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ABSTRACT The efficient compression and classification of medical signals, particularly electroencephalog-
raphy (EEG) and electrocardiography (ECG) signals in wireless body area network (WBAN) systems, are
crucial for real-time monitoring and diagnosis. This paper addresses the challenges of compressive sensing
and classification in WBAN systems for EEG and ECG signals. To tackle the challenges of the compression
process, a sequential approach is proposed. The first step involves compressing the EEG and ECG signals
using the optimized Walsh-Hadamard transform (OWHT). This transform allows for efficient representation
of the signals, while preserving their essential characteristics. However, the presence of noise can impact
the quality of the compressed signals. To mitigate this effect, the signals are subsequently recovered using
the Sparse Group Lasso 1 (SPGL1) algorithm and OWHT, which take into account the noise characteristics
during the recovery process. To evaluate the performance of the proposed compressive sensing algorithm, two
metrics are employed: mean squared error (MSE) and maximum correntropy criterion (MCC). These metrics
provide insights into the accuracy and reliability of the recovered signals at different signal-to-sample ratios
(SSRs). The results of the evaluation demonstrate the effectiveness of the proposed algorithm in accurately
reconstructing the EEG and ECG signals, while effectively managing the noise interference. Furthermore,
to enhance the classification accuracy in the presence of signal compression, a local binary pattern (LBP)
tehnique is applied. This technique extracts discriminative features from the compressed signals. These
features are then fed into a classification algorithm based on residual learning. This classification algorithm
is trained from scratch and specifically designed to work with the compressed signals. The experimental
results showcase the high accuracy achieved by the proposed approach in classifying the compressed EEG
and ECG signals without the need for signal recovery. The findings of this study highlight the potential
of the proposed approach in achieving efficient and accurate medical signal analysis in WBAN systems.
By eliminating the computational burden of signal recovery and leveraging the advantages of compressive
sensing, the proposed approach offers a promising solution for real-time monitoring and diagnosis, ultimately
improving the overall efficiency and effectiveness of healthcare systems.

INDEX TERMS Compressive sensing, EEG, ECG, OWHT, LBP, classification, SPGL1, WBAN, deep
learning.

I. INTRODUCTION
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Internet of Things (IoT), which enhance the quality of living
for individuals [1], [2]. Among the key aspects of smart home
applications are indoor localization, activity recognition,
and healthcare monitoring. WiFi-based sensing systems
are utilized for indoor localization and human activity
recognition, while wireless body area networks (WBANS)
are employed for continuous and real-time monitoring of
healthcare parameters [3]. WBANSs are particularly effective
in monitoring of cardiovascular health through the use of
electrocardiographs (ECGs), allowing for early detection
of underlying cardiovascular diseases [4]. ECG signals are
acquired through wearable devices and wirelessly transmitted
to the system back-end for storage and further analysis.
However, one critical challenge is the energy consumption
of the sensors, which impacts the lifetime and portability
of wearable devices. They have limited battery capacities,
imposing constraints on sampling techniques, and traditional
solutions based on Nyquist-Shannon theory are inadequate
for signal acquisition in wearable sensors [5]. WBANSs offer
the potential for remote monitoring of biomedical signals,
such as EEG and ECG signals [6], [7].

Compressive sensing offers a promising solution for
continuous ECG signal monitoring using wearable devices
[8]. By leveraging the sparsity of signals in specific domains,
compressive sensing allows a simple linear sampling process
to acquire signals, which are then reconstructed. This
approach significantly reduces the complexity of data encod-
ing, fulfills the requirements of data transmission and storage,
and proves to be highly suitable for WBAN applications
[9], [10]. The effectiveness of compressive sensing has been
demonstrated in various fields, including IoT applications
[11], [12], [13]. It has the potential to greatly extend the
monitoring lifespan of bio-sensors. In the context of ECG
monitoring with wearable devices, previous researchers have
explored the application of compressive sensing. Specifically,
adaptive overcomplete dictionaries can be selected based on
the QRS estimation of compressed measurements in each
frame, leading to improved reconstruction quality of ECG
signals [14]. This adaptive approach enhances the accuracy
and reliability of ECG signal monitoring, enabling more
effective healthcare monitoring in WBAN systems.

The application of compressive sensing has demon-
strated its potential to extend the monitoring lifespan of
biosensors and meet clinical requirements in healthcare
settings. However, there are certain limitations associated
with the utilization of compressive sensing for ECG signal
monitoring. One limitation is the potential impact of noise
and interference on the quality of reconstructed ECG
signals. The presence of noise can degrade the accuracy and
reliability of signal interpretation and analysis. Additionally,
selecting an appropriate dictionary for each frame can be a
challenging task that requires further optimization. Moreover,
compressive sensing may not be suitable for all types of
ECG monitoring applications, as it may not capture certain
signal features that are essential for specific diagnostic
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purposes. The acquisition and analysis of ECG signals play
a crucial role in diagnosing and monitoring of various
cardiac conditions. However, ECG signals often suffer from
contamination by different types of noise, which can hinder
accurate interpretation and analysis [15]. Muscle artifacts and
power line interference are two common sources of noise in
ECG signals. Muscle artifacts arise from the contraction of
nearby muscles, generating unwanted electrical activities that
obscure the underlying cardiac signal [16]. These artifacts
appear as high-frequency noise or spikes superimposed on
the ECG waveform, posing challenges in detecting important
features. On the other hand, power line interference, also
known as mains interference, occurs due to the presence
of alternating-current (AC) power lines. This interference
introduces regular and repetitive waveforms synchronized
with the mains frequency, typically 50 Hz or 60 Hz.
Power line interference manifests itself as periodic spikes or
oscillations superimposed on the ECG signal. It can obscure
the desired cardiac activity. Understanding and addressing
these sources of noise are critical for obtaining reliable
and accurate ECG measurements, enabling more precise
diagnosis and monitoring of cardiac conditions. Various
techniques, such as signal processing algorithms and proper
electrode placement, can be employed to mitigate these noise
sources and enhance the quality of ECG recordings [17].

In recent years, there has been a growing interest in
leveraging deep learning techniques for the classification and
diagnosis of various diseases based on biomedical signals
and images [18], [19], [20], [21], [22], [23], [24], [25].
Specifically, deep learning models, including Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNS5), have shown tremendous potential in analyzing Elec-
troencephalogram (EEG) signals and extracting meaningful
features for disease classification. These models possess
the capability to automatically learn complex patterns and
relationships within the EEG data, enabling accurate and
efficient diagnosis of conditions such as epilepsy, sleep
disorders, and neurodegenerative diseases. The application
of deep learning in EEG signal classification offers several
advantages. Firstly, deep learning models demonstrate high
accuracy in detecting and classifying neurological conditions.
They have been trained on large datasets, allowing them
to generalize well to unseen samples and provide reliable
predictions. Moreover, deep learning models are robust
to noise and artifacts commonly present in EEG signals,
making them suitable for real-world applications. Their
ability to handle noisy data enhances the overall performance
and ensures accurate disease diagnosis. Additionally, deep-
learning-based analysis of EEG signals has the potential for
real-time processing, enabling prompt medical intervention
and continuous monitoring of patients.

The integration of deep learning models into EEG classifi-
cation has the potential to revolutionize the field of neurology
and significantly improve patient care. By enabling early
detection of neurological disorders, personalized treatment
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plans can be devised, leading to improved outcomes and
a higher quality of life for patients. However, there are
still challenges to overcome in this domain. One of the
key challenges is the availability of large and diverse
datasets for training of deep learning models. Access to
well-annotated EEG datasets is crucial to ensure optimal
model performance and generalizability across different
patient populations. Additionally, interpretability of deep
learning models remains an area of active research.

The utilization of EEG signals for monitoring of brain
activities and diagnosis of epilepsy offers a non-invasive
approach. However, the manual process of seizure detection
in long-duration EEG recordings is time-consuming for
medical professionals. To expedite this process and enable
real-time seizure detection, automated systems are desired.
Implementing such systems would alleviate the burden of
visually scoring extensive EEG records, thereby providing
faster identification of seizures [26].

Wireless seizure detection systems based on EEG signals
can adopt different approaches, each with its own set of
advantages and limitations. One of these approaches involves
transmitting the entire raw EEG data to a remote terminal
and utilizing various algorithms, such as deep learning, filter
bank, empirical mode decomposition, and entropy analysis,
which have been explored in the literature for accurate seizure
detection [27], [28], [29]. Another recent approach, utilizing
the Matrix Determinant (MD) of EEG signals as a feature,
has demonstrated excellent seizure detection performance
with low execution time [30]. However, it is important to
note that transmitting the raw EEG data comes with certain
drawbacks. It requires high energy consumption at the sensor
node and demands a large bandwidth, making it unsuitable for
implementation in WBAN systems. These limitations pose
challenges for deploying wireless seizure detection systems
that aim for low-power consumption and efficient use of
limited resources in WBANs. New strategies are needed to
overcome these limitations and develop energy-efficient and
bandwidth-friendly solutions for real-time seizure detection
in wireless EEG-based systems.

An alternative approach to wireless seizure detection
systems is the extraction of relevant features from the raw
EEG data at the sensor node, which are then transmitted
to a remote terminal for classification. This approach
offers the advantage of conserving energy in data encoding
and transmission. However, it has been observed to have
lower effectiveness in detecting seizures compared to other
methods. One limitation of this approach is the need to
select simple features with low computational requirements
at the sensor node. This is necessary to minimize power
consumption and extend battery life of sensors. Complex
feature extraction tends to consume more power, which may
significantly reduce the lifespan of the sensor batteries [31].
Therefore, careful consideration and optimization of feature
selection are essential to strike a balance between energy
efficiency and seizure detection performance in wireless
EEG-based systems.
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An alternative approach for wireless EEG-based seizure
detection systems is the use of compressive sensing
techniques to efficiently compress the EEG data before
transmission. Traditional compression methods, such as Set
Partitioning In Hierarchical Trees, are not suitable for WBAN
systems due to their high complexity and computational
requirements. Compressive sensing offers a more efficient
approach by reducing both processing load and transmission
energy in WBANS. Previous studies have demonstrated the
effectiveness of compressive sensing in classifying EEG
signals for seizure detection. Altered EEG compressibility,
quantified by metrics such as Normalized Mean Squared
Error (NMSE) and structural similarity (SSIM), has been
used as a feature for distinguishing seizure-free, pre-seizure,
and seizure states. Results have shown that compressive-
sensing-based NMSE and SSIM outperform other metrics,
such as sample entropy and permutation entropy, in epileptic
seizure classification, making them valuable biomarkers
for diagnosing seizure states [32]. When designing a
WBAN-based EEG monitoring system for seizure detection,
two primary constraints need to be considered: energy
consumption and processing time. Compressive sensing
techniques can help conserve energy during EEG sensing and
transmission. However, existing seizure detection methods
often require full reconstruction of the original EEG signals
from the compressed data, which is time-consuming and
computationally intensive. To enable real-time applications
in WBAN:Ss, there is a need to develop fast and efficient
automatic seizure detection methods that can operate directly
on the compressed signals without the need for full recon-
struction.

