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ABSTRACT Pairs-trading is a trading strategy that involves matching a long position with a short position in
two stocks aiming at market-neutral profits. While a typical pairs-trading system monitors the prices of two
statistically correlated stocks for detecting a temporary divergence, monitoring and analyzing the prices of
more stockswould potentially lead to findingmore trading opportunities. Herewe report a stock pairs-trading
system that finds trading opportunities for any two stocks in an N -stock universe using a combinatorial
optimization accelerator based on a quantum-inspired algorithm called simulated bifurcation. The trading
opportunities are detected through solving an optimal path search problem in an N -node directed graph with
edge weights corresponding to the products of instantaneous price differences and statistical correlation
factors between two stocks. The accelerator is one of Ising machines and operates consecutively to find
multiple opportunities in a market situation with avoiding duplicate detections by a tabu search technique.
It has been demonstrated in the Tokyo Stock Exchange that the FPGA (field-programmable gate array)-based
trading system has a sufficiently low latency (33 µs for N=15 or 210 pairs) to execute the pairs-trading
strategy based on optimal path search in market graphs.

INDEX TERMS Pairs-trading, trading system, real-time system, custom circuit, FPGA, combinatorial
optimization, tabu search, Ising machine, simulated bifurcation, quantum-inspired.

I. INTRODUCTION
A financial market with high efficiency and high liquidity
is where investors can execute high-volume trading at fair
values, at any timewithout significantly impacting themarket
prices. The concept of arbitrage is defined in [1] as the
simultaneous purchase and sale of the same, or essentially
similar, security in two different markets for advantageously
different prices. Arbitrage opportunities can arise as a result
of demand shocks and arbitragers bring temporarily deviated
prices (hereafter, mispricing) to fundamental (fair) values.
Arbitrage enforces the law of one price and thereby improves
the efficiency of financial markets [2]. Recent studies [3], [4]
have also shown that arbitrage provides liquidity.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabian Khateb .

Pairs-trading strategy is categorized as a statistical arbi-
trage and profits from temporary mispricing of statistically
correlated stocks [5]. The strategy monitors the performance
of two historically correlated stocks for detecting the
moment when one stock relatively moves up while the other
relatively moves down (possibly temporarily), and at that
moment simultaneously takes a short (selling) position of
the outperforming stock and a long (buying) position of the
underperforming one with each position having the almost
same amount of transaction, betting that the spread between
the two would eventually converge. The strategy is market-
neutral, i.e., adaptable to various market conditions (uptrend,
downtrend, or sideways) by keeping the net exposure low.

Various variants of pairs-trading that differ in how to
identify comoving stocks and how to decide the timing
of position opening have been proposed and summarized
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in [6], involving distance approach, cointegration approach,
time-series approach, stochastic control approach and other
approaches (including machine learning approaches like
recent one using long short-term memory networks [7]).
Those, not necessarily mutually exclusive, can contribute to
improving themarket efficiency and liquidity by detecting the
different trading opportunities (occurrences of mispricing).

To analyze the collective structure of a stock market,
market graphs have been proposed and utilized [8], [9], [10],
where the nodes correspond to the stocks and each edge (or
edge weight) between two nodes represents the relationship
of the two stocks defined based on correlation factors [8], [9]
or more generalized risk-measures [10]. Moreover, higher-
order networks that directly includes triadic or polyadic
interactions [11], [12] have been studied for representing the
markets [13], [14], [15]. Graph/network analysis methods
such as partitioning, clustering, coloring, and path search
may give insights into the collective structures/behaviors
of the stocks. Many of those methods are formulated as
combinatorial (or discrete) optimization problems and belong
to the nondeterministic polynomial time (NP)-hard class in
computational complexity theory [16].
Ising machines are hardware devices that solve the ground

(energy minimum)-state search problems of Ising spin
models and can be of use for quickly obtaining the optimal
(exact) or near-optimal solutions of NP-hard combinatorial
optimization problems [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34].
The Ising problem belongs to the NP-hard class [16], [35];
a variety of notoriously hard problems including many
graph analysis methods can be represented in the form of
the Ising problem [16]. Various hardware implementations
of Ising machines based on quantum mechanics, optics,
or analog/digital electronics have been studied extensively in
recent years [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34].
The Ising machine can be applied to automated trading

systems [36], [37], [38], [39], [40] including ones executing
pairs-trading and may enable the detection of trading
opportunities based on the computationally-hard analysis of
market graphs within the lifetime of the opportunities (the
duration time until the market situation changes). Automated
trading systems become increasingly important in financial
markets [41], [42] and the trading strategy enabled with
emerging computing methodologies would complement the
functionality of the market or contribute to mitigating the
herding behaviors in financial markets [43]. High-speed trad-
ing strategies based on combinatorial/discrete optimization
and trading systems utilizing Ising machines as in [44]
have been, however, not extensively studied. Furthermore,
the execution capability of such a trading system in terms
of response latency needs to be validated in the actual
market since the duration time of the trading opportunity
of a strategy is determined by the activities of other trading
entities.

