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ABSTRACT This paper proposes a novel end-to-end controller for the lower-limb exoskeleton for human
performance augmentation (LEHPA) systems based on deep reinforcement learning (E2EDRL). The
model-free controller contains two control levels: the high-level control responsible for end-to-end human
motion intention recognition based on the exoskeleton state signals and the human-exoskeleton interaction
(HEI) force signals by deep neural network predictor, and the low-level control for motion tracking by
joint PD controllers. The deep neural network predictor does not require complex kinematic calculations
that are inevitable in conventional human motion intention recognition methods. We execute the learning
process in simulation to learn the E2EDRL strategy efficiently and safely by constructing a novel multibody
simulation environment and proposing its specific hybrid inverse-forward dynamics simulation method.
The passive mode (all joints remain unpowered) is introduced as a benchmark for comparison purposes.
A novel performance assessmentmethod based onHEI forces is put forward to evaluate the E2EDRL strategy
quantitatively. The global ratio of the HEI forces in the E2EDRL strategy relative to those in the passivemode
is as low as 0.65. The global reduction of the HEI forces demonstrates the superior control performance of
the E2EDRL strategy.

INDEX TERMS Lower-limb exoskeleton for human performance augmentation, end-to-end human motion
intention recognition, deep reinforcement learning.

I. INTRODUCTION
The lower-limb exoskeleton for human performance augmen-
tation (LEHPA) system is a particular type of wearable robot
that is positioned parallel to the pilot/wearer and augments his
strength and endurance by transferring the payload weight to
the ground [1], [2], [3]. Integrating human intelligence with
robot power, the LEHPA system gains a great advantage over
other legged robots in adapting to unstructured environments
and exhibits a promising prospect in some applications, for
example, military, firefighting, disaster relief, construction,
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manufacturing, etc. [4], [5]. Research on LEHPA systems
started from the 1960s and revived in the new century
after a long period of silence [6], [7]. Some representative
LEHPA systems were developed in the recent two decades,
e.g. Berkeley Lower Extremity Exoskeleton (BLEEX) [8],
Human Universal Load Carrier (HULC) [9], XOS2 [10],
Hybrid Assistive Leg (HAL)-5 Type-B [11], Body Extender
(BE) [12], etc.; however, none are sufficiently mature to meet
the requirements of practical applications.

In order to guarantee wearing comfort, the LEHPA system
is expected to be transparent to the wearer; namely, it is
desired to move as consistently as possible with the wearer
to reduce the resistance. The study on human-exoskeleton
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coordination control strategies for LEHPA systems is one of
the most important issues and has acquired more attention
from researchers. In the past two decades, numerous control
strategies have been put forward to ameliorate the perfor-
mance of LEHPA systems [13], [14]. From the perspective of
the control architecture, these control strategies for LEHPA
systems are generally hierarchical [15] and consist of three
control levels: the high-level control for human motion
intention recognition [16], themid-level control for gait phase
detection [17], and the low-level control for motion tracking
and stabilization purposes [18]. In terms of high-level control,
human motion intention recognition can be divided into three
categories: the desired joint torque estimation, the desired
joint angular velocity estimation, and the desired joint angle
estimation [13]. The signals used to recognize the human
motion intention can be classified into three types: the signals
only collected from the exoskeleton, the signals collected
from the pilot, and the human-exoskeleton interaction (HEI)
force signals measured at human-exoskeleton interfaces [19].
Control strategies estimating the human motion intention

only based on signals from the exoskeleton facilitate the
complexity reduction and the reliability enhancement of
LEHPA systems as they require no additional measurement
from the pilot or the human-exoskeleton interfaces. The most
representative control strategy in this category is sensitivity
amplification control (SAC) [20] which was originally put
forward to control BLEEX [8] and then used in the control
schemes of XOS2 [10], HULC [9], and Hydraulic Lower
Extremity Exoskeleton Robot (HLEER) [21]. In the SAC
strategy, the sensitivity transfer function maps the equivalent
HEI torque to the joint angular velocity of the LEHPA
system, describing the effect of the equivalent HEI torque
on the LEHPA system. In order to attain a large closed-loop
sensitivity transfer function without directly measuring the
equivalent HEI torque, the inverse dynamic model of
the LEHPA system is introduced as positive feedback.
Consequently, any parameter error in the dynamic model is
also amplified and transferred to the controller output, doing
great harm to the control effect. Unfortunately, the fussy
system identification process is indispensable to obtain the
dynamic model with sufficient accuracy [22].
The signals collected from the pilot include physiological

signals and kinematic signals. To control HAL series
prototypes [11], [23], [24], several surface electromyography
(sEMG) signals are collected to estimate the musculoskeletal
moment of the pilot, which is amplified and then combined
with the dynamic model of the swinging shank to generate
the knee torque commands. The Hanyang EXoskeletal
Assistive Robot (HEXAR) series prototypes utilize muscle
stiffness sensors [25] and muscle circumference sensors [26],
[27], [28] to estimate targeted joint angles. Physiological
signals reflect the human motion intention directly without
information loss and delay, but unfortunately, they are easily
influenced by noises or signals frommuscles adjacent to elec-
trodes, not to mention their complex calibration procedure.

