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ABSTRACT The digitalization of data has recently had an impact on the building industry. Building
information modeling (BIM) is a highly developed technology that is used to predict the cost, lifespan,
energy use, and efficiency of buildings. To enhance the BIM accuracy of cost and time estimation currently,
it’s easier than before by Using evolutionary algorithms (EA), which include contemporary algorithms
like evolutionary strategies (ES), evolutionary programming (EP), particle swarm optimization (PSO),
differential evolution (DE), and genetic algorithms (GA), the integration of artificial intelligence (AI). This
study uses a code (plugin) created by GA and integrated into the BIM-5D model via Navisworks as a plugin
to reduce the overall time and cost of construction projects. The plugin code, developed with Microsoft
Visual Studio and the C# programming language, is an interface that enhances the accuracy of time and cost
during construction stages with various five project time scenarios. The study’s findings indicate that the
suggested plugin reduces project time by roughly 20% while also saving various amounts of money.

INDEX TERMS Artificial intelligence (Al), building information modeling (BIM), cash flow, critical path

method (CPM), time and cost optimization.

I. INTRODUCTION

One of the most important aspects of construction project
management, after scheduling and planning, is determining
the cash flow of the project. Cash flow refers to cash expen-
ditures, known as cash outflow, and cash revenues, known
as cash inflow, during a project’s lifespan [1]. Forecasting
cash flow involves projecting cash inflows and outflows over
the project’s entire life cycle. Cash flow diagrams are essen-
tial tools for efficiently managing a project’s finances by
illustrating its cash flow profile over time [2]. They show
the cash inflow and outflow profiles, with the net cash flow
represented by the difference between them. Fig. 1 illustrates
the cash-out Profile, a curve depicting the expected progress
and cumulative cash-out values of the contractor throughout
the project’s duration [3], [4]. The cash-in profile, on the other
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hand, is represented by a stepped curve related to the contract
type and shows the owner’s expected monthly payments to
the contractor. The cash-out profile, on the other hand, is rep-
resented by a straight line. A positive net cash flow indicates
a cash surplus, while a negative net cash flow indicates a
cash deficit that requires external financing to cover. To cover
mobilization expenses and ease the financial burden on the
contractor during the mobilization and initiation phase of
construction works, the contractor should request a down
payment at the project’s outset [5], [6].

Scheduling and planning play crucial roles in creating a
cash flow prediction model.

Construction planning is a crucial and demanding task
in managing and executing construction projects [7], [8].
It involves various activities, such as selecting appropri-
ate technology, delineating work requirements, estimating
necessary resources, determining task completion time, and
identifying interactions among different work components.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. lllustrates the diagrams for cash flow and net cash flow
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The ultimate goal is to develop a comprehensive plan that
effectively manages the budget and schedules work [9], [10].
The planner’s primary responsibility is to provide a frame-
work for budget, work schedule, and communication among
work parties. Project planning involves establishing a pre-
determined course of action for an anticipated environment
[11]. According to the Project Management Institute, the
planning process involves defining and refining project objec-
tives and selecting the best alternatives to achieve them [12].
The planning function creates and controls project schedules
and determines materials, human resources, equipment, and
supplies needed for each task. It also involves documenting
the relationships between all project activities and examin-
ing activity sequences, durations, resource requirements, and
scheduling constraints to create a project schedule model.
Monitoring and controlling involves comparing actual and
planned dates, durations, resource quantities, and perfor-
mance metrics. Planners must focus on task organization for
successful project management, as shown in Fig. 2. Construc-
tion planning considers the various parts of a project and its
circumstances based on cost or schedule in collaboration with
available resources, or both, to complete the project.

In project scheduling, planners aim to minimize the time
and cost needed to finish a project, which can be achieved by
utilizing optimization techniques for both time and cost.

The cost of a project involves both direct and indirect
expenses associated with its activities. Planners can shorten
project duration by conducting a ‘“‘time-cost trade-off anal-
ysis” [13]. The purpose of this analysis is to identify
the time-cost options that will result in the best schedule
within the given parameters. Fig. 3 illustrates the relationship
between time and cost, indicating that as project duration
increases, direct costs decrease while indirect or overhead
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FIGURE 3. Relationship between time and cost [N. K. Park and Y. An].

costs rise. The optimal combination of time and cost yields
the best project duration and cost.

Thus, this research aims to optimize the overall time and
cost stages of construction projects through five different
project time scenarios. To achieve this objective, the research
presents a proposal for integrating a GA model into the
BIM-5D model interface. The proposed model utilizes a
spreadsheet program and is implemented via the Navisworks
plugin by coding all tasks using the C# programming lan-
guage through the Navisworks Application Programming
Interface (API). Finally, the results of this study and compar-
isons will be presented through Power-BI dashboards.

