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ABSTRACT In light of the inadequacies of traditional P-wave arrival picking algorithms using long and short
windows, which exhibit poor anti-noise ability and do not meet the requirements for efficient and accurate
P-wave arrival picking, this study proposes a CGAS deep learning algorithm for P-wave arrival picking in
mine micro-seismic events. The algorithm constructs the depth characteristics of microseismic waveform
through deep learning training and converts the problem of picking up the microseismic waveform into
a classification problem by employing data set segmentation and classification. This allows the algorithm
to pick up the characteristic information of microseismic waveform and improve the accuracy of P-wave
picking. The algorithm was applied to pick up the three-component micro-seismic waveforms obtained from
the microseismic monitoring system in a mining area in Liaoning from 2019 to 2020. Through ablation
experiments, it was found that adding each structure to the pickup model improved the relevant indexes to
some extent. When all network structures were used, the accuracy of the P-wave pick-up model reached
98.61%, ensuring the accuracy of P-wave pickup upon arrival and demonstrating the effectiveness of each
layer structure in the classification of P-wave arrival. Compared to other P-wave arrival picking algorithms
such as STA/LTA, U-Net++, Dpick, PhaseNet and EQTransformer, the algorithm proposed in this paper
exhibited high precision in P-wave arrival time picking, providing a new research idea and technical means
for efficiently determining the P-wave arrival of events.

INDEX TERMS CGAS model, multi-time window, mine microseismic, P-wave arrival time picking, self-
attention mechanism.

I. INTRODUCTION
The exploitation of mineral resources is currently undergoing
rapid development, and as a result, environmental safety in
deep mining areas has become a pressing concern [1]. The
complex geological structure of underground mines and the
potential for micro-seismic events to occur during the mining
process pose safety hazards that cannot be overlooked.

Therefore, accurate pickup of micro-seismic signal P-wave
arrivals are of great importance in event location, event
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identification and source mechanism analysis in order to
prevent safety hazards [2]. P-wave arrival time picking is
one of the basic components of micro-seismic data analysis,
and improving the accuracy of P-wave arrival time picking
is a core component of disaster prevention efforts [3], [4].
In the past few decades, the P-wave arrival time picking
algorithms have been widely based on time series analysis
or rigorous mathematical calculations, such as the STA/LTA
algorithm [5], the multi-window algorithm [6], the algorithm
of seismic phase monitoring based on the concept of entropy
[7], the Seismic phase pickup algorithms developed based on
higher-order statistics [8], [9]. STA/LTA is the ratio between
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the amplitude, of the signal on a short time window of length
STA and on a long time window of length LTA. At a given
point STA/LTA is computed for the time windows preceding
the point [5]. The multi-window algorithm method acquires
the averages of absolute amplitudes from a seismic trace by
using three moving time windows before and after each time
point [6]. The algorithm of seismic phase monitoring based
on the concept of entropy, including the seismic phase picking
algorithm of constructing the objective function based on
the Akaike information criterion and the mutual informa-
tion algorithm [7]. Higher-order statistics identify signals
by calculating higher-order cumulants of signals under the
framework of statistical signal processing [8].
The traditional method of picking P-wave arrival time

is relatively simple to calculate, but the recognition perfor-
mance is usually limited. Either due to the trade-off between
false alarms and missed alarms, or due to the trade-off
between calculation cost and time sensitivity, the picking
accuracy is low and the noise resistance is poor.