In the subsequent hybrid control strategy of BLEEX [29],
human joint angles are calculated by using human kinematic
signals collected from seven clinometers mounted on the pilot
trunk and left and right thighs, shanks, and feet and then used
as the targets of the joint-level motion tracking controllers
during the stance phase. In the Nanyang Technological
University Lower Extremity Exoskeleton (NTU-LEE) system
consisting of an inner exoskeleton attached to the human
and an outer exoskeleton for load support [30], [31], the
human movements are measured by the inner exoskeleton to
implement the master-slave control for the outer exoskeleton
system.However, these above sensors not only require careful
design to enable them to be fastened to the wearer securely
but also increase the time taken to don and doff exoskeletons.

Control strategies recognizing the human motion intention
based on HEI force signals have been increasingly popular
in recent years. The BE exoskeleton acquires the desired
joint velocities of the swinging leg by the HEI force signal
measured from the six-axis load cell mounted on the snow-
board binding [12]. The HEI force signal in the HEXAR-
CR50 system is collected by a multi-axis force/torque sensor
mounted in the harness module to calculate the equivalent
HEI torques by means of the Jacobian matrix. The equivalent
HEI torques are then used to generate the joint torque
commands [32]. The Harbin Institute of Technology Load-
carrying EXoskeleton (HIT-LEX) system collects the HEI
forces at the back and swinging foot to calculate the expected
velocities of the kinematic terminals of the stance and
swinging legs. The expected velocities are combined with the
Jacobianmatrix to calculate the expected angular velocities of
driven joints [33]. The literature [34] proposes to obtain the
desired joint positions of the stance leg by minimizing the
integral of the HEI force at the back. The Harbin Institute of
Technology’s exoskeleton (HEXO) system uses HEI forces
at the backpack and swinging foot to estimate the desired
trajectories of kinematic terminal points, which are then
used to obtain the desired joint angles through kinematics
calculation for low-level motion tracking of the stance leg
and swing leg respectively [35], [36]. In ECUST Lower-
extremity Exoskeleton (ELE-ROBOT) [37], the HEI force at
the back is measured by two force sensors mounted vertically
on the trunk and used to estimate desired joint torques of the
stance leg during the single support phase through geometric
calculation.

Deep reinforcement learning (DRL) is an interactive
machine learning paradigm integrating deep neural networks
[38], [39] into the conventional reinforcement learning
(RL) framework [40]. With compact representations and
robust generalizations, deep neural networks can scale RL
up to Markov Decision Process (MDP) problems with
high-dimensional and continuous action spaces, offering a
new model-free perspective on controller development for
complex dynamic systems. DRL has obtained remarkable
achievements in the physics-based character animation [41],
[42], [43] and the locomotion control of legged robots [44]
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FIGURE 1. Prototype of our LEHPA system.

such as the quadruped [45], [46], [47], [48], [49], the biped
[50], [51], [52], [53], and the humanoid [54], [55], [56], [57],
[58], etc. In our previous work [59], the DRL framework
is introduced to adapt the sensitivity factors of the primary
sensitivity amplification controller to ever-changing HEI
dynamics. However, no effort has been made to apply DRL
to the development of model-free locomotion controllers for
LEHPA systems.

This paper investigates the end-to-end control based on
deep reinforcement learning (E2EDRL) for our LEHPA
system shown in Fig. 1. The model-free controller consists
of two control levels: high-level control responsible for
end-to-end human motion intention recognition from the
exoskeleton signal and theHEI force signal by neural network
predictor, and low-level control for motion tracking by joint
PD controllers. The main contributions of this paper can be
summarized as follows.

1) This paper presents a novel approach to designing
a control framework for the LEHPA system without
needing any kinematic or dynamic model.

2) This paper proposes a new multibody simulation envi-
ronment and its corresponding hybrid inverse-forward
dynamics simulation method to train the agent.

3) This paper develops a new performance assessment
method based on HEI forces to evaluate the control
effect of our proposed E2EDRL controller quantita-
tively.

