)]
(28)

Equation(28) is a representation of (27) after integrating
both sides of the equation. In (28), the right side represents the
integral approximation using the trapezoidal rule for numer-
ical integration. The distance 1sk = sk+1 − sk between the
two points in the equation is calculated using the formula for
the distance between two points on a rhumb line. The formula
is as follows:

ak = sin(
λk+1 − λk )

2

2
+ sin(

φk+1 − φk

2
)2

· cos(λk ) · cos(λk+1)
1sk = 2 · atan2(

√
ak ,

√
1 − ak )

(29)

In the equation, atan2 refers to the four-quadrant arct-
angent function, compared with the great circle route, the
equiangular route is not the shortest path, but it is easier to
navigate and calculate, and can effectively reduce the amount
of calculation in the process of track optimization.

The objective in the optimal control model is discretized
and expressed as:

min J1 = m0 −
1
N

N∑
i=1

miK (30)

min J2 = twK (31)

min J3 =
1
sf

K−1∑
k=1

twk ·W ·1sk (32)

The equation of state after discretization can be represented
as follows:

φk+1 − φk =
1sk
2

(cosψk+1 + cosψk )
R+ h

(33)

λk+1 − λk =
1sk
2

(
sinψk+1

(R+h)· cosφk+1
+

sinψk
(R+ h) · cosφk

)
(34)

vk+1 − vk =
1sk
2

(
thrk+1 − Dk+1

mk+1
·

1
vGk+1

+
thrk − Dk

mk
·

1
vGk

) (35)

tk+1 − tk =
1sk
2

·

(
1

vGk+1
+

1
vGk

)
(36)

mk+1 − mk =
1sk
2

·

(
−
FFk+1

vGk+1
−
FFk
vGk

)
(37)

To ensure the accuracy and validity of the trajectory
optimization model, the following additional constraints are
added:

s(tk+1) > s(tk ) (38)

m(tk+1) < m(tk ) (39)

tk+1 > tk (40)

where constraint (38) ensures that the horizontal distance
covered by the aircraft during the flight always increases,
indicating forward progress. Constraint (39) ensures that
the fuel consumption is always positive during the flight,
implying that the aircraft’s mass decreases over time. Lastly,
constraint (40) indicates that the arrival time of discrete points
is kept incremental. These additional constraints contribute
to the accuracy and validity of the trajectory optimization
model.

IV. MULTI-OBJECTIVE MODEL SOLVING ALGORITHM
AND PARETO FRONTIER SOLUTION EVALUATION
The aircraft trajectory optimization problem exhibits a high
level of complexity, which escalates exponentially with the
number of decision variables. Consequently, obtaining and
verifying the solution in polynomial time becomes challeng-
ing, rendering it an NP-Hard problem. Moreover, due to the
strong coupling between variables, a metaheuristic algorithm
is employed for its solution. The genetic algorithm, a well-
established stochastic search algorithm inspired by natural
selection, genetics, and variation, offers a versatile frame-
work for tackling complex optimization problems. It has
been successfully applied in various fields. The research find-
ings demonstrate that the Non-dominated Sorting Genetic
Algorithm II (NSGA-II), which incorporates an elite reten-
tion strategy, exhibits comprehensive advantages in terms
of solution quality and convergence efficiency. Hence, this
paper utilizes NSGA-II to solve the proposed trajectory opti-
mization model. The algorithm’s flow is depicted in Fig.2,
outlining the step-by-step procedure for finding optimal or
near-optimal solutions.

Aircraft trajectory optimization problems, whose size
grows geometrically with the number of decision variables,
are NP-Hard problems and are solved using metaheuristic
algorithms. Genetic algorithm is a stochastic search algorithm
that draws on the laws of evolution in nature and provides a
general framework for solving complex optimization prob-
lems, which has been successfully used in many disciplines.
The research results show that the non-dominated ranking
genetic algorithm (NSGA-II) based on the elite retention
strategy has comprehensive advantages in terms of solution
quality and convergence efficiency, so this paper uses this
algorithm to solve the proposed model, and the algorithm
flow is shown in Fig.2.