Il. LITERATURE REVIEW

Construction projects involve various activities, including
planning, design, execution, management, and, sometimes,
repair, which are carried out by different disciplines, such
as architecture, civil, electrical, and mechanical, throughout
the project’s lifecycle. To determine the project’s overall
duration and budget, it is crucial to consider the time and
budget of each activity. Effective financial resource manage-
ment is crucial for construction firms [14], and among the
numerous tasks involved, effective cash flow management
holds the utmost significance [15]. Inadequate management
of financial resources, coupled with cash flow issues, can
lead to significant disruptions in construction projects and,
in some instances, even result in contractor bankruptcies
[2], [16]. Thus, contractors must make precise cash flow
projections throughout project life cycles [17], [18], includ-
ing forecasting, planning, monitoring, and controlling cash
inflows and outflows. Since cash is widely regarded as the
most valuable resource within construction firms, cash flow
management should be a top priority for managers [19]. The
primary reason for construction company failures is often
the absence of sufficient funds to support daily operations
[2], [20]. Therefore, having a solid understanding of the
actual cash flow requirements throughout the construction
phases is essential [21]. Similarly, Duran (2017) [64] noted
that numerous projects are not completed on time, giving
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the construction sector a bad image for completing projects
on time, and project managers are often held accountable
for this [22]. Effective time management is essential for
organizing and executing plans to complete tasks within a
suitable duration. It is crucial for fulfilling budgets, achiev-
ing program objectives, and generating profits. Contractors
must prioritize effective planning and scheduling to achieve
successful project implementation and gain a competitive
edge in bidding, on-time delivery, and customization [23].
Planning involves identifying necessary resources and gath-
ering detailed information, while scheduling requires skillful
allocation of operations using available resources to optimize
pre-defined goals [24]. The Critical Path Method (CPM),
a widely used scheduling technique in construction project
management, provides vital information for effectively man-
aging projects and serves as the foundation for analyzing the
impact of construction process delays [25], [26]. Balancing
quality, time, and cost is a crucial trade-off in project plan-
ning. Construction management engineers aim to determine
the optimal point between time and cost by using trade-off
rates [27]. Due to the complexity and rapid development
of the business, there is a growing need for sophisticated
building methods and models that can address complex chal-
lenges. Thanks to powerful technology and software, BIM
and optimization technologies have become essential for
improving construction planning, scheduling, and resource
management. In the early 2000s, BIM was established as an
information model for building components [28]. BIM has
been proposed as an effective platform for enhancing col-
laboration among construction sectors, management teams,
and owners through the integration of related data and infor-
mation for project participants [29], [30]. BIM facilitates
the life cycle management of construction, which includes
primary project assessment, scheduling, design, construction
(equipment installation, budget control, and process manage-
ment), operation management, maintenance, modification,
and demolition processes [31], [32]. The addition of time and
cost to the BIM model creates the fourth and fifth dimen-
sions, enabling project schedules and cost estimates to be
improved during the early stages of design [33]. The apparent
benefits of BIM in addressing the technical complexity of
a construction project have resulted in its widespread usage
as a tool to increase construction management efficiency.
Recently, a strategy for optimizing BIM capabilities based on
artificial intelligence has been proposed, enabling researchers
to create and utilize a BIM-based strategy for optimizing
traditional building methods [34]. On the other hand, artificial
intelligence encompasses various technologies that enable
sophisticated computers to utilize human intelligence and
skills through listening, understanding, acting, and learning,
which allows humans to achieve higher performance and
outcomes than ever before [35]. BIM collects data on crucial
areas like design, planning, schedule, safety, quality, and
budget, which can be analyzed through robust Al algorithms
to optimize them [36].
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Engineering applications and scientific research frequently
encounter optimization problems that require finding the
optimal solution or solutions for a specific problem [37].
Boyd and Vandenberghe define optimization problems as
the process of identifying the best solution among various
options. The 1950s marked the advent of artificial intelli-
gence, which led to the invention of evolutionary algorithms
(EA), a new branch of the metaheuristic algorithm fam-
ily [38]. Genetic algorithms (GA) are among the latest EA
family algorithms, and they have emerged as a powerful
tool for finding optimal solutions to intricate engineering
optimization problems (EOPs) over the past few decades
[39], [40], [41], and [42]. GA mimics genetics and natural
selection by replicating reproduction, mating, and mutation.
It randomly selects individuals and creates a new set of indi-
viduals adapted to their environment through crossover and
mutation, which enables the population to progress towards
better regions of the overall search space. Genetic algorithms
are innovative global optimization techniques widely used in
function optimization, combinatorial optimization, produc-
tion scheduling, and other areas [43].

In another way, the applications of the algorithms in the
industry are very common as mentioned by [44] that deal
with the optimization of meat and poultry farm inventory
stock using data analytics for green supply chain networks
in two folds. In the first step, a traceability method with
the IOT-based system for demand-supply monitoring. The
second step: includes optimization of the supply network to
reduce the carbon emissions from transportation. Another
application in civil engineering has been illustrated by [45],
A bridge-type compliant mechanism is discussed, and the
components of this mechanism like design dimensions,
design dimensions of the flexure joint, linked size on the
displacement, and stress of the bridge-type compliant mech-
anism are analyzed based on the FEA by ANSYS. S/N
evaluation, ANOVA, RE, and surface plots are also used as
aids in the design problems.