The P-wave arrival time picking algorithm based on deep
learning can automatically and effectively extract rich fea-
tures. When using deep learning for P-wave picking, most
approaches adopt a segment-based theory [10], [11], [12],
which aims to extract the characteristics of noise and seis-
mic signals separately by dividing each waveform trace into
noise segments and signal segments. The arrival time is then
determined as the boundary between these two parts. In recent
years, many researchers have conducted various experiments
related to deep learning, including medical image processing,
natural language processing, industrial fields and so on. There
are also many studies in the field of arrival time picking [13].
For example: (1) The AEnet [14] classifies sample points
using CNN and uses curve fitting algorithms and unsuper-
vised clustering algorithms to calculate the P-wave arrival
time of sample points. (2) The seismic phase arrival time
monitoring algorithm based on the ratio of long and short time
window signals [15], [16], which determines the first arrival
time of the signal by calculating the energy ratio of the win-
dow signal in two time windows [5], [17], [18]. (3) The U-net
algorithm completes waveform classification among single-
phases, double-phases and noises is completed by setting the
probability distribution thresholds of P waves and S waves
[19]. The architecture of PhaseNet is based on U-Net, which
was originally used for image segmentation in the medical
field, and is applied to 1D input data (i.e. time series wave-
form) to generate P-wave phase probability values. Compared
with the original U-Net network structure, PhaseNet has one
convolutional layer less in each horizontal layer. The P-wave
time picking accuracy is higher thanU-Net. (4) Artificial seis-
mic wave simulation algorithm using Generative Adversarial
Networks (GAN) [20]. (5) Seismic waveform analysis based
on wavelet transform of RNN [21]. Most current automatic
phase picking algorithms extract different features of signals
and noises to determine whether a seismic phase has arrived
[22]. The deep learning-based P-wave arrival time picking
algorithms are computationally complex, but they generally

achieve higher accuracy compared to traditional algorithms.
They exhibit strong noise robustness, making them more
resistant to interference from noise. However, the accuracy of
these algorithms heavily relies on the boundary recognition
process, which can be influenced by the presence of classifi-
cation outliers. Incorrect classification cases can significantly
impact the picking accuracy. Therefore, it is crucial to refine
the classification granularity of waveforms and employ more
sophisticated models to extract features within these refined
categories.

In order to enhance the diagnostic performance in the
presence of limited data and strong noise, we propose a
multi-time window P-wave arrival time picking algorithm
based on the CGAS model. In this algorithm, different con-
volution kernels are introduced to obtain different feature
values. Subsequently, the Squash function is used to improve
the dimensionality of the convolution to form a capsule layer,
and the feature values are compressed to normalize the data.
Additionally, Attention is employed to address the issue of
long-distance dependence by extracting the vibration charac-
teristics of waveforms in the systemmodel and calculating the
interaction between waveforms. Moreover, GRU reduces the
number of gating units and applies GRU to obtain the charac-
teristics of the vibration waveform in the time series, thereby
promoting better feature learning. By combining the convo-
lutional neural network layer (CNN), compression function
layer (Squash), attention mechanism layer (Attention), and
gated recurrent unit layer (GRU), a CGAS deep learning
algorithm for picking P-wave arrival times in mining micro-
seismic signals is proposed, which improves the accuracy of
P-wave arrival time picking in mining microseismic signals.

The main contributions of the paper are as follows:

1) A multi-time window P-wave arrival time picking
algorithm based on the CGAS model is proposed,
which achieves high accuracy with only a small amount
of data enhanced for model training.

2) The diagnostic performance of the proposed algorithm
is analyzed on a data set from a microseismic moni-
toring system in a mining area under different layer
structures and resolution changes. Experimental results
show that the proposed model has excellent generaliza-
tion ability in complex environments compared to other
algorithms with limited data.

The rest of this article is organized as follows. Section II
introduces the structure of the CGAS deep learning model
proposed in this paper. Section III verifies the classification
accuracy of the proposed model through analysis of different
layer structures and compares the accuracy of different algo-
rithms for arrival time picking under different resolutions.