A. CHROMOSOME CODE
The chromosomes use a two-dimensional coding structure as
shown in Fig.3, with a real number coding, and the chro-
mosome length is the number of discrete points, and each
gene indicates the longitude and latitude of the flight at that
discrete point as well as the true airspeed. The advantage of
designing the chromosomes in this way is that the variables
that are consistent in each member of the trajectory set are
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FIGURE 2. Flow of NSGA II algorithm.

designed as chromosomes to maintain consistency among the
trajectories, and the adaptation function can be calculated by
simply extrapolating the flight time and flight cost of each
trajectory member separately according to the members of
the different high-altitude wind sets.

FIGURE 3. Chromosome coding method and structure design.

B. INITIAL POPULATION
The initial population, as the starting point of the iteration
of the heuristic algorithm, is an important factor affecting
the population evolution results and the efficiency of the
algorithm. In trajectory optimization, the flight history tra-
jectory data is used as the initial population to perform the
trajectory optimization.

C. CHROMOSOME CROSSOVER AND MUTATION
For the two-dimensional chromosome designed by the
algorithm, a single-point crossover is used, and different
crossover nodes are randomly selected for different decision
variables, and the crossover operation is shown in Fig.4.

FIGURE 4. Chromosome crossover operation.

After the crossover operation on the parent chromosomes
to obtain the offspring chromosomes, the mutation opera-
tion on the offspring chromosomes is performed by using
multi-point mutation and randomly selecting the mutation
nodes, and the number of mutation nodes is determined by

the mutation probability. Here, if the mutation probability
is large, then the whole search process degenerates into a
random search process. To address this, the paper introduces
an adaptive variation probability strategy. At the beginning
of the evolutionary process, the mutation probability is set
to a relatively large value, allowing for more exploration
and diversification of the population. As the optimization
progresses and the solutions begin to converge, the muta-
tion probability gradually decreases. This adaptive approach
helps strike a balance between exploration and exploitation,
promoting a more focused search for refined solutions while
avoiding premature convergence.

D. NON-DOMINATED SORTING
The non-dominated sorting method performs a fast stratifica-
tion of all individuals within the population to form multiple
Pareto fronts of different ranks. Crowding is used to measure
the distance from one solution to two adjacent solutions on
the same rank of non-dominated solution frontier.

E. EVALUATION METRICS FOR THE PARETO FRONTIER
After obtaining the Pareto frontier, the quality of the solution
set needs to be evaluated, and in this paper, the solution set is
evaluated by the following three metrics:

1) C-METRIC (CM), WHICH MEASURES THE DOMINANCE
RELATIONSHIP BETWEEN SOLUTION SETS

CM (A,B) =
|{u ∈ B|v ∈ A : v dominate u}|

|B|
(41)

where, A, B denote the two solution sets, the numerator
denotes the number of solutions governed by solution set A
in solution set B, and the denominator denotes the number of
solutions in solution set B.

2) HYPER VOLUME (HV), A MEASURE OF CONVERGENCE
AND DIVERSITY OF SOLUTION SETS

HV (A) = δ
(⋃

|A|

i=1Vi
)

(42)

where, δ(·) denotes the Leberger measure, which is used to
calculate the volume, and Vi denotes the hypervolume formed
by the i point of solution and the reference point. Here, the
solution set is normalized to the reference point (1, 1). The
larger the HV value, the more desirable the solution set is.