For all the above, the primary objective of this study
is to improve the efficiency of construction projects in
terms of their overall duration (with five different scenar-
ios of project time) and expenses. To achieve this aim, the
research proposes the integration of a GA model into the
BIM-5D model interface. This proposed model employs a
spreadsheet program and is executed via the Navisworks
plugin. The implementation involves coding all tasks using
the C# programming language through the Navisworks
Application Programming Interface (API). In conclusion,
the study’s findings and relevant comparisons will be pre-
sented using Power BI dashboards. The basic steps of
this research outline are categorized as follows: (1) intro-
duction, (2) reviewing the literature and assessing needs,
(3) BIM & Genetic Algorithm, (4) research methodol-
ogy, (5) validation of the GA-API model, (6) case study,
(7) results and discussion, and (8) conclusion and future
work.
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Ill. BIM 5D & GENETIC ALGORITHM (GA)

BIM is a process that improves project quality, communica-
tion, and management while reducing costs and improving
schedules [45]. The digital building of a three-dimensional
model, including both graphical and non-graphical infor-
mation, is the third dimension of BIM [46]. The BIM 3D
application helps primary contractors optimize the alloca-
tion of space for facilities, equipment, and material storage
areas [47]. The scheduling component, which is the fourth
feature of BIM, is used to analyze and examine the evolu-
tion of the project [47]. A 4D BIM is primarily associated
with time, planning, and scheduling, according to academics
and practitioners [48]. Integrating all cost-related informa-
tion, including quantity, schedules, and pricing, 5D BIM
is beneficial during both the early design stage and the
construction phase, where changes are likely to occur [49].
BIM enhances communication among various teams and pro-
fessionals, streamlines interdisciplinary work, and offers a
comprehensive overview of the project, as illustrated in Fig. 4.
The model stores information about every component of the
building, clarifies clashes, avoids conflicts with contradictory
information between documents and building systems, and
reduces rework and modifications [50].

Commercial information about products can be added and
provided on suppliers’ websites. The information provided
in the model enables the program to directly assess the
building’s energy and environmental performance. BIM saves
time as documents are automatically generated, linked, and
updated from the model, allowing more time for design and
decision-making. The efficiency of team members and work-
ing time ensures more profit on the investment and positive
returns. According to the McGrew Hill Construction Report,
over 50% of firms view offering BIM to their clients as
an advantage for gaining projects. Almost every developed
country has or is developing legislation mandating the use of
BIM for at least publicly funded projects.

Integrating BIM with AI technology can offer numer-
ous opportunities for building and designing. The terms
digitization and digital transformation are often used inter-
changeably, but they represent different levels of digital
advancement. Digitization involves converting analog infor-
mation into a digital format, such as using a phone app for
checklists instead of paper. Digitalization refers to the point at
which machines can perform tasks that were previously under
human control, meaning their responses are comparable to
human actions like decision-making and updating.

Digital transformation involves using digital technologies
to fundamentally transform the way an organization operates
[51]. The construction industry, as shown in Fig. 5, may bene-
fit from Al in dealing with its most significant issues, such as
costs, schedules, and safety [52]. However, the industry is still
in the early stages of its digital transformation, with Al yet
to be used in many projects. The successful implementation
of the plan will depend on how well humans and Al work
together. Al has several advantages for construction projects,
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such as providing remote access to real-world training mate-
rials to enhance employee skills and knowledge, reducing
project onboarding time, and using generative design to iden-
tify and fix model clashes.

General contractors also use Al and machine learning to
monitor and rank job site risks, allowing the project team to
focus on the most important ones. Reinforcement learning
enables algorithms to learn from their mistakes, improving
project planning over time by comparing an infinite number
of project combinations and alternatives. Self-driving con-
struction equipment is better than humans at tasks such as
pouring concrete, laying bricks, welding, and demolishing
buildings. Advanced analytics and Al-powered algorithms
provide information on how buildings, bridges, roads, and
other structures work and their efficiency. Today, data from
various sources, including mobile device images, security
sensors, drone footage, and BIM, are collected. Machines
working by themselves can put together structures like walls
faster than humans on a production line. Companies in the
construction industry are starting to use Al and machine
learning to improve their operations.

To grasp the current state of Al in the construction industry,
it’s important to understand the major subfields of AI. These
subfields have emerged due to the progress in Al applica-
tions, including optimization. Therefore, this section provides
an overview of Al optimization techniques. Optimization
involves making decisions that produce optimal results within
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a given set of constraints [53]. Throughout one’s life, opti-
mization focuses on finding the best solution to any problem.
Evolutionary Algorithms (EA), a new type of metaheuristic
algorithm [53], emerged with the development of artificial
intelligence in the 1950s. Notable EA algorithms include
evolutionary programming (EP), genetic algorithms (GA),
particle swarm optimization (PSO), evolutionary strategies
(ES), and differential evolution (DE) [53]. Fig. 6 illustrates
the five most common Al optimization strategies. Evolution-
ary strategies (ES) are a subtype of nature-inspired direct
search and optimization processes that use mutation, recom-
bination, and selection to develop progressively improved
solutions within a population.