II. CGAS DEEP LEARNING MODEL FOR P-WAVE ARRIVAL
TIME PICKING
A. STRUCTURE OF THE CGAS DEEP LEARNING MODEL
This article obtains P-wave arrival times through sliding win-
dows of microseismic waveforms. The window is classified
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FIGURE 1. CGAS mode structure diagram.

into five categories based on the position of the P-wave arrival
time within the sliding window, and the problem is solved as
a classification problem. The CGAS model proposed in this
article mainly includes convolutional neural network layers
(CNN), squash function layers (Squash), attention mecha-
nism layers (Attention), gated recurrent unit layers (GRU),
and fully connected layers (FC), as shown in Fig. 1.
In the CGAS model structure, CNN [23] mainly extracts

the feature values represented by each point in the vibration
waveform.Different convolution kernels will extract different
feature values and obtain information about P-wave arrival
time from different waveform features.

The Squash function, proposed by Hinton in 2017 [24],
is used in capsule neural networks to increase the dimension-
ality of convolutional layers and compress the feature values,
thereby transforming from linear to nonlinear representation.

The compression function is shown in Eq.1:

vj =

∥∥sj∥∥2
1 +

∥∥sj∥∥2 ·
sj∥∥sj∥∥ (1)

where j represents the index of the convolutional kernel, sj
represents the output of the j-th dimension of the convolu-
tional layer, vj represents the compression from the output of
the CNN layer. Since the compression function is used, the
core of the compression function is to use multiple capsules
to pick up the feature information of the waveform instead of
a single convolutional kernel, and the picked feature informa-
tion is more accurate. Then, a group of different convolutional
kernels are compressed by the Squash function. In the sys-
tem model structure of this paper, a capsule layer is formed
through different convolutional kernels, and then compressed
to have a good normalization effect on the data in the time
window [25].

The Attention mechanism is a powerful tool that has been
used in various machine learning applications, including nat-
ural language processing and computer vision [26]. In this
paper, the Attention mechanism is used to extract seismic
waveform features in the proposed CGAS model. Unlike
traditional convolutional neural networks or recurrent neural
networks, the Attention mechanism does not require a large
number of parameters and has lower computational require-
ments. The mechanism works by using Softmax to normalize
different feature values and assigns different weights to these
feature values to in-crease the proportion of key features
in waveform classification. This allows the model to focus
on the most relevant information when making predictions,
improving its accuracy and efficiency. The Attention mecha-
nism is shown as follows in Eq.2:

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (2)

where Q represents the current feature information, K repre-
sents all the characteristic information thatQmay correspond
to in the next step, and V represents the weight, dk , refers to
the dimensions of Q and K , Since the network model used in
this paper employs the Self-Attention mechanism, Q, K and
V are obtained from the same input data through different
fully connected operations. The Self-Attention mechanism is
a variant of the attention mechanism that is better at capturing
internal correlations of data or features. In the application of
Self-Attention mechanism in seismic waveforms, it mainly
solves the problem of long-distance dependence by calculat-
ing the mutual influence between waveforms.

GRU [27] is a variant of the long short-term memory net-
work (LSTM) [28], which reduces the number of gate units
and replaces the input gate, forget gate and output gate with
update gate and reset gate to solve the problem of recurrent
dependence in recurrent neural networks. Therefore, GRU
requires fewer parameters and has faster training speed. In the
case of small training samples, the training effect of GRU is
better than that of LSTM. In this paper, GRU is used to obtain
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FIGURE 2. Time window classification diagram.

the features of seismic waveforms on the time series, and
then the classification is performed through fully connected
layers. The detailed parameters of the proposed model are
shown in Table 1.