3) MEAN IDEAL DISTANCE (MID), WHICH MEASURES THE
DISTANCE OF THE SOLUTION SET FROM THE IDEAL POINT

MID(A) =

|A|∑
i=1

√
2∑

m=1

(
f mi

max(f m)−min(f m)

)2
|A|

(43)

where, denotes the m objective value of the i solution. The
smaller the value of MID, the more ideal the solution set is.
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V. CASE STUDY
A. HIGH-ALTITUDE WIND DATA AND UNCERTAINTY
QUANTIFICATION
In the optimization model, the high-altitude wind data is
obtained from the EPS of the European Centre for Medium-
RangeWeather Forecasts (ECMWF). The EPS is a numerical
weather prediction method that generates forecast ensembles
by running a weather model multiple times with differ-
ent initial conditions and perturbations. The ECMWF data
used in this paper consists of 51 ensemble members, which
include 1 control forecast and 50 perturbation forecasts.
These ensemblemembers provide a range of possible weather
scenarios. The data have a temporal resolution of 1 h and
a spatial resolution of 0.2◦ in the horizontal direction and
are divided into 10 altitude layers represented by isobars at
different pressure levels (100, 200, 250, 300, 400, 500, 700,
850, 925, and 1000 hPa). To incorporate the high-altitude
wind data into the optimization model, a 3D linear interpo-
lation method is used. This involves interpolating the wind
speed and direction data based on the longitude, latitude,
and altitude of the aircraft. By performing interpolation, the
model can obtain wind information at specific locations and
altitudes, allowing for the calculation of trajectory dynamics
and the optimization of the aircraft’s flight path in different
wind conditions.

The study focuses on the domestic cruise segment of the
VHHH-EHAM route. Fig.5 shows the planned route and
route sectors for this segment and illustrates the horizontal
distribution of wind uncertainty at an altitude of 9200m.
Considering the high-altitude wind forecast is time-varying,
we sliced and recombined the high-altitudewind forecast data
corresponding to different hours according to the arrival time
of the flight plan, and labeled them in the figure. The uncer-
tainty in high-altitude wind forecasts is measured by the
polar deviation of the maximum and minimum values in the
forecast ensemble, which can be judged by the color depth in
the figure, with darker regions indicating higher uncertainty

It can be seen that both the ZLLLAR06 sector and the
ZLLLAR08 sector, through which the planned route passes,
are areas with higher uncertainty of high-altitude wind fore-
cast data. This particular route is analyzed in the context of
KLM Flight 888, which is operated by a B747-400 aircraft.
The flight departs at 4:20 (UTC) on June 8, 2019. For the
analysis, the flight performance database used is BADA 3.11,
which provides the necessary aircraft performance data for
trajectory optimization. The initial KLM flight plan is used
as a reference for comparison with the optimized trajectory
obtained from the study. By comparing the optimized tra-
jectory with the original KLM flight plan, the effectiveness
and benefits of the trajectory optimization model can be
evaluated.

In order to quantify the impact of high-altitude wind
forecast uncertainty on the flight, the paper first constructs
a trajectory predictor. The predictor simulates and predicts
the domestic cruise segment (TOC-SARIN segment) of the
flight, which is affected by high-altitude wind forecasts.

FIGURE 5. VHHH-EHAM route domestic cruise phase and route sector.

The weight of the aircraft at the TOC point is set to 370 tons.
Using the 51 high-altitudewind forecast members released on
June 8, 2019, the predictor generates a predicted trajectory set
for the flight over the full segment. The average flight time for
this predicted trajectory set is 275.5 minutes, and the average
fuel consumption is 52.89 tons. At the SARIN point, the end
point of the flight, the TWA is 152.9 seconds, indicating the
uncertainty in the arrival time at that point.

The baseline trajectory is obtained using the ensemble
forecast control forecast members. Fig.6 shows the trend of
flight time deviation with flight distance for each trajectory
relative to the baseline trajectory. Each curve represents the
forecast trajectory corresponding to one high-altitude wind
forecast member. In Fig. 6 the TWA formed at 2500km by
the ensemble of trails is shown.