Evolutionary programming and differential evolution are
two essential evolutionary algorithm paradigms. Metaheuris-
tics, such as differential evolution and particle swarm opti-
mization, search large candidate solution spaces without
making any assumptions about the problem being optimized.
However, they do not guarantee optimal results. Genetic
algorithms, on the other hand, utilize natural genetics-based
techniques for global search and optimization. They simulta-
neously combine multiple potential solutions and investigate
the search space [54]. Genetic algorithms, also known as
GA, offer a solution to optimize a population of candidates
toward better options [55]. This approach is useful for solv-
ing optimization problems, such as scheduling and shortest
path, as well as in modeling and simulation, where random
functions are applied [56].

In GA, solutions evolve like in nature through hereditary
gene crossover and mutation, as shown in Fig. 7. These
solutions are called chromosomes, and each contains numer-
ous genes with values for the problem’s decision variables
expressed in binary or real numbers. The number of decision
variables is equal to the length of the chromosomes [57].
A genetic algorithm proceeds through the following stages:

Initial Population:

The initial group to be included in this process is referred
to as the ‘““population.” Each person presents a potential
solution to the problem being addressed. Genes are variables
that determine an individual’s characteristics and attributes,
and they are present in chromosomes composed of DNA,
as illustrated in Fig. 8.
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Fitness Function:

The fitness function assesses a person’s ability to compete
with others for a particular position. A fitness level is assigned
to each user, and those with a higher level have a better chance
of having children.

Selection:

The selection phase aims to identify physically fit individ-
uals who can pass on their genes to the next generations. Two
couples with superior physical fitness have been chosen for
this purpose. Those with higher fitness levels are more likely
to be selected for reproduction, as it is associated with higher
reproductive success.

Crossover:

In a genetic algorithm, the crossover process plays a crucial
role. It involves selecting a random crossover point from
the genes of each set of parents that will mate to produce
offspring, as illustrated in Fig. 9.

Mutation:

Certain genes may have a low probability of being altered
in new offspring through mutation. This means that some of
the bits in the string can be reversed, as shown in Fig. 10.

The phases are repeated in sequence to improve the quality
of individuals in each new generation. The algorithm ends
if the population has reached convergence, meaning that the
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offspring are not significantly different from their parents.
Once the genetic algorithm has generated a set of solutions
for the problem, we can consider it resolved because it has
produced a set of keys.

IV. METHODOLOGY OF THE RESEARCH
To optimize the cost and time of construction projects, the
study recommends integrating the 5D BIM interface-based
framework and the GA model. The process consists of four
stages, each with input data, the model with its dimension,
and output data, as depicted in Fig. 11. In Stage One, the input
data includes the bill of quantities, project code, and project
description to create a 3D BIM model. The output data of this
stage are quantity take-off (QTO) and extractions, which can
also be referred to as the Initialization of Construction data.
In Stage Two, the input data includes adding productivity
(labor, equipment) to the previous stage to create a 4D BIM
model. The output data at this stage are schedule data and
integration of the QTO list. The third stage introduces the
5D BIM model cost database by adding the cost database
(equipment, man-hours, materials, and overhead costs) as
input data. The output of this stage is the integration data
between cost data, schedule data, and the QTO list. In the
fourth stage, the input data includes the expected five scenar-
ios of the project time. This creates a 5D BIM model with a
GA algorithm, which is the core of the research to find the
optimal solution related to time and cost.

In terms of methodology and research design, the study
follows the recommended procedure for developing and
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evaluating a proof of concept for the new structure, as seen in
prior BIM studies [58, and 59]. Various tools and techniques
are utilized in the analytical portion of this study, including
cash flow estimation, critical path method (CPM) estimation,
building information modeling in five dimensions (5D) using
BIM, Power BI dashboards, and a GA optimization model
implemented using Microsoft Visual Studio (MS) with the C#
programming language acting as an application programming
interface (API) within Navisworks.

Once the 3D model is constructed, it is imported into Nav-
isworks to enhance the 4D and 5D evaluations. This includes
customization of the quantities takeoff (QTO) rules to match
the total cost price list name standard and the inclusion of
level information in the description. This enables an Excel
query to connect the databases for the QTO, price list, and
Gantt chart, and export the QTO report to Excel. The result is
a Gantt chart displaying the total cost of each activity. Fig. 12
demonstrates the use of Excel to achieve compatibility with
Primavera P6.

BIM technology is used to import the Gantt chart with the
entire cost to clarify and organize execution scheduling, and
create 4D and 5D simulations.

Integrating schedule data and the QTO list, which con-
tains resource information from the BIM model, into the
external schedule database for project schedule computation,
is a crucial step. The schedule database includes equipment
and labor productivity, which are utilized to calculate the
duration of each work item linked to the QTO list. By man-
ually adding the logistic sequence between separate tasks,
a schedule-loaded QTO list is generated. The concept of 5D
BIM, as depicted in Fig. 13, involves the integration of a 3D
model, 4D scheduling, and 5D cost for effective project man-
agement. The BIM model is continuously updated, providing
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construction management with timely information on the
project’s duration and cost. The system also generates a
resource catalog that considers the equipment, supplies, and
team members required for successful project execution. This
process includes merging the QTO list, loaded with schedul-
ing data, with an external database that encompasses labor,
material, and equipment costs.