The remainder of this paper is organized as follows.
A detailed description of our control framework is presented
in Section II. Section III contains the training in simulation

followed by the discussion of results in Section IV. Finally,
the conclusion is provided in Section V.

II. END-TO-END HIGH-LEVEL CONTROL BASED ON DEEP
REINFORCEMENT LEARNING
An MDP is usually defined by a five-element tuple
(S,A, p,R, γ ), where S is the state space of the MDP; A,
the action space of the MDP; p(s′, r|s, a), the environment
dynamics specifying a conditional probability distribution for
each choice of s and a;R, the reward space, a continuous set
of possible rewards; γ , the discount rate. p is not necessary
for model-free learning algorithms. The agent interacts with
the environment at each of a sequence of discrete time steps.
At each time step t , the agent observes the environment state
St ∈ S and on that basis selects an action At ∈ A(s). One time
step later, in part as a consequence of the selected action, the
agent observes a new environment state St+1 and receives a
numerical reward Rt+1 ∈ R ⊂ R. The return is defined as the
(discounted) sum of the rewards. The agent tries to select the
appropriate At at each time step t to maximize the expected
return.

In the coupled human-exoskeleton system, the human
body is powered by the resultant of the human muscu-
loskeletal moment τm generated by the pilot muscles and
the equivalent HEI torque τHEI generated by HEI forces at
several human-exoskeleton interfaces while the exoskeleton
is driven by the resultant of the equivalent HEI torque τHEI
and the actuator torque τact . The equivalent HEI torque
is an assistance to the exoskeleton but a resistance to the
wearer. To guarantee wearing comfort, the exoskeleton is
desired to move as consistently with the wearer as possible
to reduce HEI forces. To this end, the control system is
required to accurately recognize and quickly track the human
motion intention. By interpreting the human motion intention
recognition as an MDP, we propose the E2EDRL strategy
whose schematic illustration can be seen in Fig. 2. This
control framework has two levels: the high level using deep
reinforcement learning to synthesize a policy to predict the
human motion intention from the exoskeleton signal and the
HEI force signal, and the low level using PD controllers to
track the human motion intention. The detailed description
of the E2EDRL strategy is as follows.

A. STATE SPACE AND ACTION SPACE
During normal walking, the movements in the frontal plane
and transversal plane are rather small and have little dynamic
effect on the LEHPA system compared to the movements
in the sagittal plane. For the sake of brevity, we neglect the
movements in the frontal plane and transversal plane and only
consider those in the sagittal plane. It has been a conventional
simplification in the research of LEHPA systems.

The state for the MDP problem to be solved is represented
as the concatenation of the exoskeleton signal vector XE and
the HEI force signal vector XHEI in the sagittal plane, i.e.
St = (XE ,XHEI ). The exoskeleton signal vector XE consists
of 14 components: the trunk pitch angle and angular velocity,
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FIGURE 2. Diagram for E2EDRL strategy.

and the joint angles and angular velocities of the left and
right hips, knees, and ankles. The HEI force signal vector
XHEI includes the HEI forces at the back and left and right
thighs and shanks. The HEI force at the back is composed
of three components: the pitch torque Tpitch, the force along
the sagittal axis FS , and the force along the vertical axis FV .
The HEI force at each lower-limb segment comprises two
components, the one along the central axis of the lower-limb
segment Ft and the other normal to the central axis Fn. The
eight HEI force components at the four lower-limb segments
are named FnRT , FtRT , FnRS , FtRS , FnLT , FtLT , FnLS , and FtLS
respectively. Fig. 3 depicts all the 11 HEI force components
in the signal vector XHEI . The combined representation of the
14 exoskeleton signals and the 11 HEI force signals yields the
25D state space.

The action is represented as the estimated human motion
intention, which may take three forms: the target joint
angles, the target joint angular velocities, or the target joint
torques. In the literature [60], the three different action
parameterizations are compared in terms of learning speed,
policy robustness, motion quality, and policy query rates. The
result shows that choosing the target joint angles for the active
joints as the action can greatly improve learning efficiency
and control performance for locomotion control problems.
Therefore, the target joint angles for the active joints are
chosen as the action in this work, leading to a 4D action space.
Actually, the pilot leads the exoskeleton to move together
by means of HEI forces during locomotion. Even though a
human joint angle and corresponding exoskeleton joint angle
vary in a large range, the deviation between them remains
in a small range. That is to say, the current exoskeleton
joint angles provide a hint as to what the target joint angles
might be. To improve learning efficiency, our policy learns
how to augment the current exoskeleton joint angles instead
of directly outputting the target joint angles. The action is
represented as the angle augmentations for the active joints,
i.e. At = 1θ . Thus, the target joint angles are the sum of the
action and the current exoskeleton joint angles:

θdE = 1θ + θE (1)

where θE and θdE are the current exoskeleton joint angles and
the target joint angles respectively.