The difference between the uppermost and lowermost
trajectory arrival time represents the TWA formed by the
trajectory set at that point. The TWA formed by the tra-
jectory set at other locations is also calculated using the
above method. From the figure, it is evident that as the flight
distance increases, the flight time deviation of each trajectory
becomes larger. The TWA formed by the trajectory set also
increases, indicating a higher level of flight time uncertainty.
This decrease in predictability is a result of the influence of
high-altitude wind forecast uncertainty on the trajectory. This
analysis sets the stage for validating the optimization model
by comparing the optimized trajectory with the predicted
trajectory set obtained from the trajectory predictor.

B. RESULT ANALYSIS
Before conducting the case study, a comparison is made to
validate the superiority of the NSGA-II algorithm in solving
the aircraft robust trajectory optimization problem. Two other
algorithms, the multi-objective particle swarm algorithm
(MOPSO) and the linear weighting method based on Cost
Index (CI), are selected for comparison. The linear weighting
method based on Cost Index combines fuel consumption and
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FIGURE 6. Flight time deviation of the predicted trajectory for the plan
route.

flight time robustness into a single objective by using CI.
Multiple solutions are obtained by varying the CI values,
resulting in a solution set. The optimization scenario for this
comparison is the TOC-SARIN segment of flight KLM888
with an initial weight of 370t. The objectives are to minimize
fuel consumption and minimize the TWA at the terminal.
Each algorithm is applied to solve these objectives separately,
resulting in respective solution sets.

The Pareto front solution sets obtained by the three algo-
rithms are evaluated using three metrics: CM, HV, and MID,
as mentioned in Section IV-E. Figure 7 shows the Pareto
front solutions obtained by the optimization of the three
algorithms. Each point represents a trajectory set, where the
horizontal coordinate represents the average fuel consump-
tion of all trajectory members in the set, and the vertical
coordinate represents the time window of arrival formed by
all trajectory members at the end position.

A comparison of the performance of the three types of solu-
tions is presented in Table 1. It is observed that the NSGA-II
algorithm outperforms both theMOPSO algorithm and the CI
linear weighting method in all three metrics (CM, HV, and
MID). For the same solution time, the NSGA-II algorithm
obtains a higher quality solution set, indicating its capability
of generating a better Pareto front solution set compared to
the other two algorithms.

TABLE 1. Performance comparison of three algorithms.

In order to analyze the effect of the optimization model
proposed in this paper to reduce the impact of flights affected
by the uncertainty of high-altitude wind forecast, in this
section, the optimization and result analysis is carried out for

FIGURE 7. Comparison of Pareto front of three algorithms.

the domestic cruise segment of flight KLM888 based on three
optimization objectives setting approaches, which are:
Approach 1: The optimization model considers only the

robustness of the flight when it reaches the end of the seg-
ment, i.e., the departure point, in terms of the robustness
objective, i.e., minimizing the TWA of the destination, and
verifying the ability of the model to improve the robustness
of the trajectory at the moment it reaches the end based on the
solution results.
Approach 2: Considering the robustness of the flight over

the entire flight segment, minimizing the mean value of the
TWA along the trajectory as the optimization objective, and
verifying the ability of the optimization model to improve
the overall robustness of the trajectory based on the solution
results.
Approach 3: Determine the busy sectors through which

the flights pass based on the historical operation data, con-
sider the full-range robustness under the weighting of the
predictability of the entry time of the busy sectors, narrow
the TWA to enter the sector by increasing the weight of
the robustness of the entry time of the busy sectors in the
objective function, and verify the ability of the model to
improve the robustness of the trajectory in the busy areas
based on the solution results.

The experiments were conducted using a computer system
equipped with an Intel Core i7-9750h 2.60GHz processor,
16GB of RAM, and running the Windows 11 operation sys-
tem. The programwas developed and solved usingMATLAB
R2019b.