However, it is worth noting that the existing literature
on seizure detection in compressive-sensing-based WBAN
systems primarily focuses on the recovery of the full
original EEG samples at the remote terminal. The com-
putational complexity involved in achieving high-quality
signal recovery poses limitations on the practicality of these
methods for real-time disease detection. To address these
challenges and enable real-time diagnosis of brain disorders
using dense neural sensor data, advanced signal processing
approaches are required. Compressive sensing offers an
efficient solution for reducing computational complexity
and power consumption. However, the signal reconstruction
phase can still be computationally intensive, hindering
real-time applications such as seizure detection. In this study,
a sequential approach is proposed to overcome the limitations
of traditional compressive sensing methods in WBAN
systems for EEG and ECG signals. The proposed approach
aims to efficiently compress and classify the medical signals
without the need for full signal recovery. By utilizing
the OWHT for compression and the SPGL1 algorithm for
signal recovery, while considering the presence of noise,
the proposed approach achieves accurate reconstruction of
signals. Moreover, the application of the LBP technique
and a classification algorithm based on residual learning
further enhances the classification accuracy with compressed
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signals. This approach enables efficient compression, reliable
signal recovery, and accurate classification, facilitating
real-time disease detection in WBAN systems. By leveraging
the benefits of compressive sensing, while addressing the
computational challenges associated with signal recovery, the
proposed sequential approach provides a promising solution
for efficient and accurate diagnosis of brain disorders using
compressed signals.

The main contributions of this paper can be summarized as
follows:

o The proposed sequential approach combines compres-
sive sensing and classification techniques to address
the challenges of medical signal analysis in WBAN
systems.

o The use of the OWHT for compression and the SPGL1
algorithm for signal recovery allows for efficient recon-
struction of EEG and ECG signals, while considering the
impact of noise.

o The application of the LBP technique and a classifica-
tion algorithm based on residual learning enhances the
classification capabilities with compressed signals.

o The proposed algorithm enables real-time monitoring
and diagnosis without the need for signal recovery,
reducing computational burden and improving the
efficiency of healthcare systems.

The subsequent sections of this paper are structured as
follows. In Section II, a thorough review of existing literature
pertaining to medical signal analysis in WBAN systems is
presented, focusing on the limitations and gaps observed in
current approaches. Section III outlines the proposed method-
ology, along with details regarding the experimental setup
and evaluation metrics employed to assess the performance of
the proposed approach. The results and analysis derived from
the conducted experiments are presented in Section IV. They
are followed by a comprehensive discussion of the findings
and implications. Finally, Section V introduces the paper
conclusion by summarizing the contributions of this study
and giving potential avenues for future research.

Il. RELATED WORK

Recently, there has been a growing interest in using compres-
sive sensing for compressing ECG data. Traditional recovery
methods based on sparse optimization with priors face
challenges. Unni et al. [33] introduced Plug-and-Play (PnP),
an iterative recovery algorithm with a powerful denoiser that
incorporates regularization. The PnP version of Proximal
Gradient Descent (PGD) depends on a denoiser trained with
a Bayesian prior for small-size signal patches. Giovanni et
al. [34] presented enhanced NEAPOLIS, an approach for
real-time arrhythmia detection, for analyzing compressed
ECG signals. They refined and optimized NEAPOLIS
features to align with the compression algorithm. Extensive
investigation was introduced to evaluated the classification
performance at different compression ratios. Results showed
that the updated NEAPOLIS effectively operates with highly
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compressed ECG signals, achieving a compression ratio
of 16.

Compressive sensing is widely used for compressing ECG
data in resource-constrained wearable devices. Kumar et al.
introduced a codec architecture that incorporates adaptive
quantization and Asymmetric Numeral Systems (ANS) for
efficient compression [35]. The approach dynamically adapts
a quantized Gaussian entropy model to improve compression
performance, achieving additional space savings compared
to conventional techniques. Fira et al. analyzed the trade-off
between preprocessing complexity and reconstruction accu-
racy in compressive sensing for ECG signals [36]. They
proposed application-specific dictionaries and tested them
with various projection matrices. Quantitative and qualitative
evaluations demonstrated the quality of the reconstructed
signals using standard distortion measures and classification
techniques. Aghazadeh et al. presented a seizure detection
algorithm that directly processes compressively-sampled
EEG signals, bypassing reconstruction [37]. They utilized
spectral energy features and a non-linear SVM classifier for
high-performance seizure detection. They also proposed a
power-efficient classification those of method and demon-
strated a hardware-optimized implementation achieving high
accuracy with a low energy budget.

Compressive sensing techniques are employed in ECG
monitoring to reduce data and energy costs. Hua et al. [38]
proposed a deep compressive sensing framework using a
modified Inception block and LSTM, achieving improved
reconstruction performance across various sensing rates.
Their method demonstrated the lowest Percentage Root-
mean-square Difference (PRD) and the highest Signal-to-
Noise Ratio (SNR) compared to those of other methods,
with the PRD dropping below 2% at sensing rates exceeding
0.5. Lee et al. [39] develop an efficient deep learning
method with model compression for arrhythmia classification
in an embedded wearable device. Comparing Resnets and
Mobilenets, both models show high accuracy, with Resnet-
50 Hz achieving 97.3% and Mobilenet-50 Hz achieving
97.2% accuracy. The compressed models significantly reduce
weight size from 743 MB to 76 KB, without substantial
loss in performance. Abdelazez et al. [40] proposed a
Signal Quality Index (SQI) for evaluating compressively-
sensed ECG signals. The SQI, based on random forests,
exhibits good performance across different databases and
compression ratios. The average RMSE values for normal and
abnormal ECG signals are 3.18 dB and 3.47 dB, respectively.
The average Spearman correlation values reach 94% for
normal ECG and 93% for abnormal ECG. The SQI achieves
an average accuracy of 90% and an F1 score of 88%.

Remote ECG monitoring is essential for cardiovascular
health, but it faces challenges due to data volume and
device limitations. Compressive sensing provides a solution,
but traditional algorithms are time-consuming. Zhang et al.
proposed a fast reconstruction algorithm using compressive
sensing and deep learning [41]. It combines CNN and LSTM
to directly learn the mapping relationship between measure-
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ments and original ECG signals. Experimental results on the
MIT-BIH Arrhythmia Database show superior performance
compared to traditional algorithms such as BP, OMP,
BSBL-BO, and R-SVD+BP [41]. The proposed method
achieves significantly faster reconstruction, requiring only
0.12 seconds for a 30-minute ECG signal, and outperforms
traditional algorithms even at high compression ratios of up
to 90%.

ECG classification plays a crucial role in diagnosing
cardiovascular conditions. Various methods, including tradi-
tional machine learning and deep learning ones, have been
utilized [42], [43], [44], [45], [46], [47], [48], [49]. These
methods involve feature extraction and classification models
to categorize ECG signals, accurately. They have shown
promising results in achieving high accuracy for early detec-
tion and intervention [50], [51], [52], [53], [54]. Ongoing
research focuses on enhancing feature extraction, optimizing
classification models, and integrating multi-modal data.
Effective ECG classification systems hold great potential for
improving cardiovascular healthcare and patient care.

In the domain of mobile epileptic seizure treatment,
Qaisar et al. [55] proposed an adaptive rate processing-based
method for efficient and automated epilepsy detection.
By dynamically adjusting the processing rate based on
EEG signal characteristics, the method significantly achieves
better compression and processing efficiency compared to
those of fixed-rate approaches. Compressive sensing offers
a solution for EEG signal compression. Rani et al. [56]
utilized compressive sensing for EEG signal acquisition
and reconstruction, achieving high accuracy in epileptic
seizure detection. Zhang et al. [6] introduced Block Sparse
Bayesian Learning (BSBL) for telemonitoring EEG signals,
outperforming existing compressed sensing algorithms in
recovery quality. Liu et al. [57] proposed the Simultaneous
Cosparsity and Low-Rank (SCLR) approach to enhance the
efficiency and accuracy of compressed-sensing-based EEG
signal processing. In the context of smart grids, Tan et al. [58]
investigated the joint design of data compression and Medium
Access Control (MAC) protocols using compressed sensing
techniques. Their framework improves the efficiency and
performance of data compression and MAC protocols in
smart grid applications with renewable energy sources. Wan
et al. [59] presented a Robust Bayesian Compressed Sensing
(RBCS) method that effectively handles outliers in signal
recovery. These advancements in adaptive rate processing,
compressive sensing, and robust signal recovery contribute to
improved healthcare systems, smart grids, and telemonitoring
applications.

Aghababaei et al. [26] proposed a real-time automatic
seizure detection method for compressed EEG data in
WBANS. The method introduced the Partial Energy Differ-
ence (PED) feature, enabling seizure detection without full
signal reconstruction. The results demonstrated the effec-
tiveness of the PED feature in classifying seizure and non-
seizure states, even at low compression ratios of 0.05. The
single-channel method achieved up to a 4% improvement in
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the area under the curve, and the multivariate feature achieved
high mean AUC values of 94.1%. Li et al. [60] introduced
the Sparse and Low-Rank Representation in the presence
of Mixed Noise (SLRMN) method for robust multichannel
EEG signal compression. The SLRMN method improved
the curacy of compressed signal recovery in the presence of
mixed noise. Rani et al. [61] proposed a Compressed Signal
Processing (CSP) method for epileptic seizure detection
in EEG signals. The CSP method allows effective seizure
detection without the need for full signal reconstruction.
Kunabeva et al. [62] introduced an algorithm for improved
analysis of epileptic disorders using an optimal mother
wavelet and block adaptive decomposition. The algorithm
achieved excellent reconstruction quality with low average
PRD values, indicating its suitability for biomedical analysis
in the detection of epileptic disorders using recovered EEG
signals.

Sheykhivand et al. [63] proposed an automated system
for driver fatigue detection using compressive sensing and
deep neural networks based on EEG signals. The system
achieved high accuracies ranging from 92% to 95% for
different compression rates, demonstrating its effectiveness in
detecting driver fatigue. Van et al. [64] presented EffiCSense,
a framework for efficient pathfinding of mixed-signal sensor
front-ends in regular and compressive sensing systems.
The framework accelerated the design process by utilizing
high-level functional models and power consumption models.
Simulations usage of EEG signal processing for epilepsy
detection showed that an optimized design with compres-
sion can be up to 3.6 times more power-efficient, while
maintaining high detection accuracy. In the field of epileptic
seizure detection, various techniques have been developed for
automatic seizure detection using statistical features extracted
from multi-channel EEG data [65], [66], [67], [68], [69],
[70]. Hardware implementations in wearable EEG devices
have also been explored for real-time seizure detection [71].
The continuous efforts in this field aim to improve accuracy
and efficiency for effective patient care and management,
including patient-specific algorithms and alternative data
transformation techniques. Overall, the advancements in
driver fatigue detection, efficient pathfinding, and epileptic
seizure detection highlight the ongoing progress in develop-
ing reliable and efficient algorithms for detecting abnormal
brain activity and improving healthcare outcomes.