To prevent target joint angles from changing dramatically,
we limit the maximum augmentation amplitude of all

FIGURE 3. HEI forces used in state space.

powered joint angles at each time step to π/10. The target
joint angles are passed through a low-pass filter to mitigate
undesirable high-frequency movements before being applied
to low-level joint PD controllers to generate the following
actuator torques for motion tracking:

τact = P(θdE − θE ) − Dθ̇E (2)

where P andD are the gains of low-level joint controllers and
θ̇E denotes the current joint angular velocities. Note that the
high-level policy query rate is far slower than the running rate
of low-level joint controllers.

B. LEARNING ALGORITHM AND NEURAL NETWORKS
In this work, Twin Delayed Deep Deterministic Policy
Gradient (TD3) [61] which is a model-free off-policy Actor-
Critic method is selected as the learning algorithm to
learn the E2EDRL strategy. The Actor-Critic architecture
combines the advantage of policy gradient methods and that
of value function methods. TD3 is modified from Deep
Deterministic Policy Gradient (DDPG) [62] that integrates
Deep Q-Network (DQN) [63] into Deterministic Policy
Gradient (DPG) [64]. TD3 ameliorates DDPG in three
aspects: reducing variance by clipped Double Q-Learning
that prevents the error from accruing; addressing the coupling
of the value and the policy by delaying policy updates until
the value estimate has converged; further reducing variance
by target policy smoothing regularization strategy in which
a SARSA-style update bootstraps similar action estimates.
The above three improvements make TD3more data-efficient
than DDPG.

The TD3 agent contains one Actor network and two twin
delayed Critic networks that share the same architecture
but have separate learnable weight and bias parameters.
The architectures of the Actor and Critic networks are
illustrated in the two subfigures of Fig. 4 respectively. The
Actor network receives the exoskeleton signal and the HEI
force signal and outputs the human motion intention. The
numbers of neural units in its input layer and output layer
are determined by the dimensions of the state space and the
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FIGURE 4. Architectures of the Actor and Critic networks.

action space respectively. Following the input layer are two
fully connected 512-neural-unit hidden layers which are both
activated by the ReLU (Rectified Linear Unit) function. The
output layer is activated by the TanH (hyperbolic tangent)
function to limit the range of the final output. The two twin
Critic networks receive the state vector and action vector as
input and output the value estimates of each state-action pair.
The action vector and the state vector are passed through one
hidden layer and two hidden layers with 512 neural units
respectively, with the first hidden layer of the state activated
by the ReLU function. The two 512D vectors originating
from the state and action are added up and then activated
by the ReLU function. Lastly, the activated vector is fully
connected to the one-neural-unit output layer representing the
value function.

C. REWARD FUNCTION
It is one of the most distinctive features of reinforcement
learning to formalize the goal of the agent by reward
signal. The reward function determines the optimization
direction of learnable weight and bias parameters of Actor
and Critic networks during the training process. It is critical
to design a suitable reward function for the MDP because any
misspecification of the reward function can have unintended
and even dangerous consequences. On one hand, we aim
to minimize HEI forces to reduce the obstruction of the
exoskeleton to the pilot in the task of LEHPA control; On the
other hand, the goal of the agent is to maximize the expected
(discounted) return, namely the expected (discounted) sum
of the rewards. Thus, the reward function should decrease
monotonically with respect to HEI forces. The reward
function is designed as the weighted sum of five local reward
terms relevant to HEI forces at the five human-exoskeleton

TABLE 1. Notations of Fij .

interfaces shown in Fig. 3:

r =

5∑
i=1

wiri (3)

where ri denotes the local reward term derived from the
HEI force at the i-th human-exoskeleton interface whose
contribution to the global reward is determined by its
corresponding local weight wi. All local reward terms take
the following form:

ri = exp(−
∑
j

kij|εij|2), εij =
Fij
1ij

(4)

where εij denotes the normalized force component. Fij is
the j-th HEI force component at the i-th human-exoskeleton
interface, while 1ij represents the normalization term care-
fully determined to normalize Fij. The exponent weight kij
determines the contribution of εij to the exponent. Table 1 lists
the notations of all these above HEI force components.

III. TRAINING IN SIMULATION
A. MULTIBODY SIMULATION ENVIRONMENT
In order to learn the E2EDRL strategy efficiently and
safely, we execute the learning process of the TD3 agent
in a multibody simulation environment constructed based
on the MATLAB/Simscape physical modeling toolbox.
As illustrated in Fig. 5, themultibody simulation environment
comprises the exoskeleton model, the human body model,
HEI models at all the human-exoskeleton interfaces, and the
terrain.