C. ROBUST TRAJECTORY OPTIMIZATION RESULTS
CONSIDERING ARRIVAL TIME PREDICTABILITY
OF DESTINATION
Optimization objectives of minimizing the TWA of destina-
tion and minimizing fuel consumption for flights, i.e., the
objective functions min J1 and min J2, and the Pareto front
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FIGURE 8. Figure 8 Comparison of optimized route and plan route.

FIGURE 9. Flight time deviation of trajectory set 1.

surface is obtained using the NSGA-II algorithm as shown
in red in Fig.7, where the top leftmost position in the Pareto
front surface represents the set of trajectories with the lowest
average fuel consumption, while the bottommost position
represents the set of trajectories with the lowest average
arrival time window. The lowest trajectory set, i.e., the set
with the highest robustness of the trajectory, is called tra-
jectory set 1, and the flight path corresponding to trajectory
set 1 is compared with the initial planned path as shown in
Fig.8. The red trajectory represents the planned route before
optimization. The green trajectory represents the route corre-
sponding to trajectory set 1 The TWAof the exit point SARIN
of trajectory set 1 is 50.013s, which is 67.30% lower than the
TWA of the planned route to reach the destination. It can be
seen that the horizontal route corresponding to trajectory set
1 avoids the area of higher uncertainty by detouring, and thus
improves the robustness of the trajectory, at the cost of extra
flight cost and longer flight distance compared to the great
circle trajectory.

FIGURE 10. Flight time deviation of trajectory set 2.

Taking the trajectory corresponding to the control predic-
tion member in the trajectory set as the baseline trajectory, the
trend of flight time deviation of the trajectories corresponding
to other high-altitude wind forecast members relative to the
baseline trajectory with increasing flight distance is shown
in Fig.9, it can be seen that the distribution of aircraft flight
time gradually disperses with increasing flight distance and
constitutes a gradually increasing TWA, but in the region
near the end of the flight segment, the dispersion trend of
flight time gradually tends to be concentrated and the TWA
gradually decreases, which is because the objective function
is set tominimize the TWAof destination, and this case shows
that the model can effectively improve the robustness at the
moment of reaching the destination.

D. ROBUST TRAJECTORY OPTIMIZATION RESULTS
CONSIDERING ACCUMULATED ARRIVAL TIME
PREDICTABILITY OF WHOLE TRAJECTORY
In this case, the focus is on considering the overall robustness
of the flight along the entire flight segment. The optimization
objectives are to minimize the average fuel consumption of
the trajectory set and the average TWA along each trajectory
in the trajectory set. In the objective function J3, equal weight
valuesW of 1 are assigned to all regions.

The NSGA-II algorithm is utilized to solve the optimiza-
tion problem. The trajectory set corresponding to the point
with the least uncertainty in the Pareto front (referred to as
trajectory set 2) is selected. Fig.10 illustrates the trend of
flight time deviation with increasing distance for the tra-
jectories associated with other high-altitude wind forecast
members, in comparison to Fig.9. It can be observed that
compared to trajectory set 1, the flight time deviation of
each member in trajectory set 2 is significantly reduced at
various locations along the trajectory. Furthermore, the TWA
is smaller, indicating a reduction in the flight time window at
each point along the flight segment. As a result, the robustness
of the flight is enhanced throughout the entire trajectory.
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FIGURE 11. Comparison of flight time deviation with different weighting factors.

In this case, using the objective function for trajectory set 1,
the average TWA along the trajectory for trajectory set 1 is
37.3726 seconds. On the other hand, for trajectory set 2, the
average TWA is 29.4107 seconds over the full flight segment,
which is 21.30% lower than trajectory set 1.

E. ROBUST TRAJECTORY OPTIMIZATION RESULTS
CONSIDERING ARRIVAL TIME WEIGHTED
PREDICTABILITY
To further extend the robust trajectory optimization model
to a scenario that closely resembles actual operation, the

optimization objective is focused on improving the robustness
of the aircraft when entering the ZLLLAR04 sector.

The ZLLLAR04 sector was chosen because it avoids areas
of high uncertainty in high-altitude wind forecasts and does
not result in unacceptable additional fuel consumption for the
flight.