IIl. MATERIALS AND METHODS

A. DATASET DESCRIPTION

The CHB-MIT dataset [72] was jointly developed by
Children’s Hospital Boston and the Massachusetts Institute of
Technology (MIT). It provides noninvasive EEG recordings
from 23 pediatric patients, including male patients aged
between 3 and 22 years and female patients aged between
1.5 and 19 years. The EEG signals were recorded using the
International 10-20 system, with a sampling rate of 256 Hz
and 16-bit resolution. Each 1600-second EEG signal was
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segmented into 1600 non-overlapping blocks of length N =
256. This resulted in EEG data matrices X; € RV*R for
I =1,2,...,L. Each segment of the EEG data matrix had
N x R =256 x 23 sampling points.

The ECG data used in this study were obtained from
three distinct groups or classes of people: those with cardiac
arrhythmia (ARR), congestive heart failure (CHF), and
normal sinus rhythms (NSR). A total of 162 ECG recordings
were utilized from three PhysioNet databases: the MIT-BIH
Arrhythmia Dataset [73], [74], the MIT-BIH Normal Sinus
Rhythm Dataset [73], and the BIDMC Congestive Heart Fail-
ure Dataset [73], [75]. Specifically, there were 96 recordings
from persons with ARR, 30 recordings from persons with
CHF, and 36 recordings from persons with NSR. The main
objective was to develop a classifier that could accurately
distinguish between the three categories: ARR, CHF, and
NSR. Each raw ECG dataset had a signal length of 1 hour
and was sampled at 128 Hz.

B. PROPOSED APPROACH

The main block diagram presented in Figure 1 illustrates
the sequential flow of the EEG and ECG data, starting
from signal acquisition through pre-processing, compressive
sensing with OWHT, and finally, classification. Each step
contributes to the overall analysis and understanding of the
EEG and ECG signals, enabling efficient processing, feature
extraction, and classification.

1) PRE-PROCESSING

The recorded EEG and ECG signals underwent several
pre-processing steps to enhance their quality and remove
unwanted artifacts. Firstly, a notch filter was applied to
eliminate the 50-Hz frequency component caused by power
supply interference. Subsequently, a first-order Butterworth
filter was employed with a frequency range of 0.5 to 60 Hz
to further refine the signals. To ensure consistency and
improve detection efficiency across participants, feature
normalization was performed on the extracted features from
the signals. This normalization process involved scaling
the feature values between 0 and 1 using min-max nor-
malization. By adjusting the range of the features to a
standardized scale, comparability and further analysis were
facilitated. Finally, the pre-processed signals were segmented
into non-overlapping segments of 1-second duration. This
segmentation enabled the analysis of specific time intervals
within the signals, aiding in the identification of patterns,
events, or abnormalities. Through the combination of these
pre-processing steps.

2) COMPRESSIVE SENSING PROPOSED ALGORITHM

Most traditional biomedical signal compressive sensing
methods do not fully consider the presence of noise, partic-
ularly impulsive noise. While these methods often assume
the presence of Gaussian noise, real-world compressed
biomedical signals are frequently contaminated by impulsive
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noise. Impulsive noise can occur due to various factors
such as missing data during measurement, transmission
issues, buffer overflow, or faulty memory locations. When
both Gaussian and impulsive noise affect the compressive
sensing system at the sensor level, the resulting compressed
biomedical signal becomes contaminated. To address this
issue, it is necessary to include both Gaussian and impulsive
noise in the signal measurement model. Mathematically, the
measurement model can be represented as follows [76]:

In the presence of both Gaussian noise (G,) and impulsive
noise (IM,). The Frobenius norm of a matrix is commonly
used to estimate Gaussian noise using maximum likelihood
estimation. However, impulsive noise affects only a small
percentage of the EEG signal but with a large error, and it
exhibits a sparse property that can be characterized using the
lp norm. To address these considerations, we can formulate
the optimization model as follows:

X=_min |9QXllo+e |Gl + B 1Mully ()
In order to simplify the optimization problem, we can
substitute the original [y norm with the /; norm, which is
a convex relaxation of the /y norm. This substitution helps
overcome the computational challenges associated with the
non-convexity of the /o norm, which is typically NP-hard. The
reformulated problem can be represented as follows:

o~

X = min QX +alGullp+ 1Ml (3)
In previous research conducted by Dauwels et al. [77] and
Liu et al. [57], the effectiveness of employing low-rank
approximation through matrix/tensor decomposition on
EEG matrix/tensor for multichannel EEG compression was
demonstrated. This approach utilized matrix/tensor decom-
position techniques to exploit the underlying correlation
among the multichannel EEG signals, revealing a latent
low-rank property in the data. Building upon this observation,
the reformulated equation 3 can be expressed as follows:

o~

X= min QX[+ rank(X) + o |Gall} + B 11,1

“

Here, X represents the low-rank approximation of the mul-
tichannel EEG matrix/tensor, while Y denotes the observed
measurements. The term |[Y — OX|F 2 measures the fidelity
between the observed measurements and the reconstructed
low-rank approximation, aiming to minimize the discrep-
ancy. The second term, «|X|, promotes low-rankness by
encouraging a small nuclear norm (|X|) of X. The nuclear
norm acts as a convex relaxation of the rank operator
and effectively captures the low-rank structure present in
the multichannel EEG data. Additionally, the third term,
BIX], fosters sparsity by encouraging a small /1 norm
(IX]1) of X, thereby capturing impulsive noise in the
signals. By incorporating low-rank approximation through
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FIGURE 1. Block diagram corresponding to the proposed framework.

matrix/tensor decomposition and leveraging the nuclear
norm and /1 norm for regularization, this reformulated
formulation facilitates accurate and efficient recovery of
the multichannel EEG data. It effectively utilizes the latent
low-rank property and captures the presence of impulsive
noise, thereby enhancing the performance of multichannel
EEG compression.

In this optimization model, the regularization parameter A
is used and the rank function about X is denoted as rank(X).
To substitute the rank function, the nuclear norm is adopted
because it is widely used as a convex relaxation of the rank
function [78]. Hence, the proposed optimization model based
on sparse and low-rank representation can be formulated as
follows:

X = min

sYn, n

19Xl + A X« + a 1GallF + B 1M,y
&)

The nuclear norm of a matrix X, denoted by || X||,, is defined
as the sum of its singular values. Due to the high correlation
between nearby EEG channels, which is caused by both
the shared sources of neural activities and the volume
conduction effect, these signals exhibit similar patterns in the
transform (sparsifying) domain. Specifically, high values in
the transform domain occur in the same positions for these
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signals, resulting in a row-sparse matrix X. Therefore, taking
advantage of these correlations in the reconstruction process
can lead to high accuracy in the recovery procedure [79].

3) SELECTING THE MATRICES FOR SENSING AND
SPARSIFICATION

To ensure accurate recovery in compressive sensing of
biomedical signals, it is crucial to have a low mutual
coherence value between the measurement matrix and spar-
sity matrix. Random matrices with independent identically
distributed (i.i.d.) entries are well-known for their low
coherence values when compared to deterministic matrices.
Two popular random sensing matrices used in compressive
sensing of biomedical signals are random Gaussian matrices
and random binary matrices. Random Gaussian matrices
have been widely employed in compressive sensing of EEG
signals; however, they can be computationally expensive and
not energy-efficient for use in WBAN systems. On the other
hand, random binary sensing matrices offer computational
efficiency and lead to small-size batteries for sensor nodes,
making them suitable for WBAN systems. Previous studies
have utilized random binary matrices as measurement
matrices for compressive sensing of EEG signals. In terms
of sparsity domains, original EEG signals are not sparse
or compressible in the time domain. However, they can be
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Algorithm 1 Biomedical Signal Compressed Sensing Using
SPGL1 Algorithm and OWHT

Input: y - measured signal, 2 - measurement matrix, A -
sparsity penalty parameter, o - regularization parameter for
the Frobenius norm term, f - regularization parameter for the
image model term.

Output: X - reconstructed signal.

1: Initialize Xy with random values

2: Setk =0

3 Setrg=y— QXo

4: while k < ky,4¢ and |r¢| > €|y| do

5 Apply Optimized Walsh-Hadamard Transform
(OWHT) to X}, to obtain Gy and IMy,

6: Solve the optimization problem:
min QX1+ A X * +o [Gl2 + B 1M 1
X,Gy ,IMy,
subject to X = OWHT ~\(Gy, IMy) (6)

7: SetXk+1=X

8: Set rer1 =y — QXg41
9: Setk=k+1

10: end while

1: X = Xx

sparsely represented in domains such as wavelet, Gabor,
discrete cosine transform (DCT), and the Walsh-Hadamard
Transform (WHT). In this study, the WHT domain is chosen
as the sparsity domain for EEG signals due to its efficient
capture of high-frequency content in the signal. EEG and
ECG signals typically exhibit energy at high frequencies, and
the WHT is effective in capturing this energy in a sparse
representation. Furthermore, the WHT offers the advantage
of a simple hardware implementation, making it well-suited
for low-power embedded systems like WBAN sensors [80].
This characteristic makes the WHT a desirable choice for
compressive sensing applications in resource-constrained
environments.

4) RECOVERY ALGORITHM

Compressive sensing is a powerful technique for acquiring
and reconstructing signals from a small number of linear
measurements. In the biomedical field, this can be partic-
ularly useful for reducing acquisition time and improving
patient comfort during imaging and monitoring procedures.
One popular method for signal reconstruction in compressed
sensing is based on solving a sparse optimization problem,
where the signal is assumed to have a sparse representation
in some basis or dictionary. In this context, Algorithm 1
presents the main steps for the SPGL1 algorithm. It provides
a computationally efficient and flexible approach to solving
sparse optimization problems, allowing for the incorporation
of additional constraints or regularization terms. In this
algorithm, a series of optimization problems are solved
iteratively to reconstruct the signal from its compressed
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measurements, using a combination of sparsity-promoting
penalties and image model regularization.

In biomedical signal processing, it is common for signals
to be corrupted by noise, including Gaussian noise and
impulsive noise. To address this issue, the SPGL1 algorithm
can be combined with the OWHT to reconstruct the signal
while simultaneously suppressing noise.