1) THE HUMAN BODY MODEL
The human body model is a simplification of the wearer.
Given that this work only focuses on the lower-limb
movements, the upper limbs are left out. Likewise, the
degrees of freedom (DOFs) of lower-limb joints in the
frontal and transverse planes are omitted in this work since
only the movements in the sagittal plane are considered.
Hence, each leg only preserves three DOFs, i.e. the ankle
dorsiflexion/plantarflexion, the knee flexion/extension, and
the hip flexion/extension. Note that the rigid human body
model is more like the human skeleton system from the
view of human-exoskeleton interactions. The flexibility of
human muscles adjacent to human-exoskeleton interfaces
is combined with the harness and is integrated into HEI
models. The dimensional and inertial parameters of the
human body model are referenced from China national
standards ‘‘Human dimensions of Chinese adults GB 10000-
1988’’ and ‘‘Inertial parameters of adult human body GB/T
17245-2004’’ respectively.
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FIGURE 5. The multibody simulation environment.

2) THE EXOSKELETON MODEL
The exoskeleton model is a simplification of the LEHPA
system and consists of seven parts, i.e. the trunk and the left
and right thighs, shanks, and feet. The trunk is composed
of the backboard, the waist, the payload, the control system,
and the power source unit. The waist width, thigh length, and
shank length are designed to be adjustable to match different
wearers. Since this work only focuses on the lower-limb
movements in the sagittal plane, we neglect the DOFs in
the frontal and transverse planes and only retain DOFs
in the sagittal plane. Thus, there are only three DOFs on
each leg, namely the ankle dorsiflexion/plantarflexion, the
knee flexion/extension, and the hip flexion/extension. The
dimensional and inertial parameters of the exoskeleton model
are calculated by CAD software.

3) THE HEI MODELS
In this multibody simulation environment, the human body
model interacts with the exoskeleton model by means of
the HEI models at several human-exoskeleton interfaces,
including the back and the left and right thighs, shanks, and
feet. In this work, the interactions in the sagittal plane are
modeled whereas those in the frontal and transverse planes
are ignored.

The HEI at the back human-exoskeleton interface is mod-
eled as the superposition of a torsional spring and a spring-
damper system. The torsional spring determines the torque
component resulting from the orientation discrepancy at the
back human-exoskeleton interface between the human body
model and the exoskeleton model while the spring-damper
system determines the force component due to the position
discrepancy between the two. The HEI at each thigh or
shank is modeled as a spring-damper system. The HEI
at each foot is modeled as two spring-damper systems
placed at the heel and toe respectively. The torsional spring
stiffness and damping coefficients are set to 20 Nm/rad and
0.5 Nm·s/rad respectively. Table 2 lists the stiffness and
damping coefficients of each spring-damper. These stiffness

TABLE 2. Stiffness and damping of spring-damper systems.

and damping coefficients are all chosen by experience. The
systemwill oscillate if their values are set too large. However,
the exoskeleton model will fall down if their values are
set too little. To determine these coefficients, we introduce
the passive mode (all active joints remain unpowered),
in which the exoskeleton model is only driven by HEI forces.
We choose a set of initial values (which are little enough to
make the exoskeleton model fall down) for these parameters
and then gradually increase them until the exoskeleton model
can be driven to move forward together with the human body
model.

4) TERRAIN
The terrain in the multibody simulation environment is fixed
to the world frame and interacts with two exoskeleton feet
at their underneath to generate the ground reaction force to
support the weight of the coupled human-exoskeleton system.
There are some structured terrains usually employed in the
exoskeleton research, e.g. the level ground, stairs of different
heights and widths, and slopes of different degrees. In our
level walking simulation, the level ground is simplified as a
flat plate.

The ground reaction force is the resultant force of the
contact forces generated by two rows of Spatial Contact
Force blocks respectively placed at the left and right edges
of the underneath of each exoskeleton foot. Each contact
force generated by a Spatial Contact Force block can be
decomposed into two components. The normal component
perpendicular to the contact surface is determined by the clas-
sical spring-damper model, while the frictional component
tangent to the contact surface is determined by the Smooth
Stick-Slip law. The stiffness and damping coefficients of each
spring-damper model are set to 2e4 N/m and 4e2 N·s/m
respectively in the same way as those of HEI models to
compute the normal component. Due to the too little initial
values, the ground cannot provide sufficient reaction force to
support the coupled human-exoskeleton system and prevent
it from falling down. We gradually increase them until the
generated ground reaction force is sufficient to support the
coupled human-exoskeleton system. As for the frictional
component, the static and dynamic friction coefficients are
set to 0.9 and 0.7 respectively by experience.