B. CLASSIFICATION OF MICROSEISMIC ARRIVAL TIME
PICKING WITH MULTI-TIME WINDOWS
Different from the traditional models for P-wave arrival time
picking using long and short time windows [29], this paper
proposes a multi-time window algorithm for picking P-wave
arrival time in microseismic signals [30], [31]. Firstly, the
waveform of the microseismic signal is classified into dif-
ferent types of micro-windows according to the position of
the P-wave arrival time within the time window. The classi-
fication of the time windows is based on the different states
of the time window sliding over the P-wave arrival time, and
the specific division algorithm is as follows: the length of the
time window is n seconds, and the number of sampling points
is set according to the sampling frequency of the station.
The training set is divided into 5 categories of sequence
windows. The windows slide forward according to a certain
step size. Let w denote the manually picked P-wave arrival
time and m denote the midpoint position of the window,
if m ∈ [n/2,w − n/2], then this time window belongs to the
first category if the relative position of w and m satisfies a
certain condition, if m ∈ [w− n/2,w− a], this time window
belongs to the second type of windows, ifm ∈ [w−a,w+a],
then this time window is classified as the 3rd type of time
window. If m ∈ [w + a,w + n/2], this window belongs to
the fourth category of time windows, if m ∈ [w + n/2, l],
this window belongs to the 5th class of time windows, where
l is the length of waveform vibration and a is the dimension
of data augmentation. If data augmentation is not required,
a= 1. The time window classification of the data set is shown
in Fig. 2.

As shown in Fig 2, the relationship between the middle
position of the five time windows and the P-wave arrival
time determines the classification. It can be seen from the

classification that the middle position of the third class time
window is the P-wave arrival time to be obtained. Different
time windows are marked with different colors on the image.

The classified data set contains 5700 pieces of data. The
sampling frequency of the station used in this paper is rel-
atively high. If the data set is small or the signal-to-noise
ratio of the microseismic signal is low, data augmentation can
be performed [32]. The points before and after the manually
picked P-wave arrival time are all regarded as the P-wave
arrival time. If themidpoint of the timewindowm is any point
within the range of (w− a,w+ a), then all the time windows
of this class are regarded as the third class time window. The
midpoints of the other several classes of time windows are
2a random points within their respective ranges. The data is
augmented by 2a times, and the number of time windows in
each class of the data set is the same. For the third type of
time window, i.e., the time window where the P-wave arrival
time is in the middle position, the 5 points before and after it
are all regarded as the P-wave arrival time, and the midpoints
of the other several classes of time windows randomly select
10 segments of wave lengths within their respective ranges.
The augmented data set has a total of 57000 pieces of data,
of which 51300 pieces are used as the training set, 5400 pieces
as the test set, and 300 pieces as the validation set. The
number of time windows in each class of the data set is the
same. The arrival time picking algorithm described in this
paper is evaluated.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT AND DATA
The experimental data in this paper were obtained from the
micro-seismic monitoring system of a mining area in Liaon-
ing province from 2019 to 2020. The vibration waveforms
are obtained by the monitoring stations ar-ranged in the
microseismic monitoring network in the mining area. The
monitoring network consists of eight three-component micro-
seismic monitoring stations, with a span of about 6000m in
the east-west direction, 4000m in the north-south direction,
and 1000m in the vertical direction, covering a period of
one year from December 2019 to December 2020. Unlike
microseismic station data, the original sampling frequency of
the stations is 5000Hz, and 1140 vibration waveforms were
selected by manual picking, with each vibration waveform
manually picking the P-wave arrival time.

The evaluation experiment of the proposed model was
implemented in Tensorflow2.7.0 and Python3.7.6, run-ning
on a device with an Intel(R) Core(TM) i5-10400 CPU @
2.90GHz (16G RAM) and NVIDIA GeForce RTX 2060. The
experimental parameters were set as Batch Size 96, Maxi-
mum epochs 100, Optimizer Adam, and Learning rate 0.001.

B. COMPARISON OF CLASSIFICATION RESULT FOR
DIFFERENT LAYER STRUCTURES
This study evaluates the model’s performance by calculating
the Accuracy, Loss, Precision, Recall and F1 score of the test
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TABLE 1. Model parameter table.

results during the training process. Accuracy represents the
proportion of correctly predicted waveforms in the automatic
pick-up algorithm’s predicted waveform among all samples.
Recall rate indicates the proportion of all correctly predicted
waveforms in the automatic picking algorithm, which is
essential in monitoring the integrity of the automatic pick-
up algorithm. The F1 score is an index used to measure the
accuracy of a binary classification model. It considers both
the accuracy and recall of the classification model simul-
taneously, and can be interpreted as a harmonic average of
the model’s accuracy and recall. The specific formulas of
accuracy, precision, recall and F1 score are shown in Eq.3∼6:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