Additionally, it is necessary to include other indirect costs
such as supervision, cleanup fees, bonds, or insurance, which
cannot be directly linked to a specific building component.
Once this estimation is complete, the timeline file can be
updated with cost information and used to generate a SD BIM
model through a 5D software platform, enabling 5D simula-
tion. Subsequently, the genetic algorithm stage is divided into
two steps, which are as follows:

A. INITIAL DATASET ESTIMATION

The construction tasks for the project have been identified,
and their interrelationships have been outlined. The duration
of each task is determined by its time and cost in creation
units, and the length of the activity is denoted by a chromo-
somal character. The activity periods are divided into five
scenarios, including two compressed periods, one ordinary
period, and two delayed periods. Choosing these five scenar-
ios is the most appropriate option as they closely resemble the
actual expected cases. Five scenarios are a suitable number
because exceeding this number would slow down the program
while reducing it to less than five would result in decreased
accuracy due to limited diversity in activities. Each choice
period (two compressed, one normal, and two delayed) is
based on recommendations from seasoned engineers.

122508

B. ANALYSIS OF THE GENETIC ALGORITHM (GA) MODEL
A Genetic Algorithm (GA) is utilized to determine the opti-
mal approach for completing project activities within a given
timeframe and budget. The scope of this study involves the
creation of a simple GA that focuses on time-cost optimiza-
tion, as well as the development of a BIM model for GA,
as depicted in Fig. 14.

The procedure for the genetic algorithm is outlined below:

1) To begin, the design space is populated with a random
selection of chromosomes, referred to as the “‘parent popu-
lation.” This serves as the initial generation, as depicted in
Fig. 15, and encompasses all activities of our project. Each
activity is represented by five instances: the first indicating
its normal state, followed by two instances for delays of one
and two days respectively, and two more for compression of
one and two days each.

2) After randomly selecting chromosomes to represent
each unique activity type (normal, delayed, or compressed)
from our design space, individuals are created. These indi-
viduals are then assigned a score based on the value of their
fitness function, as illustrated in Fig. 16.

3) To obtain the correct order of activities, the chro-
mosomes (activities) for each individual are rearranged
using the critical path method. Subsequently, the duration
is calculated as a fitness score for all individuals. The
populations are then sorted based on the fitness score,
as demonstrated in Fig. 17. In each iteration, a total of
100 individuals are created and sorted based on their fitness
score, which is determined by the minimum duration to the
maximum.

4) The following genetic operators (mating) are employed:
reproduction, which involves reproducing a fit individual;
crossover, which involves exchanging portions of two fit indi-
viduals to produce offspring; and mutation, which involves
applying a random perturbation to components of an individ-
ual. The occurrence of each of these operators is determined
by chance, as depicted in Fig. 18. To create the new gen-
eration, the 100 individuals are divided in half, and the
50 with the lowest fitness ratings are eliminated. The remain-
ing 50 individuals are then paired with the ten best individuals
to create 90 individuals for the next generation. Consequently,
the new generation consists of 100 individuals, and mating
is carried out by selecting genes from either person one or
person two (selected from the first 50 individuals) or from
mutation (any gene or gene activity from the entire original
space). In our case, the mutation occurs at a modest known
ratio of 10%.

5) Mating of the genes is continued until convergence is
achieved, at which point the operation is terminated. Conver-
gence is attained when the previously specified consistency
number is reached. For instance, if the number of iterations
reaches 500, the program will simply exit and use the final
fitness score. It is important to note that all of these steps are
carried out in a single runtime.

6) To find the optimum run that yields the best or short-
est duration, we repeat the previous stages by running our
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FIGURE 14. Flow Chart of the proposed GA-API BIM model.

program multiple times. We utilize the runtime parameter as
explained earlier in the process.

In the final step, we need to verify and obtain the best result
based on the duration of the project while ensuring that the
cost does not exceed the percentage specified at the outset. All
results are then outputted into an Excel sheet. The number of
output files is determined by the number of run times entered
at the beginning.
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FIGURE 17. Create 100 random persons.

Fig. 19 illustrates the first three inputs of the API GA
model.

“Run Times” involves running the model multiple times,
resulting in different outcomes with each iteration until the
optimal solution is reached. This iterative process allows the
model to refine its results, and after extensive repetition,
the optimal runtime occurs after 200 iterations.

“Maximum Consistency” pertains to the total number of
times the model will run, even after obtaining the optimal
solution. Without a limit, the model would continue running
indefinitely, without further optimization. To prevent this,
determine and set the maximum consistency to 500 in this
application. After reaching 500 iterations, the optimization
process, optimal learning, and performance are completed.