B. HYBRID INVERSE-FORWARD DYNAMICS SIMULATION
In this work, a novel hybrid inverse-forward dynamics
simulation method is put forward specific to the multibody
simulation environment. As can be seen in Fig. 6, the joints
of the human bodymodel and the exoskeletonmodel aremod-
eled as inverse dynamics joints and forward dynamics joints
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respectively. The inverse dynamics joints receive the joint
angle trajectories as inputs whereas the forward dynamics
joints receive the joint torques as inputs. During simulation,
the human body model is driven by the reference motion
and then leads the exoskeleton model to move together by
means of HEI forces generated by HEI models, while the
controller tries to generate appropriate joint torques to drive
the exoskeleton model and reduce HEI forces. The original
reference motion is a complete gait cycle of angle trajectories
of the trunk pitch and the left and right hips, knees, and ankles
collected by the motion capture system (MtwAwinda, Xsens)
from the humanwalking on the treadmill at 2.8 km/h. The gait
cycle lasts about 1.392 s at 240 Hz, including 334 samples in
total. It is extended periodically during simulation. In order
to extensively explore the state space, reference motions
of different walking speeds are acquired by stretching or
compressing the gait cycle of the original reference motion.
For a certain episode, the specific walking speed is limited to
the interval of [2.8 km/h, 5.6 km/h] by randomly selecting the
gait cycle in the interval [0.696 s, 1.392 s]. It is worth noting
that these resulting reference motions are still physically
feasible because the stance foot of the exoskeleton model
won’t slide along the ground during walking. In contrast to
previous methods that directly input the reference motion
into the exoskeleton model to calculate the desired joint
torques, the hybrid inverse-forward dynamics simulation
method demonstrates the dynamicHEI process of the coupled
human-exoskeleton system during walking, unveiling the
nature of the coordinated human-exoskeleton movement.

C. TRAINING SETUP
The training runs episodically. A sample point is chosen
randomly from angle trajectories to concurrently initialize
the pitch and joint angles of both the human model and the
exoskeleton model at the beginning of each episode. A rollout
is then simulated by taking the action selected by the policy
at every time step. The time horizon, i.e. the possible longest
simulation time of an episode, is set to 5s. In case of excessive
explorations of poor states, the early termination mechanism
is proposed to cease the current episode and set the remaining
rewards to 0. The early termination mechanism is triggered
whether the absolute exoskeleton trunk pitch angle value is
overπ/9 rad or the vertical discrepancy between the two sides
of the back human-exoskeleton interface is more than 0.3 m.
Hence, an episode terminates when an early termination
occurs or until the simulation time reaches the predetermined
time horizon. The simulation rate in the training process is set
to 2 kHz. The policy query rate is set to 25 Hz to update the
target joint angles every 40 ms, while the low-level joint PD
controllers run at the same rate as the simulation.

Table 3 shows the values of local weights, normalization
terms, and exponent weights set by experience. Note that
it is inappropriate if the normalization term 1ij is set too
large or too small. From Eq. (4) we can obtain the derivative
of the local reward ri with respect to the normalized force

FIGURE 6. Diagram for hybrid inverse-forward simulation.

component εij

dri
dεij

= −2kijεijri. (5)

Figure 7 illustrates the variations of ri and
dri
dεij

with εij. kij is
set as 1 in the two curves. Note that kij only changes the values
of ri and

dri
dεij

, but does not change their trends. To ensure the
learning speed, it is desired to distinguish ‘‘good’’ actions
leading to little HEI forces from ‘‘bad’’ actions leading to
large HEI forces. That is to say, the normalization term 1ij
should be carefully chosen to make the normalized force
component εij as close to the range with large

dri
dεij

as possible.

It is obvious from Fig. 7 that dri
dεij

is close to 0 when εij is

too little or too great. The extreme point of dri
dεij

is close to
0.7. Thus, 1ij should share the same order of magnitude as
the maximum absolute value of Fij. To determine the range
of each HEI force component, we introduce the passive mode
(all joints remain unpowered) as the benchmark. We set 1ij
to about 0.9 times the maximum value of Fij during a whole
gait cycle in the passive mode.

The simulation is executed in parallel, with 20 workers
running simultaneously on a 20-core Intel Xeon CPU. The
Actor and Critic networks are trained on an NVIDIAGeForce
RTX 2080 Ti GPU. It takes about 2.5h to finish 800 episodes
of simulation.