Precision =
TP

TP+ FP
(4)

Recall =
TP

TP+ FN
(5)

F1 =
2 × precision× recall
precision+ recall

(6)

where TP represents the number of times the automatic
picking algorithm correctly detected the waveform. Where
TN represents the number of times the automatic picking
algorithm incorrectly detected the waveform. Where FP rep-
resents the number of times the automatic picking algorithm
incorrectly detected the waveform as correct. Where FN rep-
resents the number of times the automatic picking algorithm
missed correctly detected waveforms. This paper adds related
network structures such as Squash, Attention, and GRU to the
P-wave picking model to verify the degree of improvement in
picking accuracy for each layer structure. After using differ-
ent layer structures, deep learning method-related parameters
are subjected to ablation comparison experiments to compare

FIGURE 3. Confusion matrix diagrams of classification results.

their performance. The structure for comparing deep learning
model indicators is shown in Table 2.

As can be seen from Table 2, the addition of each network
structure leads to an improvement in the relevant indexes of
the P-wave arrival pickupmodel.When all network structures
are used, the accuracy and recall rate of the model reach
98.61% and 98.60%, respectively, indicating that each layer
structure is effective in classifying the P-wave arrival.

To verify the performance of different layer structures,
300 verification data sets are used, and the confusion matrix
diagram of the classification structure is shown in Fig. 3.

The results demonstrate that using only CNN for clas-
sification leads to concentrated errors in the second, third,
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TABLE 2. Comparison of indicators of deep learning models.

and fourth categories due to similar data characteristics, and
six third category data are picked up incorrectly. However,
the accuracy of the pick-up model steadily improves with
the addition of different layer structures. When all CGAS
models are used, only one second category data and one
third category data out of the 300 verification set data
are identified incorrectly, demonstrating better classification
accuracy.

C. COMPARISON OF DIFFERENT ALGORITHMS TO PICK
UP WHEN THE TIME COMES
Since the P-wave arrival time picking model in this paper
converts the picking problem into a classification problem
of waveforms at different stages, the classification situa-
tion can be judged by observing the waveform classification
trend. In order to compare and analyze the model algorithm
in this paper, the STA/LTA [33], U-Net++ [34], Dpick
[35], PhaseNet [36] and EQTransformer [37] picking algo-
rithms were compared with the CGAS algorithm. STA/LTA
is widely used in seismic data analysis, often as a prelim-
inary step before applying more advanced techniques for
event detection and characterization. The U-Net++ follows
the advanced idea of deep learning-based end-to-end clas-
sification, this paper considers the first-arrival picking of
effective microseismic signals as a two classification prob-
lem and improves the first-arrival of effective microseismic
signals [38]. DPick is an end-to-end approach, and the
input is the vertical accelerograms without any preprocess-
ing while the output is the P-wave arrival time [35]. The
architecture of U-Net++ and PhaseNet have been modi-
fied from U-Net [19] to handle one-dimensional time series
data. PhaseNet fully utilizes CNN models, and its structure
is relatively clear. It captures temporal signals through an
encoding and decoding approach to extract relevant infor-
mation [39]. EQTransformer improves the performance of
the model in each individual task by combining the staged
and full-waveform information of the seismic signal using
a hierarchical attention mechanism to perform these two
related tasks in serie [37]. The real mining microseismic
data was used as the data set in this paper, which has
a higher sampling frequency compared to seismic station
data, approximately 50 times higher. There-fore, there are
differences in the P-wave arrival time picking environ-
ment, and the picking accuracy needs to be compared and
analyzed by classifying two different resolution vibration
waveforms [40].

FIGURE 4. Classification of high-resolution vibration waveforms.