The “Cost Percentage” refers to the maximum percentage
of cost reduction aims to achieve while minimizing project
duration. It signifies the threshold that can’t be exceeded
in terms of cost reduction when prioritizing the reduction
of project duration. The research deals with the approach
in two ways. The first one focuses on minimizing project
duration, which is a primary objective. The main aim is to
minimize the duration as much as possible without incur-
ring significant cost increases. This optimization prioritizes
duration reduction. Once achieving the minimum duration,
repeating the GA process to further optimize cost reduction
must be done. The target of this is to control costs and prevent
excessive increases while also aiming for maximum duration
reduction. The “Cost Percentage™ parameter helps to strike
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FIGURE 18. Sorting the people according to the duration.

the right balance between reducing duration and controlling
costs. The second aspect that is considered within the “Cost
Percentage” is “‘cost duration.” This parameter sets a limit
on the increase in the original cost. In this research, the
optimization is done using two methods. Firstly, reducing the
duration of the project path. After determining the possible
duration for an alternative path, the optimization is done
without exceeding the specified cost percentage limit. This
optimization aims to achieve the minimum possible duration
without exceeding the allowed cost increase.

To achieve this, a Genetic Algorithm (GA)-based applica-
tion using MS Visual C# programming language as an APl in
Navisworks was introduced and prepared in this research.

V. EXPLAINING THE PROPOSED CODE (GA- ALGORITHM)
The code handles inputs received from Primavera, which
come in the form of an Excel sheet with five scenarios: one
ordinary normal duration, two compressions, and two delays.
The code begins by opening the Excel sheet from Primavera
and extracting the data, then transforming it into classes.
These classes serve as the models used in the code. Next,
it takes the activities and selects an iteration at random. This
selection is based on a randomly generated number ranging
from 1 to 5, which corresponds to the number of scenarios for
each activity. This process is repeated 100 times, resulting in
the first population. The first population is then sorted from
best to worst based on a fitness function built using the critical
path method algorithm (CPM), with the shortest period at the
top and the longest at the bottom. The ultimate goal is to
shorten the period as much as possible, although it can never
be reduced to zero.

Afterward, the top 10 individuals from the sorted popu-
lation are selected to initialize the second generation. This
leaves 90 individuals remaining. The first generation is then
splitinto two halves. The first half, comprising 50 individuals,
is used to randomly generate the remaining 90 individuals.
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FIGURE 19. Extension of the BIM model.

Each crossover occurs between two randomly selected indi-
viduals, resulting in 90 new individuals. These crossovers
can either preserve the first or second option as they are or
result in a mutation where a random object from the space
we created above is selected.

Next, we check if the desired level has been reached. If so,
we stop, and if not, we repeat the process to generate the
third, fourth, fifth, and subsequent generations until the same
result is achieved X times in a row or based on the number
of consistencies entered at the outset (500 was used in this
case). Finally, we sort the final population using the CPM
fitness function mentioned earlier. The top element in the
sorted population is our best option, representing the most
optimized iteration possible in terms of time consumption,
which, in turn, should increase the cost.

However, as the indirect cost is significantly reduced, the
overall cost is reduced as well. Finally, the best result is output
to a file, which is then transferred back to an Excel sheet
created in the output file’s path. Multi scenarios have been
tested to create the proposed algorithm with thousands of
solutions. The variation of the optimal solutions, the sensi-
tivity and accuracy of calculation of the optimality, the time
taken to find the optimal solutions, the cost reflected from
the analysis time, and the need for high computational power
and resources for increasing the scenarios and solutions are
the main causes and basic criteria have been expressed to
create the proposed plugin. This will be easy for to user to
deal with, It is like the ERT technique (optimistic, most likely,
and pessimistic) but with dual numbers (or percentages) in the
compressions, the same in extensions, and just one number
in the real-time similar to the most likely in PERT. To vali-
date and check the applicability of the proposed plugin, two
benchmarks (solved by several methods of algorithms) were
tested and solved then a good comparison with the previous
results and the results of the proposed plugin.

To satisfy all of these steps, a small project with 136 activ-
ities is tested by the proposed GA algorithm with its indirect
costs as shown in Table 1. The proposed algorithm, with
a mutation rate of 0.5%, arrived at the optimal solution
after approximately 200 iterations, as indicated by the ‘Run
Times’ data. Moreover, the algorithm ran for 500 iterations to
ensure maximum consistency, as stated under the ‘Maximum
Consistency’ category. The ‘Cost Percentage’ in this study
was 10%.
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TABLE 1. Time-cost of total activities.

TABLE 2. Case study 1 [58].