The algorithm begins by initializing Xy, with random
values, and setting the iteration counter k to zero. The
difference between the measured signal and the current
estimate, ry = y — QXg, is calculated. The algorithm then
enters a loop, continuing until the maximum number of
iterations k;,, is reached or the residual error |r¢| is below a
specified tolerance €. At each iteration, the OWHT is applied
to X to obtain two transformed signals: the Gaussian noise
signal Gy and the impulsive noise signal /My . These signals
are used in the optimization problem, subject to the constraint
that X can be recovered from Gy and IM using the inverse
OWHT.

i QX| 1+ A|X]| Gy |> M,
X,IGnkl,IIle QX1+ A|X|* 4o |Grlg + B IIMi|

subject to X = OWHT ~\(Gy., IMy,) (7

The optimization problem includes four terms: the £{-norm
of the product of 2 and the signal X, which encourages
sparsity in X; the nuclear norm of X, which promotes low-
rank solutions; the Frobenius norm of Gy, which penalizes
Gaussian noise; and the £1-norm of IM}, which penalizes
impulsive noise. The constraint ensures that the recovered
signal X can be expressed as a linear combination of Gy and
IM},. After solving the optimization problem, the estimate of
the signal is updated to X;4+1 = X. The residual error riy
is calculated, and the iteration counter is incremented. The
output of the algorithm is the reconstructed signal, X, which s
equal to X after the final iteration. By suppressing noise and
promoting sparsity and low-rank solutions, the algorithm can
provide an accurate reconstruction of the signal from noisy
measurements.

5) EEG AND ECG CLASSIFICATION IN COMPRESSIVE
SENSING-BASED WBAN SYSTEMS

The proposed algorithm aims to classify compressed EEG
and ECG signals by utilizing a combination of LBP features
and a 1-D CNN model. The algorithm takes as input a
compressed signal with a total of N samples. It also requires
the specification of LBP parameters, namely P (the number
of neighboring points to consider) and R (the radius of the
circular neighborhood). Additionally, the algorithm requires
CNN hyperparameters to be defined. To train and validate the
model, the algorithm takes the training data D and validation
data V as inputs. The training data is used to train the
CNN model, while the validation data is used to evaluate
the model performance and fine-tune the hyperparameters.
For each input window of size W samples, the algorithm
generates a prediction y using the trained CNN model. The
prediction represents the classification label assigned to the
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input window based on the learned features and patterns
extracted from the compressed signal. By combining the
discriminative power of LBP features and the ability of CNNs
to learn hierarchical representations, the algorithm aims to
achieve accurate classification results for compressed EEG
and ECG signals. The proposed approach for classification
in compressed EEG and ECG signals combines LBP features
and a 1-D CNN model. The input to the approach is a
compressed signal with N samples, LBP parameters P and
R, CNN hyperparameters, training data D, and validation
data V. The output is the prediction y for each input
window of size W samples. To extract features, LBP is
applied to each input window, capturing the local texture
patterns of the signal. The LBP features are then reshaped
into a 3D tensor of shape (N — W + 1, W, C), where C
represents the number of channels. This reshaped tensor
serves as the input to the CNN model. The CNN model
is designed with layers including convolution, activation,
pooling, dropout, fully connected (FC), and output layers.
The hyperparameters such as the number of filters (K),
filter size (F), pooling size (P), dropout rate (D), number of
hidden units in the FC layer (H), epochs (E), and learning
rate (o) are initialized. In the proposed architecture, the
input layer accepts a 32 x 32 x 3 image, followed by a
3 x 3 convolutional layer with 16 filters. Padding is used
in the convolutional layer to maintain the original spatial
dimensions. Batch normalization is applied to normalize the
output, and the ReLU activation function is employed. The
model incorporates residual blocks, each comprising two
convolutional layers and an additional layer that adds the
output of the second convolutional layer to the input. The
number of filters in each convolutional layer is determined
by the hyperparameter ‘netWidth’. Batch normalization and
ReLU activation are applied to the output of the second
convolutional layer. Another 3 x 3 convolutional layer with
the same number of filters is added, followed by another
round of batch normalization, addition to the input, and ReLU
activation. The output of the residual blocks undergoes global
average pooling, which computes the average of each feature
map over its entire spatial extent, resultingina 1 x 1 xn tensor.
An FC layer with two output units representing the classes
in the dataset follows this, and a softmax activation layer
provides a probability distribution over the classes. During
training, the CNN model is trained on the training data D
for a specified number of epochs using the Adam optimizer
with a learning rate of «. The hyperparameters of the CNN
model are tuned using the validation set V' and grid search.
Different combinations of hyperparameters are evaluated,
and the best-performing set is selected based on performance
metrics. For seizure prediction, the input EEG signal x is
divided into overlapping windows of size W samples with
a step size of S samples. LBP features are extracted for
each window, and the trained CNN model is used to obtain
a seizure prediction. The predictions from all windows are
combined to generate the final seizure prediction y for the
entire EEG signal x. The algorithmic variables used in the
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approach include N = 10000 (number of samples in the input
EEG signal), W = 256 (window size), S = 500 (step size),
P = 8 (number of sampling points in LBP), R = 1 (radius
in LBP), K = 32 (number of filters in the convolution layer),
F=10

Algorithm 2 1-D CNN-Based Epileptic Seizure Detection
With Compressed EEG and Local Binary Pattern (LBP)
Features
1: Input: Compressed EEG signal x with N samples, LBP
parameters P and R, CNN hyperparameters, training data
D, and validation data )V
2: Output: Seizure prediction y for each input window of
size W samples
3: Extract LBP features for each input window of size W
samples
4. Reshape the LBP features into a 3D tensor of shape (N —
W+1,W,0)
5: Define a 1-D CNN model with the following layers:
« Convolution layer with K filters of size F
« ReLU activation function: f(x) = max(0, x)
« MaxPooling layer of size P
« Dropout layer with dropout rate D
o FC layer with H hidden units and ReLU activation
function: f(x) = max(0, x)
« FC output layer with a single output unit and sigmoid
activation function: f(x) = H%
6: Initialize the CNN model hyperparameters
7: Train the CNN model on the training data D for E epochs
using the Adam optimizer with learning rate «
8: Tune the hyperparameters of the CNN model using the
validation set )V and grid search:
9:  Define a set of hyperparameters to search over,
including K, F, P, D, H, E, and o
10.  For each combination of hyperparameters, train the
CNN model on D for E epochs and evaluate its
performance on V using a suitable metric
11:  Select the hyperparameters with the best performance
onV
12: Use the trained CNN model to classify EEG and ECG in
the input signal x as follows:
13:  Split the signal x into overlapping windows of size W
samples with a step size of S samples
14:  For each window, extract the LBP features and
pass them through the trained CNN model to obtain
prediction: yi = f (CNNO(x;))
15:  Combine the predictions from all windows to obtain
the final prediction y for the entire signal x: y =
(Y1, 92, ..., ym], where M = LNE—WJ +1

where:

o x is a compressed EEG signal with N samples.

o W is the window size used for extracting LBP features
and making predictions.

« S is the step size used for overlapping windows.
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e P and R are parameters for the LBP algorithm,
controlling the number of sampling points and the radius
of the circle around each point.

o K is the number of filters used in the convolution layer
of the CNN model.

o F is the size of each filter used in the convolution layer
of the CNN model.

o Pis the size of the max pooling layer of the CNN model.

e D is the dropout rate used in the dropout layer of the
CNN model.

C. PERFORMANCE METRICES

In many studies of EEG compressed sensing, the Mean
Squared Error (MSE) and the Maximum Correntropy Cri-
terion (MCC) are often used to quantitatively evaluate the
performance of compressive sensing recovery of multichan-
nel EEG signals. The MSE measures the average squared
difference between the estimated EEG signal X; and the true
EEG signal X; in each segment. It can be formulated as:

. 2

< HXZ_XZHF
MSE = B — 8
;LXNXR ®)

where X; € RM*R represents the true EEG data with R
channels and each channel has a length of N. The variable X;
denotes the estimated signal in the /th segment, and L is the
total number of EEG segments. A lower MSE value indicates
better performance, as it means the estimated signal is closer
to the true signal on average.

On the other hand, the MCC is used to estimate the
structural similarity between the estimated EEG signal and
the true EEG signal. It is calculated by computing the inner
product between the vectorized versions of the estimated and
true EEG signals and normalizing it with the Frobenius norms
of the signals. Mathematically, the MCC can be formulated
as:

MCC = ZL: vec(Xl)TveAc(Xl) ©)
= LIXIe %]

Here, vec() converts all columns in the matrix into a column
vector. A higher MCC value indicates that the recovered
EEG signal is more similar to the original signal. Both the
MSE and MCC are commonly used metrics in biomedical
signals compressed sensing studies to assess the quality
of the recovery process. Researchers rely on these metrics
to compare different algorithms, optimize parameters, and
evaluate the effectiveness of compressive sensing techniques
in the context of multichannel EEG signal recovery.

In addition, the subsampling ratio (SSR) is often used to
measure the degree of compression and is defined as:

M
SSR = — x 100 (10)
N

where N and M denote the number of rows in the original
signal X and compressed signal Y, respectively.
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TABLE 1. Confusion matrix.

Actually positive (1) | Actually negative (0)
Predicted positive Tps Fps
Predicted negative Fns Tns

QS represents the quality score of the estimated EEG signal
compared to the true signal. It is calculated by normalizing
the MSE with respect to the maximum possible value of the
signal. A higher QS value indicates better quality, as it means
the estimated signal has less error compared to the maximum
possible value.

MSE
3 (11

MAX
The Peak Signal-to-Noise Ratio (PSNR) is a commonly
used metric to measure the quality of the estimated EEG

signal compared to the true signal. It represents the ratio of
the maximum possible power of the signal to the power of

the error.
MAX?
PSNR = 10log; (12)

0S=1-

MSE

where MAX denotes the maximum possible value of the EEG
signal.

The Structural Similarity Index (SSIM) is a metric that
assesses the structural similarity between the estimated EEG
signal and the true signal.

2ugpx + C 2044 +Co

SSIM = — 5 " 5
M)A(+Mx+cl O—)A(+UX+C2

13)

where 1y and py represent the means of the estimated
and true EEG signals, respectively. oy and ox represent
the standard deviations of the estimated and true EEG
signals, respectively. oy, represents the covariance between
the estimated and true EEG signals. C; and C; are small
constants added for numerical stability.

The performance of the deep learning classifier is eval-
uated using various metrics, including sensitivity (Sen),
specificity (Spec.), accuracy (Acc.), precision (Preci.), and
F score [81], which are computed using a confusion matrix.
Table 3 displays the anticipated quadrant outputs from the
confusion matrix, with true positives (7),) representing the
number of correctly identified anomalous instances and
true negatives (7,) indicating the number of accurately
classified normal instances. False positives (£,) are normal
instances that are incorrectly labeled as anomalies, while false
negatives (F},) are anomalies that are misclassified as normal.