1) COMPARISON OF ARRIVAL TIME PICKING RESULTS WITH
DIFFERENT ALGORITHMS AT HIGH RESOLUTION
At first, the high resolution seismic waveforms are classified.
The test results are shown in Fig. 4. Light blue is the first
class time window, gray is the second class time window,
red is the third class time window, yellow is the fourth class
time window, and the dark blue is the fifth class time window.
It can be seen that all six algorithms can accurately classify
each type of waveform under high resolution conditions.
However, since the P-wave arrival time of each waveform
only has 10 sampling points, the larger the span of the third
type waveform, the more likely it is that the second and fourth
type waveforms are misclassified as the third type. From the
figure, it can be seen that the proposed algorithm in this paper
has the smallest span for the third type waveform, indicating
that the misclassification is minimized, which is beneficial
for P-wave arrival time picking.

After classifying the seismic waveforms using the P-wave
arrival time picking model pro-posed in this paper, since
the defined P-wave arrival time belongs to the third type
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FIGURE 5. High resolution P wave arrival probability diagram.

wave-form, multiple third type waveforms often exist contin-
uously in typical situations. Therefore, the highest probability
point is selected as the P-wave arrival time of the seismic
waveform for picking. The probability of the P-wave arrival
time for each point in the high resolution waveform data is
shown in Fig. 5.
STA/LTA method mainly judges the occurrence of micro-

seismic events based on energy comparison, and judges
by calculating the ratio between short-term average energy
(STA) and long-term average energy (LTA). When the ratio
exceeds a preset threshold, it is considered as the trigger of
microseismic events, and STA/LTA discrimination of micro-
seismic events is relatively simple.

However, the probability represents the probability dis-
tribution of samples belonging to each category, which is
a measure of the relative confidence of the model to each
category. The STA/LTA method does not directly involve the
calculation of probability, so Figure 5 and Figure 7 below
are not compared with STA/LTA, only other deep learning
models are compared.

2) COMPARISON OF ARRIVAL TIME PICKING RESULTS WITH
DIFFERENT ALGORITHMS AT LOW RESOLUTION
In the case of low resolution waveform data, all P-wave
arrival time picking models exhibit effective performance.
However, in the presence of high levels of noise, the ability of
the pickup model to accurately detect relevant features is the
primary determinant of model quality. As depicted in Fig. 6,
in the case of low resolution, the proposed algorithm demon-
strates a high degree of accuracy in classifying vibration
waveforms, while other models exhibit poor discrimination
and fail to accurately classify the waveforms, leading to
significant errors in P-wave arrival time detection. (The color
description in Fig.6 is the same as in Fig.4.)

FIGURE 6. Classification of low resolution vibration waveforms.

The probability of P-wave arrival at each point of low reso-
lution waveform data is displayed in Fig. 7. Despite the noise
interference, the proposed algorithm continues to exhibit a
probability distribution of P-wave arrival that remains close
to normal distribution. In contrast, other algorithms exhibit
errors in detecting P-wave arrival time, often picking up mul-
tiple P waves. From a practical standpoint, multiple P-wave
detections can be considered a failure to detect P-wave
picking.

D. ANALYSIS OF ARRIVAL TIME PICKING ERRORS WITH
DIFFERENT ALGORITHMS
In this study, 300 non-training samples were used to test the
proposed P-wave arrival time picking algorithm. The P-wave
arrival time picking error values of other existing algorithms
were also calculated, and the histogram of P-wave arrival time
picking errors is shown in Fig. 8.

As shown in Fig. 8, the proposed algorithm has a better
error distribution compared to other algorithms. Based on the
data in the figure, the picking accuracy is defined as ‘‘accurate
picking’’ when the absolute value of the picking error is less
than 0.001s, ‘‘low error picking’’ when the absolute value of
the picking error is greater than 0.001s and less than 0.002s,
‘‘high error picking’’ when the picking error is greater than
0.002s and less than 0.01s, and ‘‘picking failure’’ when the
picking error is greater than 0.01s. The algorithm proposed in
this paper has the highest proportion of ‘‘accurate picking’’,
which can also prove that the algorithm proposed in this paper
is superior to other algorithms.
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TABLE 3. Statistics of arrival time-picking accuracy by different algorithms.