Alternative spaces of Duration Budgeted Total Direct
construction (Days) Cost ($) Activity Activity | Precedent | Option/ | Duration cost
Normal project 439 1,155,735 description number | activity Mode (days) )
First Compression project 333 1,173,395 Site 1 14 23,000
. 1 - 2 20 18,000
Second Compression project | 280 1,179,294 preparation 3 24 12.000
First Delay project 454 1,164,364 1 15 3,000
- 2 18 2,400
Second Delay project 493 1,163,703 rel;(;rrms and ’ 1 3 20 1.800
4 23 1,500
5 25 1,000
1 15 4,500
VI. VALIDATION OF THE GA-API MODEL Excavation | 3 | p > 2,000
To evaluate the effectiveness of the proposed GA-API model 3 33 3,200
approach, a benchmark problem introduced by Liu et al. [62] Precast 1 12 45,000
was conducted as a validation problem involving seven pre- gi’rlzferrete 4 ! g é(ﬁ) zg’ggg
defined activities. Table 2 showcases the available activity 1 % 20:000
options (along with the corresponding difference in the num- f(il(;llgation 5 23 2 24 17,500
ber of days of crashing or delaying, as indicated in the and piers ’ 3 28 15,000
“Option/Mode” column), their corresponding durations, and ‘1‘ ‘;’2 ig’ggg
costs for the project consisting of seven activities proposed Egéir‘sfer PC 1 4 4 2 8 32,000
by [60], which were optimized by [61] and [62]. The new £ 3 24 18,000
GA-API model was compared to three previous models to Erect 1 9 30,000
determine its performance in a deterministic environment, girders 7 3,6 g }2 ;‘2"888
which are: }
1. [60] Utilized the GC method. . | resul
2. [61] Employed MAWA with a GA-based strategy. TABLE 3. Experimental results.
3. [58] Used RKV-TCO with a GA-based genetic Critoria
; Approaches -
al gorlthm. Time Cost ($)
The results of comparing the GA-API model approach with M. Gen and R. Cheng, [61] Lk 256,400
. D. X.M. Zheng, S.T. Ng, and M.M. 66 236.500
the [58], [60], and [61] approaches are presented in Table 3, Kumaraswamy, [60] ]
which displays the time and cost values for each one and the Magalhdes-Mendes, [58] 63 225,500
proposed algorithm (code). The GA-API algorithm outper- The proposed algorithm, (code) 61 142,500

formed the other works in the fourth generation. Specifically,
the GA-API model achieved a project time of 61 days with
a $142,500 cost, which is two days less than the optimal
solution, and a reduction in cost by $83,000. The cost savings
from this model come from its ability to improve both time
and cost by using the Cost Percentage value, as previously
described in Figures 19-14 respectively.

VII. BENEFITS OF THE INTEGRATION OF GENETIC
ALGORITHMS (GA) WITH THE BIM-5D MODEL
More construction in developing countries such as Africa
or SMEs using fuzzy mechanisms produces a high number
of building infrastructures. In other countries, they used dif-
ferent evolutionary algorithms to enhance the construction
sectors.

there are many evolutionary algorithms like evolution-
ary strategies (ES), evolutionary programming (EP), particle
swarm optimization (PSO), and differential evolution (DE)
that are used in the industry and construction projects in the
planning phase. The complexity and the non-compatibility
between these algorithms and planning software are the most
common problems for using it at different companies and
firms. In addition, these need the expertise to deal with it
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and its mistakes which makes the cost overrun related to the
uses of it. Now, at the BIM time which spread and became a
mandatory document in construction projects. The improve-
ments and developments of BIM are always done by adding
add-ins within its software that make it more compatible,
easier, and not need the expertise to use it. That means it
covers all the previous problems traditionally. So, to make
the proposed integration of genetic algorithms (GA) with the
BIM-5D model via Navisworks applicable and the accuracy
of time and cost estimation in construction projects a good
comparison has been done with other evolutionary algorithms
(GA, PSO, MOEA, JA, and A-JA ) in the bellow study. This
comparison has been done related to a case study mentioned
at [63], that dealt with sixty-three activities in a construction
project. The durations, relationships, and all the data of the
project were taken from [66] also. Table (4) shows the final
result from the previous studies and the proposed integration
in this study.

The results show the time and cost values for each one
and the proposed algorithm (code). The GA-API algorithm
outperformed the other works in the fourth generation.
Specifically, the GA-API model achieved a project time of
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TABLE 4. The comparison between the proposed integration and other
different algorithms.

Project Objective GA PSO MOEA JA A-JA GA-API
63- durati | 624 623 621 618 616 557
activ | on

lty cost 5,334,600 5,282,450 5,201,750 4,990,500 4.911,250 4,891,230

557 days with a $4,891,230 cost, which is 59 days less than
the optimal solution, and a reduction in the cost of about
$20,020 related to an optimal cost with different methods.

VIIl. CASE STUDY

Fig. 20 shows a five-story concrete residential building with
an area of 742.19 m?2. This building is located in Cairo,
Egypt. The project was created in Autodesk Revit 2022 and
then imported into Navisworks Manage 2022 to utilize the
suggested framework. The client provided a list of items to the
contractor, who quoted a price based on the unit price (UP)
contractual arrangement. All costs were expressed in US dol-
lars (US$). Cost and pricing estimates were determined, and
the project was scheduled using the Primavera P6 schedule
database. Additionally, the cost breakdown for each item was
determined by combining the cost list and schedule estimates.

To estimate the cost, the proposed framework used the
price list to multiply the number of units of each item taken
from Navisworks. The unit price (UP) approach was applied,
which means that the employer paid the contractor based on
the completed items. The generated cash flow worksheet in
the proposed framework consists of formulas based on spe-
cific inputs and assumptions. The direct costs were estimated
monthly from the schedule and automatically inserted into the
monthly spreadsheet. The default indirect expense amount
was 10% of direct costs.