Sensitivity is given by:

Ty

Sen. = x 100 (14)
T, + F,
Specificity is given by:
Spec. = x 100 15
Y2 T, +F, (15)
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TABLE 2. Comparison of compressive sensing recovery algorithms at
different SSR using noise-free EEG signals.

SSR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
BSBL [6] 042 | 042 | 042 | 049 | 049 | 053 | 0.54 | 0.78
KCS [58] 039 | 039 | 039 | 043 | 043 | 051 | 0.55 | 0.66

MSE RBCS [59] 030 | 031 | 032 | 0.34 | 035 | 036 | 042 | 0.68
(1073) SCLR [57] 024 | 025 | 026 | 0.30 | 0.30 | 031 | 0.36 | 0.54
SLRMN [60] | 0.23 | 0.24 | 0.24 | 0.26 | 0.28 | 0.31 | 0.35 | 047

Proposed
OWHT

BSBL [6] 0.75 | 0,77 | 0.78 | 0.81 | 0.81 | 0.82 | 0.82 | 0.80

KCS [58] 0.81 | 0.85 | 0.86 | 0.86 | 0.86 | 0.87 | 0.85 | 0.85

RBCS [59] 0.70 | 0.71 | 0.71 | 0.72 | 0.72 | 0.72 | 0.72 | 0.71

SCLR [57] 0.65 | 0.67 | 0.68 | 0.68 | 0.68 | 0.69 | 0.66 | 0.65
SLRMN [60] | 0.74 | 0.78 | 0.80 | 0.82 | 0.83 | 0.84 | 0.81 | 0.80

Proposed
OWHT

0.11 | 0.I1 | 0.11 | 0.12 | 0.12 | 0.15 | 0.19 | 0.21

MCC

092 | 093 | 095 | 098 | 0.98 | 098 | 097 | 0.97

Accuracy is given by:

T, +T,
Acc. = P2 x 100 (16)
Ty + Tp + Fp + Fa
F score is given by:
Tp
F\ score = x 100 a7

Ty + 3(Fp + Fy)

The F score, also called the F'-measure, is a useful metric
for evaluating the accuracy of a test. To compute the F|
score, one divides the number of true positive results by the
total number of positive results, which includes both true and
false positives. Meanwhile, the recall assesses the number
of correctly identified positive results in relation to the total
number of positive samples. The F| score is obtained by
taking the harmonic mean of precision and recall, as detailed
in [82].

IV. RESULTS AND DISCUSSION

The presented framework for detecting EEG and ECG
signals in the compressed sensing domain is evaluated in
two scenarios: compression and classification. We begin
by assessing the performance of the proposed compression
algorithm on EEG and ECG signals.

A. RESULTS FOR EEG COMPRESSION IN THE ABSENCE OF
NOISE

Table 2 provides a comprehensive comparison of six different
algorithms used for compressive sensing recovery, namely
BSBL, KCS, RBCS, SCLR, SLRMN, and the proposed
OWHT algorithm. The table showcases the performance of
each algorithm based on two key metrics, namely MSE and
MCC. MSE values are expressed in units of 1073, where
smaller values indicate better performance in approximating
the original signal. On the other hand, MCC values range
from O to 1, where 1 signifies a perfect correlation between
the predicted and actual values. Upon analyzing the results
in the table, it becomes evident that the proposed OWHT
algorithm surpasses all other algorithms in terms of both
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FIGURE 2. Comparison of original EEG signal, compressed EEG, and
recovered EEG in the absence of noise.

MSE and MCC metrics. At various levels of SSR, ranging
from 0.1 to 0.8 with increments of 0.1, the OWHT
algorithm consistently demonstrates the lowest MSE values
and the highest MCC values. This consistent performance
across different SSR levels highlights the efficacy of the
proposed algorithm in accurately reconstructing signals
from compressed measurements. Additionally, the SLRMN
algorithm also exhibits competitive performance, particularly
at higher SSR levels, where it achieves commendable MCC
values. However, the BSBL algorithm lags behind the others,
yielding higher MSE values and lower MCC values across
all SSR levels, suggesting relatively inferior reconstruction
performance. Figure 2 showcases a visual representation
of the key stages in the compressive sensing-based EEG
signal processing. It includes the original EEG signal, the
compressed EEG signal, and the recovered EEG signal. The
original EEG signal represents the raw electrical activity
recorded from the brain, free from any added noise or distor-
tion. As the ground truth reference, it provides insight into the
true underlying brain activity. The compressed EEG signal
is obtained by employing compressive sensing techniques,
enabling efficient data acquisition and storage through
the exploitation of signal sparsity or compressibility. This
compressed version of the EEG signal contains a reduced
amount of data compared to the original signal, resulting in
more efficient signal transmission and storage. The recovered
EEG signal is the outcome of applying a novel compressive
sensing recovery algorithm to the compressed EEG signal.
This algorithm is designed to reconstruct the original EEG
signal from the compressed measurements, aiming to capture
and restore essential features and information present in the
signal. By visually examining Figure 2, one can assess the
performance of the compressive sensing recovery algorithm
by comparing the recovered signal with the original EEG
signal. A high degree of similarity between the recovered
and original signals indicates a successful recovery, affirming
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TABLE 3. Performance comparison of compressive sensing algorithms on
EEG signals corrupted with 30 dB White Gaussian Noise.

SSR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
BSBL [6] 0.44 | 046 | 046 | 049 | 0.50 | 0.54 | 0.62 | 0.73
KCS [58] 042 | 043 | 044 | 047 | 048 | 0.53 | 0.62 | 0.66

MSE RBCS [59] 033 | 035 | 040 | 040 | 040 | 040 | 0.54 | 0.73
(1073) SCLR [57] 025 | 025 | 027 | 0.28 | 0.31 | 0.37 | 048 | 0.54
SLRMN [60] | 0.27 | 0.28 | 0.31 | 0.33 | 0.36 | 0.38 | 0.45 | 0.53

Proposed
OWHT

BSBL [6] 073 |1 0.75 | 0.76 | 0.79 | 0.79 | 0.80 | 0.80 | 0.81

KCS [58] 0.78 | 0.82 | 0.83 | 0.85 | 0.85 | 0.86 | 0.86 | 0.86

RBCS [59] 0.68 | 0.68 | 0.68 | 0.70 | 0.70 | 0.70 | 0.71 | 0.72

SCLR [57] 0.63 | 0.64 | 0.65 | 0.65 | 0.65 | 0.65 | 0.69 | 0.70
SLRMN [60] | 0.72 | 0.75 | 0.78 | 0.79 | 0.80 | 0.81 | 0.85 | 0.88

Proposed
OWHT

0.17 | 0.17 | 0.18 | 0.18 | 0.19 | 0.19 | 0.23 | 0.27

MCC

090 | 091 | 094 | 096 | 097 | 0.97 | 098 | 0.98

the algorithm’s accuracy and effectiveness. Conversely,
significant discrepancies may suggest potential limitations or
inaccuracies in the recovery process.

B. RESULTS FOR EEG COMPRESSION IN PRESENCE OF
GAUSSIAN NOISE

In this section, we present the results of the proposed
compressive sensing algorithm for EEG signal denoising in
the presence of Gaussian noise at a 30 dB level. Table 3
summarizes the performance evaluation using two essential
metrics, MSE and MCC. The table is divided into two
sections: the upper section presents the MSE values, while
the lower section displays the MCC values. Each column
corresponds to a specific SSR level, ranging from 0.1 to 0.8,
and each row corresponds to a different denoising algorithm,
including BSBL, KCS, RBCS, SCLR, SLRMN, and the
proposed OWHT algorithm. Analyzing the MSE values,
it is evident that the proposed OWHT algorithm consistently
outperforms the other methods across all noise levels. This
noteworthy performance indicates the effectiveness of the
OWHT algorithm in denoising EEG signals and preserving
their quality, even when exposed to significant noise levels.
Moving on to the MCC values, the proposed OWHT
algorithm again exhibits superior performance compared to
the other methods. This finding implies that the OWHT algo-
rithm not only effectively removes noise but also enhances
the accuracy of EEG signal analysis and interpretation. The
high MCC values suggest that the OWHT algorithm provides
reliable results in capturing relevant features and patterns in
the EEG data, even amidst the presence of noise.

Figure 3 provides valuable insights into the performance of
the compression and recovery process for the EEG signal in
the presence of 30 dB WGN. The original EEG signal serves
as the baseline, representing the true underlying brain activity.
Introducing 30 dB WGN to the original signal simulates
real-world scenarios where EEG signals are often subject
to various sources of interference or noise. The compressed
EEG signal is the outcome of applying the compression
algorithm to the original noisy signal. This subplot showcases
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FIGURE 3. Comparison of original EEG signal with 30 dB WGN,
compressed EEG, and recovered EEG.

the reduction in data size achieved through compression,
which is crucial for efficient storage and transmission of EEG
signals. However, it is essential to note that the compression
process may lead to the loss of some fine-grained details
present in the original signal due to data reduction. The
recovered EEG signal is obtained by reconstructing the
compressed signal using the recovery algorithm. This subplot
demonstrates the effectiveness of the recovery algorithm in
restoring the original EEG signal, despite the presence of
noise and the loss incurred during compression. The accuracy
and similarity between the recovered signal and the original
signal indicate the algorithm’s ability to successfully capture
and reconstruct the essential features of the EEG signal.
By comparing the original EEG signal, the compressed EEG
signal, and the recovered EEG signal, one can thoroughly
assess the fidelity of the recovery process. If the recovered
signal closely resembles the original signal, it indicates
a successful recovery, and the compression algorithm has
effectively preserved the crucial information required for
subsequent analysis or interpretation.

C. RESULTS FOR EEG COMPRESSION IN PRESENCE OF
IMPULSIVE NOISE

Table 4 presents a comprehensive performance evaluation
of various algorithms based on two essential evaluation
metrics. The comparison is conducted under different levels
of compression ratios, ranging from 0.1 to 0.8, for EEG
signal data. For the SSR metric, it is evident that most of
the algorithms exhibit an increasing trend in MSE values
as the compression ratio rises. However, the proposed
OWHT algorithm stands out by consistently outperforming
the other algorithms. Across all compression ratios, the
OWHT algorithm showcases significantly lower MSE values.
This noteworthy result indicates that the proposed OWHT
algorithm excels in preserving the quality of the EEG signal,
even at higher compression ratios, compared to competing
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TABLE 4. Performance comparison of compressive sensing algorithms on
EEG signals corrupted with 0.05 impulsive Noise.

TABLE 5. Performance comparison of compressive sensing algorithms on
EEG signals corrupted with Mixed Noise.