FIGURE 7. Low resolution P wave arrival probability diagram.

IV. DISCUSSIONS
The statistics of arrival time-picking accuracy by different
algorithms are shown in Table 3. It shows that the pro-
posed algorithm has the highest accuracy in accurate picking.
Although the traditional STA/LTA (short-term average to
long-term average) method is simple in procedure, it lacks
accuracy and performs poorly in picking up data with low
signal-to-noise ratio. Additionally, the threshold needs to be
manually set. Due to the utilization of multiple branches and
decoder paths, the U-Net++ network structure is relatively
complex. When dealing with imbalanced data, it may lead to
issues such as class bias or incorrect segmentation. Additional
processing methods may be required to balance the data or
adjust the network weights. As a result, training and inference
processes may necessitate more computational resources and
time. Dpick is developed based on one-dimensional CNN
for interpreting sequential regression. Its structure, model
parameters, and the negative noise labels are derived through
multiple iterations of training and validation, which may
require a considerable amount of time and computational
resources to complete. PhaseNet is trained on the substan-
tial catalog of available P and S arrival-times picked by

FIGURE 8. Time-picking error histogram of different algorithms.

experienced analysts. Unfiltered three-component seismic
waveforms are the input to PhaseNet, which is trained to
output three probability distributions: P wave, S wave, and
noise. The neural network is trained on the target probabil-
ity distributions of known earthquake waveforms [36]. The
performance of EQTransformer is influenced by the training
data, and to achieve high accuracy, a large amount of labeled
seismic event training data is required.

Obtaining high-quality seismic data and annotating it is a
time-consuming and labor-intensive task. From the practical
application perspective, the arrival time with an error of
less than 0.01s is considered usable in this paper, and the
proposed model has a P-wave arrival time picking proba-
bility of 95.67%, which is significantly higher compared to
other algorithms and mostly concentrated in high-precision
P-wave arrival time picking, meeting the requirements for the
precision of P-wave arrival time picking in practical appli-
cations. According to the comparison results, it is clear that
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the proposed algorithm certainly promotes the classification
accuracy in accurate picking. The superiority of the proposed
P-wave arrival time picking algorithm arises from three main
aspects:

1) The multi-level convolutional neural network architec-
ture can extract features from signals at different scales,
thereby enhancing the noise resistance.

2) The data set in this paper is collected from the real mine
seismic data and the number is small, but the accuracy is
higher.

3) The results mainly focus on the high precision P-wave
arrival time pickup, whichmeets the requirement of the actual
application.

V. CONCLUSION
The traditional P-wave picking algorithms have limitations
in terms of poor noise resistance and inefficiency in accu-
rately picking P-wave arrival times. In this paper, a deep
learningbased approach is introduced, which proposes a
multi-time window P-wave picking algorithm based on the
CGAS model, providing a new algorithm for microseismic
monitoring in mining. This algorithm utilizes deep learning
techniques and trains the model with a small amount of
data augmented data to achieve high accuracy in P-wave
picking. The CGAS model achieves event detection accu-
racy and recall rates of over 98% on the test set, with an
accuracy of 95.67%. Comparative experiments show that the
proposed algorithm outperforms STA/LTA,U-Net++, Dpick,
PhaseNet and EQTransformer in terms of accuracy and error,
and in practical seismic source location, using the proposed
algorithm results in significantly smaller localization errors
than other algorithms. In future work, we will consider opti-
mizing the number of parameters to improve the system’s
processing speed without compromising accuracy and con-
tinuously improving the neural network model. The proposed
model has potential applications in micro-seismic monitoring
and early warning, providing effective practical significance
for the analysis of seismic sources in mining areas.
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