The direct and indirect expenses were added together to
calculate the total cost. The total value was then obtained
by adding a percentage markup, which was set at 10% in
this model. Typically, owners hold back a percentage of the
client’s fees until the project is completed, known as reten-
tion. In this case study, a 5% client retention rate was assumed
at the end of each month. The contractor’s default amount was
a 10% advance payment to cover mobilization expenses and
accelerate the project’s start. The Power-BI dashboard was
used to calculate the cash flow, and the results are presented
in Figures 21-22 respectively.

IX. RESULT AND DISCUSSION
By using GA, the 5D BIM API model can optimize both its
cost and duration, resulting in more efficient project comple-
tion. This work strategy enables the model to complete all
project activities in less time and at a lower cost than the
typical approach. Therefore, the outcome is cost and duration
optimization for the 5D BIM API model through the use of
GA, allowing for more streamlined and cost-effective project
completion.

The utilization of this operational approach enables the
model to achieve completion of the entire project, including
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FIGURE 20. BIM Model for the case study.
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FIGURE 23. Cash flow dashboard after using the GA APl model.

significant activities, in a shorter time frame and with reduced
expenses compared to the conventional method. Additionally,
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the interface module of the 5D Building Information Model-
ing program (Navisworks) has been enhanced with a plugin
that uses GA with numerous runs to identify the ideal critical
path technique for optimal project time and cost. The study
initially involved planning the required path method for the
project. After estimating the indirect cost, it was determined
that the standard project would take (439) days, with a cost of
($1,271,306). However, with the incorporation of the Genetic
Algorithms (GA) model as an application programming inter-
face (AP]) in Navisworks, the project was completed in (344)
days at a cost of ($1,253,360), as shown in Figures 23-24.

When the optimized values were utilized, the project time
was reduced by 20%, and the project cost was lowered by
$17,946, as shown in Fig. 25.

X. CONCLUSION AND FURTHER WORKS
The objective of this study is to improve the efficiency of
construction projects regarding their overall duration (with
different five scenarios of project time) and expenses. A time
and cost optimization technique using genetic algorithms was
proposed and applied to the five-dimensional (5D) building
information modeling interface. The research showed that
the proposed algorithm (code) is a technique that outper-
formed other optimization methods, resulting in a reduced
total project time and cost. Although 5D BIM research has
advanced, combining BIM with artificial intelligence meth-
ods can yield even better results, especially in terms of project
costs and cash flows.

This study illustrates standardized procedures and pro-
vides a tried-and-true method for integrating AI methods
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and genetic algorithms with the 5D BIM interface. The GA
BIM model used in this study is a significant contribution
as it enhances the optimization model’s accuracy and speed.
This model can be applied to various multi-objective opti-
mization problems, and its integration with existing software
gives a lot of benefits to developers and users. Tradition-
ally, planners and cost estimators spend significant effort
and time creating scheduling, planning, and cost estimations.
However, the proposed algorithm solves these problems by
integrating costs and schedules and avoiding potential prob-
lems in future construction. The study’s findings supplement
earlier research in improving cost estimates and creating
5D BIM-based centralized cost and cash flow management
systems.

Additionally, this research contributes to the body of
knowledge in 5D BIM and AI methodology and applica-
tions. With computing technologies continuously improving
and BIM becoming more common in construction projects,
optimization through Al and algorithms has great potential.
Finally, the following points can be summarized as the main
conclusions of the research:

(1) When considering both time and cost, developing a
creative solution to solve problems is crucial to maximiz-
ing project management effectiveness and achieving project
goals.

(2) This study demonstrates how project cost and duration
change over time, accounting for the impact of indirect costs
on the cost-duration relationship.

(3) To enhance convergence, precision, and rationality, and
avoid getting stuck in a partial optimal solution trap, adjusting
parameters such as the fitness function, coding mechanism,
and chromosomal composition form, and modifying solution
flow is essential.

(4) The proposed 5D BIM GA model was tested through
several simulations, which involved a limited number of
activities. The results confirm the effectiveness of the model
in optimizing project duration and cost.

(5) The 5D BIM GA model enables planners/managers to
handle more compressions (time cost trade-off) and delays,
allowing for more significant time and cost savings.

(6) The 5D BIM GA model can be applied to whole
megaprojects, providing more precise results and greater time
and cost savings by including more activities.

Further research can be conducted to reinforce the find-
ings and address other challenges in building projects. For
instance, the optimization model can be modified in several
ways to enhance project management:

(1) Resource allocation and leveling considerations can be
included in the model to improve its accuracy. Moreover,
exploring additional building alternatives for each activity
can help address various challenges and enhance the opti-
mization problem’s results.

(2) The optimization model can also be modified to opti-
mize for cost with time to improve project efficiency.

(3) To improve the accuracy of results for megaprojects,
the model can be made to receive more than five options,
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including two for compressions, two for delays, and one for
normal.

(4) Lastly, the performance of both the wall API model and
the critical path method can be enhanced through modifica-
tions to the optimization model.
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