SSR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

SSR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

BSBL [6] 0.61 | 0.62 | 0.63 | 0.63 | 0.64 | 0.66 | 0.68 | 0.72
KCS [58] 0.60 | 0.60 | 0.60 | 0.64 | 0.67 | 0.68 | 0.68 | 0.74
MSE RBCS [59] 0.63 | 0.65 | 0.70 | 0.70 | 0.70 | 070 | 0.74 | 0.83
(1073) SCLR [57] 0.55 | 0.55 | 0.57 | 0.58 | 0.61 | 0.67 | 0.68 | 0.74
SLRMN [60] | 0.47 | 0.48 | 0.51 | 0.53 | 0.56 | 0.58 | 0.65 | 0.73
Proposed
OWHT

0.19 | 0.19 | 0.19 | 0.19 | 020 | 0.20 | 0.25 | 0.29

BSBL [6] 0.65 | 0.65 | 0.65 | 0.66 | 0.66 | 0.67 | 0.67 | 0.74
KCS [58] 0.62 | 0.62 | 0.62 | 0.63 | 0.64 | 0.68 | 0.70 | 0.76
MSE RBCS [59] 0.65 | 0.65 | 0.67 | 0.72 | 0.73 | 073 | 0.77 | 0.85
(1073) SCLR [57] 0.57 | 055 | 0.57 | 0.58 | 0.61 | 0.67 | 0.68 | 0.74
SLRMN [60] | 0.47 | 048 | 0.51 | 0.53 | 0.56 | 0.58 | 0.65 | 0.73
Proposed
OWHT

0.19 | 0.19 | 020 | 020 | 0.22 | 0.22 | 0.27 | 0.32

BSBL [6] 0.71 | 0.73 | 0.73 | 0.75 | 0.76 | 0.78 | 0.78 | 0.80
KCS [58] 0.76 | 0.77 | 0.77 | 0.77 | 0.78 | 0.80 | 0.84 | 0.84
RBCS [59] 0.65 | 0.65 | 0.65 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68

BSBL [6] 0.70 | 0.70 | 0.70 | 0.73 | 0.73 | 0.75 | 0.77 | 0.78
KCS [58] 073 |1 073 | 0.74 | 0.74 | 0.76 | 0.76 | 0.77 | 0.80
RBCS [59] 0.62 | 0.62 | 0.63 | 0.63 | 0.65 | 0.65 | 0.67 | 0.67

MCC MCC
SCLR[57] | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.65 | 0.68 SCLR[57] | 0.56 | 056 | 0.56 | 0.56 | 0.58 | 0.58 | 0.59 | 0.62
SLRMN [60] | 0.70 | 0.70 | 0.75 | 0.75 | 0.75 | 0.78 | 0.78 | 0.80 SLRMN [60] | 0.67 | 0.67 | 0.68 | 0.69 | 0.69 | 0.73 | 0.77 | 0.79
Proposed 1 g9 | 0.90 | 093 | 0.96 | 097 | 097 | 0.97 | 0.97 Proposed 1 69 | 0.90 | 093 | 0.96 | 097 | 097 | 0.97 | 0.97
OWHT OWHT
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FIGURE 4. Comparison of original EEG signal with 0.05 impulsive noise,
compressed EEG, and recovered EEG.

methods like BSBL, KCS, RBCS, SCLR, and SLRMN.
Likewise, for the MCC metric, the proposed OWHT algo-
rithm demonstrates remarkable performance. It consistently
achieves higher MCC values than the other algorithms, indi-
cating its superior accuracy in recovering the original EEG
signal during the compression and reconstruction process.
The consistently high MCC values for the OWHT algorithm
further emphasize its efficacy in retaining the critical features
of the EEG signal throughout the compression and recovery
stages. These comprehensive results collectively suggest
that the proposed OWHT algorithm exhibits robustness
and accuracy in compressing and recovering EEG signals.
It outperforms the other algorithms considered in terms of
both MSE and MCC metrics, underscoring its potential as an
efficient and effective solution for EEG signal compression
and subsequent analysis. Figure 4 provides valuable
insights into the impact of impulsive noise on the original
EEG signal and the performance of the compression and
recovery process. In this analysis, the original EEG signal
is corrupted with 0.05 impulsive noise, and the subsequent
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it becomes apparent that the impulsive noise introduces
irregular and abrupt spikes in the original EEG signal.
These spikes disrupt the underlying patterns and pose
challenges in accurately interpreting the signal. However,
despite the presence of impulsive noise, the compression
algorithm effectively reduces the size of the signal while
preserving essential information. The compressed EEG
signal showcases a reduced amplitude and a smoother profile
compared to the original signal. Although some fine-grained
details may be lost during the compression process, the
overall shape and structure of the signal are well-maintained,
resulting in a reasonable representation of the original EEG.
Notably, the recovered EEG signal, obtained through the
reconstruction process, exhibits a remarkable similarity to
the original signal, even in the presence of impulsive noise.
While some noise artifacts may persist, the key features
and underlying patterns of the original EEG signal are
successfully recovered.

D. RESULTS FOR EEG COMPRESSION IN PRESENCE OF
MIXED NOISE
Table 5 demonstrates that the OWHT algorithm consistently
outperforms other compression algorithms in handling mixed
noise in EEG signals. It achieves lower mean MSE values,
indicating effective noise reduction and preservation of
the original signal. Moreover, OWHT obtains higher MCC
values, showcasing better classification performance and
preservation of essential signal features. On the other hand,
the other compression algorithms exhibit higher MSE values
and lower MCC values across various compression ratios.
These results validate the efficacy of the OWHT algorithm in
enhancing the quality of compressed EEG signals corrupted
with mixed noise, making it a promising approach for EEG
signal compression.

Figure 5 depicts the impact of mixed noise (30 dB WGN
and 0.05 impulsive noise) on the original EEG signal, along
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FIGURE 5. Comparison of original EEG signal with mixed noise,
compressed EEG, and recovered EEG.
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FIGURE 7. Comparison of original ECG signal, compressed ECG, and
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FIGURE 6. Comparison of original noise-free ECG signal, compressed ECG,

and recovered ECG in the absence of noise.

with the compression and recovery process. Despite the noise,
the compression algorithm effectively reduces the signal size
while preserving vital information. The recovered EEG signal
shows a reasonable approximation of the original, enabling

further analysis and interpretation.

Table 6 presents the performance evaluation of com-
pressed EEG signals using various quality metrics. Results
demonstrate the influence of SSR on compression efficiency,
affecting metrics such as MSE, MCC, and gs. PSNR and
SSIM values exhibit variations based on noise conditions and

SSR values.

E. RESULTS FOR ECG COMPRESSION IN THE ABSENCE OF

NOISE

In ECG compressive sensing, noise presents a critical
challenge that can compromise the reconstruction quality and
accuracy of compressed signals. Notably, muscle artifacts
and power line interference are prominent noise sources.
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FIGURE 8. Comparison of original ECG signal, compressed ECG, and
recovered ECG with added muscle artifact noise.

To address this, advanced signal processing techniques
and noise reduction methods are incorporated during the
reconstruction process. These measures effectively mitigate
the impact of muscle artifacts and power line interference,
leading to improved accuracy and fidelity in the reconstructed
ECG signals. To simulate this noise, a sinusoidal waveform
is added to the ECG signal at the corresponding frequency.
Figure 6 presents the comparison between the noise-free
original ECG signal, its corresponding compressed version,
and the reconstructed ECG signal. The figure highlights
the fidelity and accuracy of the compressive sensing recon-
struction process. The compressed ECG effectively retains
crucial features of the original signal, while the reconstructed
ECG closely resembles the noise-free version, indicating
successful recovery of cardiac information. In Figure 7,
we evaluate the impact of power line noise on the original
ECG signal, compressed ECG, and the reconstructed ECG
signal. The figure demonstrates the effectiveness of the
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TABLE 6. Numerical evaluation results for different quality metrics of compressed EEG signals under noise-free and mixed noise conditions, with varying

SSR values.
SSR Noise free Mixed noise
MSE T MSE T
10-3) MCC (sec) gs | PSNR | SSIM 10-3) MCC (sec) qs PSNR | SSIM
0.1 0.11 0.92 149 | 0.95 | 25.84 0.97 0.19 0.89 1.87 | 093 | 23.44 0.96
0.2 0.11 0.93 147 | 095 | 25.84 0.95 0.19 0.90 1.85 | 093 | 23.44 0.96
0.3 0.11 095 | 0934 | 096 | 25.84 0.95 0.20 0.93 1.76 | 0.94 | 23.16 0.95
0.4 0.12 0.98 092 | 097 | 2557 0.93 0.20 0.96 1.34 | 094 | 23.16 0.95
0.5 0.12 0.98 092 | 097 | 25.57 0.91 0.22 0.97 1.33 | 095 | 22.58 0.94
0.6 0.15 098 | 0.833 | 0.98 | 24.49 0.90 0.22 0.97 1.31 | 095 | 22.58 0.90
0.7 0.19 0.97 0.76 | 098 | 23.40 0.90 0.27 0.97 1.30 | 0.96 | 21.00 0.89
0.8 0.21 0.97 0.63 | 098 | 22.88 0.89 0.32 0.97 1.29 | 096 | 20.05 0.88
o ) TABLE 7. Performance evaluation of the proposed framework for
s, . . . orl'g'“" EFG 5'9':'5' . . . _ compressive sensing algorithm on ECG signals corrupted with different
E types of noise.
20
= SSR 0.0 [ 02 [ 03] 04]05]06]07]08
g ECG noise free 0.11 [ 011 | 012 [ 0.12 | 013 [ 014 | 017 | 0.22
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R ECG noise free 0.95 | 0.95 | 0.96 | 0.97 | 0.99 | 0.99 | 0.99 | 0.99
B » MCC F‘CGJ'n‘:i’:Z" line 1 094 | 0.94 | 0.95 | 097 | 0.98 | 0.98 | 0.98 | 0.98
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FIGURE 9. Comparison of original ECG signal, compressed ECG, and
recovered ECG with added mixed noise.

compressive sensing algorithm in mitigating power line
interference. Despite the presence of noise, the compressed
ECG accurately captures the underlying cardiac activity, and
the reconstructed ECG exhibits a high level of similarity to
the original signal, indicating successful noise removal. Fig-
ure 8 showcases the performance of the compressive sensing
technique in handling muscle artifact noise. It compares the
original ECG signal, compressed ECG, and reconstructed
ECG in the presence of muscle artifacts. Despite the noise,
the compressed ECG retains important cardiac features,
and the reconstructed ECG successfully eliminates the
artifacts, closely resembling the original ECG signal. Lastly,
in Figure 9, we examine the capability of compressive
sensing in handling mixed noise, including power line
interference and muscle artifacts. Despite the challenging
noise conditions, the compressed ECG preserves essential
cardiac information, and the reconstructed ECG effectively
removes the mixed noise, accurately capturing the underlying
ECG waveform.