IV. RESULTS AND DISCUSSION
In this work, the HEI forces at the back, thighs, and shanks are
used to evaluate the performance of our E2EDRL controller.
Root-mean-square (RMS) values of these HEI forces are
chosen as the performance indicator:

F̄ =

√
1
T

∫ T

0
F2dt (6)

where F denotes a certain HEI force component. T is the
time duration. Given that HEI forces are not strictly periodic,
we set T to 5 gait cycles.

The passive mode is used as a benchmark for comparison
purposes. The normalized ratio of each HEI force component
F is defined as the ratio of its RMS value in the proposed
E2EDRL strategy to that in the passive mode to evaluate its
improvement:

λ(F) =
F̄E2EDRL
F̄PSV

(7)

102346 VOLUME 11, 2023



R. Zheng et al.: End-to-End High-Level Control of LEHPA Based on DRL

FIGURE 7. Diagram of reward function characteristics.

TABLE 3. Values of reward function parameters.

where F̄E2EDRL and F̄PSV denote the RMS values of F in
E2EDRL and the passive mode respectively.

To investigate the effect of the walking speed on the
performance improvement, we calculate the normalized
ratios of F at five different reference walking speeds,
2.8 km/h, 3.5 km/h, 4.2 km/h, 4.9 km/h, and 5.6 km/h and
the weighted average ratio for each HEI force component by:

λ̄(F) =

5∑
i=1

µiλi(F) (8)

where λ1(F), λ2(F), λ3(F), λ4(F), and λ5(F) represent the
normalized ratios of F at 2.8 km/h, 3.5 km/h, 4.2 km/h,
4.9 km/h, and 5.6 km/h respectively, while µi is the weight
of λi(F).
Generally, humans select different walking speeds at

different frequencies, selecting walking speeds closer to
their self-selected walking speeds more frequently. Thus, the
natural choice is to assign greater weight to the walking
speed closer to the self-selected walking speed. We chose
a stair-like weight set 0.1, 0.15, 0.2, 0.25, 0.3 and allocated
an element to the normalized ratio at each specified walking
speed according to its speed difference to the self-selected
walking speed. We tested the self-selected walking speeds for
some subjects between the heights 165 cm and 175 cm on the

FIGURE 8. HEI force RMS at the back.

FIGURE 9. HEI force RMS at the right thigh.

treadmill and found that their self-selected walking speeds
are close to 4 km/h. So, we set the nominal self-selected
walking speed to 4 km/h. Consequently, the five specified
walking speeds are allocated the weights 0.15, 0.25, 0.3, 0.2,
and 0.1 respectively, i.e. µ = [0.15, 0.25, 0.3, 0.2, 0.1].
To evaluate the comprehensive improvement, the global

ratio is defined as the weighted sum of weighted average
ratios of HEI force components:

λ⋆
=

∑
i

wi
∑
j

kijλ̄(Fij) (9)

wherewi and kij represent respectively the local and exponent
weights, which have been used in the reward function
expression.

Given that the movements of the two legs of the coupled
human-exoskeleton system are symmetrical, it is a rational
assumption that each HEI force component at the left leg has
the same weighted average ratio as its counterpart at the right
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FIGURE 10. HEI force RMS at the right shank.

leg at the timescale of gait cycles:
λ̄(FnLT ) = λ̄(FnRT )
λ̄(FtLT ) = λ̄(FtRT )
λ̄(FnLS ) = λ̄(FnRS )
λ̄(FtLS ) = λ̄(FtRS )

(10)

Hence, we only calculate the RMS values and normalized
ratios of the HEI force components at the back and right leg
for simplicity, leaving out the redundant calculation for the
HEI forces at the left leg. The RMS values of HEI force
components at the back and right leg at the five selected
walking speeds are shown in Fig. 8, Fig. 9, and Fig. 10. It is
worth noting that even though the RMS value of each HEI
force component in simulation may be different from that
in reality due to the reality gap, especially the differences
between the interaction models in the multibody simulation
environment and the straps in the real world, it does not
impact on the comparison.

It can be seen from Fig. 8 and Fig. 9 that the HEI forces
at the back and right thigh in E2EDRL are much less than
their counterparts in the passive mode. The RMS values of
Tpitch and FV in E2EDRL are less than their counterparts
in the passive mode respectively, proving that more payload
weight is transferred to the ground successfully. The RMS
values of FS , FnRT , and FtRT in E2EDRL are less than
their counterparts in the passive mode respectively, meaning
that E2EDRL can reduce the misalignment between the
pilot and the exoskeleton and improve the motion tracking
performance. However, the HEI force at the right shank
presented in Fig. 10 shows some differences from the former
two HEI forces. At the walking speeds of 2.8 km/h and
3.5 km/h, the FnRS RMS values in E2EDRL are much greater
than their counterparts in the passive mode respectively,
whereas the FnRS RMS values in E2EDRL are much less
than their counterparts in the passive mode at 4.9 km/h and
5.6 km/h. As for FtRS , its RMS values in E2EDRL are greater
than those in the passive mode respectively at 2.8 km/h and
5.6 km/h, whereas the value in E2EDRL is less than that in

TABLE 4. Ratios of HEI forces.