Here we propose a pairs-trading strategy based on an
optimal path analysis in market graphs and show through
real-time trading that the strategy is executable with an
automated pairs-trading system using an embedded Ising
machine for the optimal path search.

The market graph for N tradable stocks (an N -stock
universe) is an N -node fully-connected directed graph with
edge weights corresponding to the products of instantaneous
price differences and statistical correlation factors between
two stocks. The trading opportunities (temporary mispricing
of statistically correlated pairs) are detected by an opti-
mal path analysis (a sort of collective evaluation) of the
N -node market graph. As the embeddable Ising machine,
we use a combinatorial optimization accelerator based on
a quantum-inspired algorithm called simulated bifurcation
(SB) [17], [18], [19], [20], [21]. The algorithm of SB, derived
in 2019 [17] through classicizing a quantum-mechanical
Hamiltonian describing a quantum adiabatic optimization
method [45] and improved in 2021 [19], is highly paralleliz-
able and thus can be accelerated with parallel processors such
as FPGAs (field-programmable gate arrays) [18]. FPGA-
based SB machines (SBMs) are suitable for high-speed
trading systems because they can be integrated in an FPGA
together with other system components to shorten the system-
wide latency. The embedded SBM used in this work is cus-
tomized for the proposed strategy and operates consecutively
to find multiple trading opportunities in an instantaneous
market situation with avoiding duplicate detections by a tabu
search technique. To examine the execution capability of the
system, we compare the real-time transaction records of the
system in the Tokyo Stock Exchange (TSE) with a backcast
simulation of the strategy assuming the orders issued are
necessarily filled.

The rest of the paper is organized as follows. In Sec. II
(trading strategy), we describe the proposed strategy and
formulate the optimal path search in the form of quadratic
unconstrained binary optimization (QUBO) mathematically
equivalent to the Ising problem. Sec. III (system) describes
the architecture of the system and its implementation details.
Sec. IV (experiment) describes the transaction records in
the TSE and the execution capability of the system. Sec. V
discusses the extensibility of the proposed strategy and
system in relation with market representation as higher-order
networks. Sec. VI concludes the paper.

II. TRADING STRATEGY
A. PATH SEARCH-BASED PAIRS-TRADING
The proposed strategy determines open pairs (a pair of long
and short positions in two stocks to be taken) by an optimal
path analysis of an N -node market graph representing a
relative relationship in the prices of N stocks. The evaluation
of a pair is based on not only the direct path but also
any bypass paths. Multiple pairs can be chosen in an
instantaneous market situation.
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FIGURE 1. (a) Market graph for an N-stock universe (N = 3).
(b) A relationship of bid and ask values regarding with the direct path
(a → b) and bypass path (a → c → b) evaluations of pair (a, b).

The market graph for an N -stock universe (Fig. 1a) is a
directed graph in which an edge (i, j) corresponds to a trading
pair that takes a short position of ith stock and a long position
of jth stock and is distinguished from the edge (j, i). The
weight wi,j of an edge (i, j) is defined by

wi,j = si,j × (askj − bidi) (1)

where si,j, askj, and bidi are, respectively, the similarity factor
between ith and jth stocks, the best ask for jth stock, and the
best bid for ith stock. ask and bid are normalized by the base
price on the day. si,j is based on the average value for the
last five business days of the dynamic time warping (DTW)
distance [46] of the price sequences (per day) of ith and jth
stocks and is normalized to be in [0, 1]. When the buying
price of a long position (askj) is relatively lower than the
selling price of a short position (bidi) in the two stocks with
a large similarity (si,j), wi,j is negative and its absolute value
is large.

In themarket graph, two nodes connected by theminimum-
weight one-way directed path are considered to correspond to
the best trading opportunity. A pair of nodes can be selected
based on a bypass path rather than the direct path. In the
case of Fig. 1, the pair (a, b) is evaluated for both the
direct path (a → b) and the bypass path (a → c → b).
The bypass path corresponds to concurrently taking the pair
(a, c) and pair (c, b) positions, leaving the pair (a, b)
position as a result of the cancellation of buying and selling
the stock c (the direct and bypass paths correspond to the
same open pair). If not considering the similarity factors,
the sum of wa,c and wc,b (bypass) is always higher than
wa,b (direct) by the bid-ask spread of the stock c (transit
nodes on the bypass) (see Fig. 1b). However, considering
the similarity factors, the sum of wa,c and wc,b can be
lower than wa,b. In this case, the evaluation of pair (a, b) is
represented by the sum of the weights on the bypass path.
This bypass evaluation (or collective evaluation) partially
complements the incompleteness of the representation of
similarity coming from characterizing time series data as
a scalar value and prevents us from missing the trading
opportunity. The evaluation value (weight sum) of a pair