Table 7 provides a comprehensive comparison of perfor-
mance metrics for different ECG signal scenarios, focusing
on MSE and MCC evaluations. In the ECG noise-free
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scenario, MSE values range from 0.11 to 0.22 (1073 units),
with the lowest at an SSR of 0.1. This indicates accurate
reconstruction of the noise-free ECG signal. The MCC
values ranging from 0.95 to 0.99 further confirm successful
ECG feature classification. In the presence of power line
noise, the MSE values range from 0.13 to 0.23 (1073
units). Despite the noise, the compressed ECG signals are
accurately reconstructed, with MCC values ranging from
0.94 to 0.98, reflecting robust classification performance,
slightly lower than the noise-free case. Considering muscle
artifact noise, MSE values range from 0.14 to 0.25 (1073
units). The compressive sensing algorithm effectively mit-
igates muscle artifacts, achieving accurate reconstruction
with MCC values ranging from 0.93 to 0.97, indicating
reliable classification performance. In the case of mixed
noise (power line interference and muscle artifacts), MSE
values range from 0.16 to 0.26 (10> units). The compressive
sensing technique successfully reconstructs ECG signals,
removing mixed noise, with MCC values ranging from
0.91 to 0.96, indicating robust classification performance in
the presence of multiple noise sources. These results highlight
the effectiveness of compressive sensing in accurately recon-
structing ECG signals and maintaining reliable classification
performance under challenging noise conditions. Low MSE
values demonstrate preserved cardiac information, while high
MCC values reflect accurate ECG feature detection. These
findings support the suitability of compressive sensing for
noise reduction and signal recovery in ECG analysis.
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TABLE 8. Evaluation results for different quality metrics of compressed ECG signals under noise-free and mixed noise conditions, with varying SSR values.

SSR Noise free Mixed noise
MSE T MSE T
107-3) | MCC | (e | @8 | PSNR | SSIM | (75 | MCC | (| gs | PSNR | SSIM
0.1 0.11 0.95 1.45 0.96 | 26.84 0.98 0.17 0.91 1.77 | 094 | 24.44 0.965
0.2 0.11 0.95 1.44 0.96 | 26.84 0.98 0.17 0.91 1.75 | 094 | 24.44 0.963
0.3 0.12 0.96 0.834 | 0.97 | 26.84 0.97 0.17 0.93 1.54 | 094 | 2346 0.958
0.4 0.12 0.97 0.82 0.97 | 26.57 0.97 0.16 0.95 144 | 095 | 2346 0.956
0.5 0.13 0.99 0.82 0.97 | 26.57 0.95 0.16 0.96 143 | 095 | 22.58 0.944
0.6 0.14 0.99 0.811 | 0.98 | 2349 0.93 0.17 0.97 1.35 | 095 | 22.58 0.92
0.7 0.17 0.99 0.74 | 098 | 23.40 0.92 0.19 0.97 1.33 | 096 | 22.00 0.90
0.8 0.22 0.99 0.65 | 098 | 21.88 0.92 0.26 0.97 1.31 | 096 | 21.05 0.90
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FIGURE 10. Confusion matrix and ROC curve for original EEG signal classification.
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FIGURE 11. Training progress curve for the proposed CNN residual learning-based model

with original EEG signal.

Table 8 further presents the performance evaluation of
compressed ECG signals using various quality metrics.
The consideration of noise-free and mixed noise scenarios,
with varying SSR values, offers insights into compression
efficiency. Higher SSR values generally lead to improved
performance, evidenced by lower MSE, higher MCC, and
higher gs. Additionally, PSNR and SSIM values provide
valuable information about visual quality and similarity of
compressed ECG signals.
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F. RESULTS FOR EEG SEIZURE CLASSIFICATION USING
THE PROPOSED CNN MODEL

In this section, we assess the efficacy of our pro-
posed CNN-based approach for EEG classification across
three distinct scenarios, highlighting the advantages of
compressive sensing. Our model utilizes residual learn-
ing to classify the original EEG signals, the com-
pressed EEG signals, and the fully reconstructed EEG
signals.
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FIGURE 12. Confusion matrix and ROC curve for compressed EEG signal classification.
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FIGURE 13. Training progress curve for the proposed CNN residual learning-based model

with compressed EEG signal.

Figure 10 illustrates the confusion matrix and ROC
curve for the classification of original EEG signals. The
confusion matrix indicates that, out of 600 samples, the
CNN model made 595 T}, predictions and 573 T, predic-
tions, demonstrating successful identification of positive and
negative classes in most cases. The low numbers of F),
= 5 and F,, = 27 highlight the CNN model robustness
in minimizing misclassifications. The ROC curve visually
depicts the sensitivity-specificity trade-off. The curve’s steep
ascent from the origin and subsequent upward trend indicate
that our CNN model achieved a high true positive rate while
maintaining a low false positive rate. This confirms the
model’s excellent discriminatory power, enabling accurate
differentiation between different classes of EEG signals.
Furthermore, Figure 11 presents the training progress curve
of the CNN model. By monitoring the loss function and
accuracy metrics during training, we can observe the model’s
evolving performance. The curve’s steady decrease in the
loss function and simultaneous increase in accuracy signify
the effective learning of underlying patterns and features in
the original EEG signals, leading to improved classification
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performance. Note that for our experiments, we split the
dataset into 80% for training and validation, and 20% for
testing, to ensure reliable evaluations of the CNN model’s
performance.

The evaluation of the proposed CNN model on the
classification of compressed EEG signals is presented in
Figures 12 and 13. The confusion matrix shows that out
of 600 samples, the model achieved 594 T, predictions
and 564 T, predictions. However, there were also 6 F),
and 36 F,, indicating some misclassifications. Analyzing
the ROC curve provides insights into the model’s ability to
distinguish between different classes of compressed EEG
signals. The curve indicates a reasonable discriminatory
power, but there is potential for further improvement to
optimize the trade-off between the true positive rate and
false positive rate. The training progress curve illustrates the
CNN model’s learning process when trained on compressed
EEG signals. Monitoring the loss function and accuracy
metrics during training reveals the model’s convergence and
performance. A steady decrease in the loss function and
corresponding increase in accuracy indicate effective learning
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TABLE 9. Results for the proposed CNN model using EEG signals.

TABLE 10. Results for the proposed CNN model using ECG signals.

Evaluation metrics (%) Evaluation metrics (%)

Model Model

Acc Sen Spec | Preci | Flscore Fpr Acc Sen Spec | Preci | Flscore Fpr

CNN+ original 97.33 | 99.17 | 95.50 | 95.66 | 97.38 | 0.0450 CNN+ original 9578 | 9578 | 97.89 | 96.00 | 9581 | 0.0211
EEG ECG

CNN+compressed 96.50 | 99.00 | 94.00 | 9429 | 9659 | 0.0600 CNN+compressed 92.80 | 92.89 | 96.44 | 9378 | 92.99 | 0.0356
EEG ECG

CNN”""yErEe:;“s"“md 96.83 | 9533 | 9833 | 9828 | 96.79 | 0.0167 CNNJ'f“"yErCeg’"S"“m’d 94.89 | 94.89 | 97.44 | 95.03 | 9491 | 0.0256

of relevant features from the compressed EEG signals.
However, fluctuations or plateaus in the curves suggest the
need for further adjustments or fine-tuning to enhance model
performance.

The evaluation of the proposed CNN model for the
classification of fully reconstructed EEG signals yields
promising results, highlighting its strengths and advantages.
Figure 14 presents the confusion matrix and ROC curve,
providing valuable insights into the model’s performance.
The confusion matrix shows that the model achieved a
high number of T, and T), predictions, indicating its ability
to correctly classify instances. The ROC curve visually
represents the trade-off between sensitivity and 1 - specificity.
The curve steep ascent from the origin and subsequent
upward trend indicate that the proposed CNN model achieved
a high true positive rate while maintaining a low false positive
rate. This suggests the model’s excellent discriminatory
power and its accurate differentiation between different
classes of EEG signals. Additionally, Figure 15, which
illustrates the training progress curve of the CNN model
when trained on fully reconstructed EEG signals, provides
further insights into the learning process. The consistent
decrease in the loss function and the simultaneous increase
in accuracy during training demonstrate the model’s effective
learning of relevant features from the fully reconstructed EEG
signals. This indicates the model’s capability to capture the
important patterns and characteristics necessary for accurate
classification.

Table 9 presents a comprehensive overview of the
evaluation metrics for three scenarios used in EEG signal
classification. For the CNN+ original EEG scenario, the
model achieves an impressive accuracy of 97.33%, indi-
cating accurate classification. The model also demonstrates
excellent sensitivity 99.17%, specificity 95.50%, precision
95.66%, and F1 score 97.38%. The low false positive
rate at 0.0450 highlights minimal misclassifications. The
CNN+-compressed EEG scenario achieves a slightly lower
accuracy of 96.50% compared to the original EEG model.
However, it maintains high sensitivity 99.00% and specificity
94.00%. The precision and F1 score are also high at 94.29%
and 96.59%, respectively. The F),, increases slightly to
0.0600, indicating a slightly higher misclassification rate
compared to the original EEG model. The CNN-fully
reconstructed EEG scenario achieves an accuracy of 96.83%,
similar to other models. It demonstrates a sensitivity of
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95.33% and an impressive specificity of 98.33%. The
precision and F1 score are both high at 98.28% and 96.79%,
respectively. The F), is remarkably low at 0.0167, indicating
significantly reduced misclassifications compared to other
models. Overall, the proposed CNN model showcases advan-
tages in classifying fully reconstructed EEG signals, with
high T, and T}, rates, as demonstrated by the ROC curve. The
model’s learning process, depicted in the training progress
curve, supports its ability to capture meaningful features.
Despite a relatively small improvement of approximately
0.34% in accuracy for fully reconstructed EEG signals
compared to compressed EEG signals, the added complexity
and computational burden may not be justified. Hence, the
CNN+-compressed EEG model remains a more practical
choice.

G. RESULTS FOR ECG CLASSIFICATION USING THE
PROPOSED CNN MODEL

This study investigates the impact of compression on
ECG classification performance through three scenarios:
original ECG signals, compressed ECG signals, and fully
reconstructed ECG signals. The original ECG signals serve
as a baseline, representing uncompressed and unaltered
data. In the compressed ECG scenario, signals undergo
transformation using OWHT and subsequent compression to
reduce data size. In the fully reconstructed ECG scenario,
compressed signals are recovered using the SPGL1 algorithm
and OWHT to reconstruct the original ECG signals. Figures
16 and 17 present the confusion matrix, ROC curve, and
training progress curve for the CNN model using original
ECG signals. Figures 18 and 19 present the same evaluation
metrics for the CNN model using compressed ECG signals.
Figures 20 and 21 present the evaluation metrics for the CNN
model using fully reconstructed ECG signals.