By setting the weight of the ZLLLAR04 sector entry point
in the objective function J3, i.e., (λentry, φentry) value, the
effect of changing the weight value for a specific waypoint
on reducing the TWA of the trajectory at that point is ver-
ified, and the corresponding optimized trajectories into the
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ZLLLAR04 sector TWA for different values of weighting
factors are shown in Fig.11.

FIGURE 12. Comparison of TWA of the ZLLLAR04 entry and TWA along
the trajectory with different sector predictability weighting factors.

Fig.12 shows the change of the TWA of each trajectory
set at the entry point of ZLLLAR04 sector and the average
TWA along the trajectory with the increase of the weight
factor W . When W is 25, the time window for entering the
ZLLLAR04 sector is reduced from 26.04s to 16.08s, a reduc-
tion of 38.25%, and the average TWA along the trajectory is
increased from 30.41s to 33.83s, an increase of 11.25%.

This indicates that the robustness of the optimized trajec-
tory at the entry time into the ZLLLAR04 sector increases
with increasing values of the weighting factor, but at the
same time, the average TWA along the trajectory gradu-
ally increases, but the overall robustness of the trajectory
decreases by an acceptable amount compared to the increase
in robustness in the high weighting factor region. This indi-
cates that by increasing the weighting factor W in a region,
the robustness of the trajectory through that region can be
improved without overly affecting the robustness of the tra-
jectory in other regions.

VI. CONCLUSION AND OUTLOOK
In this study, we focused on the problem of robust four-
dimensional trajectory optimization for aircraft considering
the uncertainty of high-altitude wind forecasts. Specifically,
we conducted our research on the domestic cruise section
of the Hongkong-Amsterdam route as our target scenario to
validate and analyze the proposed model. The key findings of
our research are summarized as follows:

(1) We have developed an aircraft control model that con-
siders deterministic high-altitude winds. This model accounts
for the time-varying nature and uncertainty of high-altitude
wind forecasts. We address the trajectory consistency issue
by solving for robust trajectories under various high-altitude
wind forecast scenarios. The optimization objectives of our
model are focused on enhancing the robustness of the tra-
jectory destination as well as the overall trajectory. As a

result, we have established an aircraft trajectory robustness
optimization model based on optimal control principles.

(2) We have selected the domestic cruise segment of
the Hong Kong-Amsterdam route as our research object.
Through our experiments, we have successfully demon-
strated that the proposed optimization model effectively
mitigates the flight time dispersion caused by uncertain high-
altitude wind forecasts. Our model focuses on enhancing the
overall robustness of the trajectory by considering the entire
flight segment. By adjusting the robustness target weights of
different regions, we have observed significant improvements
in trajectory robustness for flights passing through those
specific regions, without imposing excessive costs on the
robustness of the trajectory in other regions.

The optimization model proposed in this paper provides a
method to optimize the trajectory in the future TBO frame-
work, considering the efficiency objective of the trajectory
optimization while also improving the predictability of the
trajectory to the destination and during the flight, especially
the predictability to the bottleneck airspace, which can help to
ensure the safety and increase the airspace capacity. Although
the paper has its shortcomings. Due to data limitations and
other reasons, it was not possible to perform additional val-
idation of the methodology and error propagation analysis
of the trajectory using data from different sources. Moving
forward, our future research will expand in two key direc-
tions. Firstly, we aim to incorporate additional sources of
uncertainty, such as human factors uncertainties, equipment
uncertainties and convective weather uncertainties into the
optimization model. This will further enhance the model’s
ability to handle a broader range of uncertainties. Secondly,
we plan to extend the research scope from the pre-tactical
stage to the strategic stage, and consider the trajectory opti-
mization problem for different time phases. This expansion
will enable us to provide decision support for trajectory opti-
mization and trajectory deconfliction management during the
strategy phase.
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