FIGURE 11. Normalized ratios of HEI forces.

the passive mode at 4.2 km/h. Even though the phenomenon
seems obscure, it can still be analyzed from the perspective of
dynamics. During the stance phase, the fixed foot acts as the
base, and the shank motion is determined by the equivalent
HEI torque acting on the passive ankle joint, which is mainly
produced by the HEI force at the shank, especially the compo-
nent normal to the shank link, FnRS . This means that the more
payload weight is transferred to the ground, the greater the
HEI force at the shank tends to be. Therefore, the HEI force
at the shank in E2EDRL should be greater than its counterpart
in the passive mode. During the swing phase, the shank
motion is determined by the torque acting on the knee joint,
which is mainly produced by the knee actuator rather than
the HEI force at the shank. Thus, the HEI force at the shank
in E2EDRL should be less than its counterpart in the passive
mode. Totally, the result in E2EDRL synthesizes the effects of
the increase during the stance phase and the decrease during
the swing phase. As for FnRS , the increase during the stance
phase dominates at low speeds, but is eclipsed by the decrease
during the swing phase at high speeds. Regarding FtRS , the
increase during the stance phase dominates at speeds close to
the nominal self-selected walking speed, but is overwhelmed
by the decrease during the swing phase when the walking
speed is far away from the nominal self-selected walking
speed, whether too slow or too fast.

The normalized ratios of the seven HEI force components
at the five selected walking speeds and their correspond-
ing weighted average ratios are listed in Table 4. These
normalized ratios are also presented in Fig. 11 for further
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analysis. They can be divided into three groups according
to their value ranges at the five walking speeds: the first
group consists of the normalized ratios of Tpitch and FV ,
which range approximately from 0.2 to 0.5; the second group
is made up of the normalized ratios of FS , FnRT , and FtRT
varying around from 0.45 to 0.75; the third group includes the
normalized ratios of FnRS and FtRS ranging about from 0.9 to
1.35. Obviously, the further a human-exoskeleton interface
is away from unpowered ankle joints, the less the weighted
average ratio of each HEI force components at this interface
is, except for FS . Distinctively, λ̄FS is much greater than λ̄FV
and λ̄Tpitch , indicating that the existence of the walking speed
makes the deviation along the sagittal axis between the pilot
and the exoskeleton at the back more difficult to reduce.

Finally, we can acquire the global ratio for the proposed
E2EDRL control strategy according to (9), λ⋆

= 0.65.

V. CONCLUSION AND FUTURE WORK
This work investigates a deep reinforcement learning frame-
work to learn a novel model-free walking controller for
our LEHPA system. The controller estimates human motion
intention directly by a deep neural network and needs no
kinematic or dynamic model of the LEHPA system. To learn
the TD3 agent efficiently and safely, we execute the learning
process in simulation by creating a newmultibody simulation
environment and proposing its corresponding hybrid inverse-
forward dynamics simulation method. To evaluate the control
effect of the proposed E2EDRL strategy, the passive mode is
introduced as a benchmark. The proposed E2EDRL strategy
is compared with the passive mode in terms of the HEI forces
at the back, thighs, and shanks. The weighted average ratio
and global ratio are defined to evaluate each local HEI force
component and global HEI forces respectively. The global
ratio is 0.65, proving that the proposed E2EDRL strategy
effectively reduces the HEI forces and has superior control
effect. This research demonstrates the feasibility to design
model-free walking controllers for LEHPA systems using
deep reinforcement learning.

Several aspects will be involved in future works. First,
the E2DRL controller will be further trained on some more
terrains to adapt to complex environments. Some typical
terrains, for instance stairs of different heights and widths and
slopes of different degrees, will be constructed in the multi-
body simulation environment. Correspondingly, the reference
motions of human walking on these terrains will be collected
to drive the human body model. Additionally, in order to
transfer the learned control strategy from simulation to reality
successfully, some measures will be taken to close the reality
gap. Finally, the deep reinforcement learning framework will
be implemented on our real LEHPA platform to fine-tune the
controller in the real-world environment.
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