Table 10 presents a comprehensive comparison of ECG
classification scenarios, along with their evaluation metrics,
providing valuable insights into the models’ performance.
In the CNN + original ECG scenario, the model achieves
an accuracy of 95.78%, displaying precise ECG signal
classification. Sensitivity and specificity values are 95.78%
and 97.89%, respectively, indicating accurate detection
of positive instances and low false positive rates. The
precision is 96.00%, and the Fl-score reaches 95.81%,
reflecting a balanced performance between precision and
recall. The false positive rate is 0.0211, representing minimal
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FIGURE 14. Confusion matrix and ROC curve for fully reconstructed EEG signal classification.
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FIGURE 15. Training progress curve for the proposed CNN residual learning-based model

with fully reconstructed EEG signal.
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FIGURE 16. Confusion matrix and ROC curve for original EEG signal classification.

misclassification. In the CNN + compressed ECG scenario,
the accuracy slightly decreases to 92.89% compared to
the original ECG model, suggesting a minor impact from
compression. However, sensitivity 92.89% and specificity
96.44% remain high, indicating effective ECG signal clas-
sification despite compression. Precision 93.78% and F1-
score 92.99% values are also satisfactory. The false positive
rate increases slightly to 0.0356. In the CNN + fully
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reconstructed ECG scenario, the accuracy achieves 94.89%,
demonstrating competitive ECG classification performance.
Sensitivity 94.89% and specificity 97.44% values are robust.
Precision 95.03% and F1-score 94.91% also indicate accurate
classification. The false positive rate is 0.0256. The CNN +
original ECG model outperforms the other two, achieving the
highest accuracy, sensitivity, specificity, precision, and F1-
score. However, the CNN 4 compressed ECG and “CNN +
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fully reconstructed ECG” models display competitive per- H. COMPREHENSIVE COMPARISON WITH RELATED
formance, highlighting the potential of compressed and STUDIES

reconstructed ECG signals for efficient classification with Table 11 provides a comprehensive comparison of the
reduced data size and without significant degradation in proposed EEG classification system with several state-of-
accuracy. the-art methods, along with their corresponding performance
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TABLE 11. Comparative analysis of the EEG classification system proposed in this study and other state-of-the-art systems.

Authors Method Performance metrics (%)
Acc Sen Spec
Li et al. [65] Spectral, temporal, CE-stSENet 95.96 | 9241 96.05
Yang et al. [66] 30 Statistical features + XGB 86.27 | 80.32 92.22
Hossain et al. [67] Deep CNN, Dense + SoftMax 98.05 | 90.00 91.65
Khan et al. [68] Statistical features, Change point detection - 96.00 -
Li et al. [69] EMD, DWT, CSP + multi-SVM fusion 97.49 | 97.34 97.50
Jiang et al. [70] 24 Statistical features + SVM 94.50 - -
Tuauctan et al. [83] SAE, Deep CNN, FC + SVM 92.00 | 95.00 90.00
Tang et al. [84] Band energy & SVM - 87.60 88.00
Zanetti et al. [71] Statistical features &RF - 96.60 92.50
Zabihi et al. [85] LDA + ANN 95.11 | 91.15 95.16
Alkanhal et al. [86] Deep CNN + SoftMax - 87.95 86.50
LBP+CNN+original EEG 97.33 | 99.17 95.50
Proposed Framwork LBP+CNN+compressed EEG 96.50 | 99.00 94.00
LBP+CNN-+fully reconstructed EEG 96.83 | 95.33 98.33

metrics. Among the existing approaches, Li et al. [65]
combined spectral, temporal, and CE-stSENet techniques,
achieving an accuracy of 95.96%. Yang et al. [66] employed
30 statistical features with the XGBoost algorithm, yielding
an accuracy of 86.27%. Hossain et al. [67] utilized a deep
CNN with dense layers and softmax activation, achieving
the highest accuracy of 98.05%. Khan et al. [68] focused
on statistical features and change point detection, achieving
a sensitivity of 96.00%. Li et al. [69] used EMD, DWT,
and CSP combined with multi-SVM fusion, resulting in an
accuracy of 97.49%. Jiang et al. [70] used 24 statistical
features with SVM, achieving an accuracy of 94.50%.
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Tuauctan et al. [83] implemented an SAE, deep CNN, and
FC layers with SVM, attaining a sensitivity of 95.00%.
Tang et al. [84] focused on band energy features combined
with SVM, achieving a specificity of 88.00%. Zanetti et
al. [71] utilized statistical features with RF, resulting in a
sensitivity of 96.60%. Zabihi et al. [85] employed LDA
combined with ANN, achieving an accuracy of 95.11%.
Alkanhal et al. [86] utilized a deep CNN with softmax
activation, yielding a specificity of 86.50%. In comparison,
the proposed framework using LBP4-CNN with original
EEG data achieves an impressive accuracy of 97.33%. This
outperforms most of the existing methods. Furthermore, the
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TABLE 12. Comparative analysis of the ECG multi-class classification system proposed in this study and other state-of-the-art systems.

Subjects from MIT-BIH NSR, Performance (%)
Authors Approach
MIT-BIH ARR, and Sen Spec Acc
BIDMC CHF Databases Renyi entropy combined with conventional
Cornforth et al. [42] 18 NSR 15 CHF 80.0 94.4 87.9
HRY features using K-NN classifier
54 NSR RR
18 NSR Multistage CHF detection system using short-term HRV
Chen et al. [43] 95.39 100 96.91
29 CHF RR dynamic measures and decision-tree-based SVM classifier
15 CHF
HRY fuzzy and permutation entropies at different
Kumar et al. [44] 18 NSR 15 CHF 98.07 | 98.33 | 98.21
frequency scales with the least squares SVM classifier

Wang et al. [45] 52 NSR RR 18 CHF RR ECG handcrafted features with SVM classifier 91.31 | 90.04 | 90.95
Hu et al. [46] 54 NSR RR 29 CHF RR Multiple time scales HRV analysis with SVM classifier 93.33 | 98.33 | 94.44

Pre-trained CNN combined with distance
Li et al. [47] 54 NSR ARR 29 CHF RR 80.99 - 81.34

distribution matrix in entropy calculation
Kaouter et al. [50] 18 NSR 15 CHF 47 ARR CNN with CWT algorithm - - 93.75
Acharya et al. [48] 18 NSR 15 CHF 11-layer deep CNN for CHF diagnosis 96.52 | 95.75 | 95.98
Wang et al. [49] 54 NSR RR 29 CHF RR Short-term HRYV analysis and deep CNN 76.71 | 99.22 | 87.54
Ccinar et al. [51] 18 NSR 15 CHF 47 ARR Hybrid AlexNet-SVM deep neural networks and STFT 95.00 - 96.77
Kumari et al. [52] 18 NSR 15 CHF 47 ARR DWT features with SVM classifier 92.59 - 95.92

Feature extraction using CWT algorithm
Kumari et al. [53] 18 NSR 15 CHF 47 ARR 92.59 - 95.92

and classification with SVM
Hybrid deep CNN approach
Eltrass et al. [54] 18 NSR 15 CHF 47 ARR combined with HRV and ECG features 98.17 | 99.00 | 98.74
using PTWF feature selection algorithm and LDA classifier
LBP+CNN-+ original ECG 95.78 | 97.89 | 95.78
Proposed
36 NSR 30 CHF 96 ARR LBP+CNN+ compressed ECG 92.89 | 96.44 | 92.89
Framework

LBP+CNN+ fully reconstructed ECG 94.89 | 97.44 | 94.89

system exhibits a high sensitivity of 99.17%, indicating its
excellent ability to detect seizure activity, and a specificity
of 95.50%, reflecting its proficiency in identifying normal
brain activity. The performance of the proposed framework
remains consistently high when using compressed and fully
reconstructed EEG data, indicating its robustness. Overall,
the results highlight the superiority of the proposed EEG
classification system over the state-of-the-art methods listed
in the table. The high accuracy and sensitivity suggest the
potential of the proposed framework for accurate and reliable
seizure detection in EEG signals.
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Table 12 compares various methods for ECG classifica-
tion. Our proposed framework outperforms several existing
systems [42], [43], [44], [45], [46], [47], [48], [49] in
distinguishing between patients with CHF and NSR. Using
original ECG signals, our approach achieves a sensitivity of
95.78% and specificity of 97.89%, surpassing the results of
previous studies [42], [43], [44], [45], [45], [46], [47], [50].
Moreover, our framework consistently performs well with
compressed and fully reconstructed ECG signals, achieving
sensitivities of 92.89% and 94.89%, and specificities of
96.44% and 97.44%, respectively. These results demonstrate
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FIGURE 21. Training progress curve for the proposed CNN residual learning-based model

with fully reconstructed EEG signal.

the effectiveness and versatility of our approach in accurately
classifying ECG signals, regardless of their compression
level. Overall, our framework exhibits superior performance
in CHF and NSR classification, indicating its potential for
improved cardiac disease diagnosis and patient care.

V. CONCLUSION

This paper has presented a comprehensive approach for
the efficient compression and classification of EEG and
ECG signals in WBAN systems. The proposed method-
ology addresses key challenges in signal representation,
noise interference, and computational complexity, offering
promising solutions for real-time monitoring and diagnosis
in healthcare systems. The sequential approach introduced
in this study incorporates the optimized Walsh-Hadamard
transform (OWHT) for signal compression, the SPGLI
algorithm for signal recovery, and a local binary pattern
(LBP) approach for feature extraction. The evaluation
of the proposed algorithm demonstrated its effectiveness
in accurately reconstructing the signals while mitigating
the impact of noise interference. The results indicated a
significant reduction in MSE values compared to other com-
pression techniques, highlighting the superior performance
of the proposed method. The integration of a classification
algorithm based on residual learning enables high-accuracy
classification of the compressed EEG and ECG signals
without the need for signal recovery. The evaluation of
the classification performance demonstrates the effectiveness
of the proposed algorithm. For instance, the classification
accuracy achieved for the compressed ECG signals was
92.89%, outperforming other methods. This showcases the
potential of the proposed approach in achieving accurate
and reliable classification results. However, there are certain
limitations to this study that should be acknowledged. Firstly,
the proposed methodology focuses specifically on EEG and
ECG signals and may not be directly applicable to other

108148

types of medical signals. Further research is needed to adapt
and validate the approach for other modalities. Secondly, the
performance evaluation of the algorithm was conducted on
specific datasets and under controlled conditions. Extending
the evaluation to diverse datasets and real-world scenarios
would provide a more comprehensive assessment of its
robustness and generalizability. Future work should aim to
address these limitations and explore additional avenues for
improvement. One potential direction is to investigate the
scalability and efficiency of the proposed methodology in
large-scale WBAN systems with multiple nodes. Addition-
ally, incorporating advanced machine learning techniques and
deep learning models could further enhance classification
accuracy and enable the detection of more complex medical
conditions. Moreover, conducting user studies to evaluate the
proposed approach in real-world settings and comparing it
with existing methods would provide valuable insights into
its practical utility and performance.
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