FIGURE 2. (a) Market graph with the dummy node (i = 0) for an N-stock
universe (N = 3). (a) A cyclic path (0 → a → b → 0), represented by red
arrows, corresponding to the direct path for the pair (a, b). (b) A cyclic
path (0 → a → c → b → 0) corresponding to the bypass path for the
pair (a, b).

selected by the optimal path analysis is compared with a
threshold for determining the opening of the pair.

The number of lots per order for a stock (Li) is determined
to make the amount of transaction (Atrans) common for all
tradable stocks by rounding with considering the minimum
tradable shares per order (a lot) of the stock (Smin

i ) and
the base price on the day (pbi ); Li = round(Atrans/Smin

i pbi ).
The number of intraday positions is controlled to be within
a maximum number (Pmax) and all positions are closed
(unwind) before the close of the day. Duplicate pair positions
are not allowed. When the pair (a, b) has been ordered
(opened), another order of the same pair (a, b) has been
forbidden, but other pairs including (a, c) and (c, b)
are orderable and the edge (a, b) is passable for bypass
evaluation.

Consider a subgroup of stocks (for an example, a, b, and c)
that are correlated one another. If the price of one in the
subgroup (assume a in the example) deviates largely (drops
in the example) while the prices of the remaining ones do not
deviate, multiple pairs related to the deviating one [pairs (b, a)
and (c, a) in the example] are highly evaluated at the moment
and, as well as the best pair [pair (b, a) in the example], the
second-best pair [pair (c, a) in the example] can be worth
betting (can have an evaluation value beyond the threshold).
To our backcast simulation (see Sec. IV), a temporary price
deviation of one stock in a subgroup involving correlated
stocks gives good trading opportunities. For finding multiple
opportunities in a market situation, the optimal path analysis
is repeated. We need a sort of tabu search technique to avoid
repeatedly finding the solution that has been found.

B. FORMULATION
The problem to find a pair of two nodes connected by the
minimum-weight directed path (direct or bypass) from any
two nodes in the N -node market graph is formulated in the
form of the QUBO. A tabu search technique using a tabu
list (Ti,j) is implemented in the formulation.

After adding a dummy node (i = 0) with edge weights
of zero (wk,0 = w0,k = 0, ∀k > 0) in the market graph
(Fig. 2), we seek a cyclic (directed) path giving the minimum
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FIGURE 3. Solutions to be excluded by the verification. (a) A cycle
without the dummy node. (b) Split cycles.

weight. Let the node next (/previous) to the dummy node in
the cyclic path correspond to the short (/long) positions of a
pair trade. As shown in Fig. 2, a pair (a, b) is represented
by both the cyclic path (0 → a → b → 0) and the
cyclic path (0 → a → c → b → 0) with the different
weight sums. The former (/latter) representation corresponds
to the direct (/bypass) evaluation of the pair (a, b). Clockwise
and anticlockwise cycles (ex. 0 → a → b → 0 and
0 → b → a → 0) are distinguished.
Define a decision (binary) variable bi,j as taking value 1

if the corresponding edge (i, j) is in the chosen cycle and
0 otherwise. The cost function to be minimized is defined by

Hcost =

∑
i,j

wi,jbi,j. (2)

The constraints for cyclic directed paths and the tabu search
are represented as a penalty function expressed by

Hpenalty =

∑
i

∑
j̸=j′

bi,jbi,j′ +

∑
j

∑
i̸=i′

bi,jbi′,j

+

∑
i

(
∑
j

bi,j −
∑
j

bj,i)2

+

∑
i,j

bi,jbj,i +
∑
i,j

Ti,jb0,jbi,0. (3)

The first (/second) term forces the outflow (/inflow) of each
node to be 1 or less. The third term forces the inflows and
outflows of each node to be equal. The fourth term forbids
traversing the same edge twice in different directions. The
fifth term forbids choosing the pairs in the tabu list Ti,j.
Constraint violations increase the penalty, withHpenalty = 0 if
there are no violations. Note that an entry Ti,j in the tabu list
induces a penalty for the state (b0,j = bi,0 = 1) but not for
the states (b0,j = 1 and bi,0 = 0), (b0,j = 0 and bi,0 = 1),
and (bi,j = 1).

The total cost function (HQUBO) is a linear combination of
Hcost and Hpenalty,

HQUBO =

∑
i,j,k,l

Qi,j,k,lbi,jbk,l = mcHcost + mpHpenalty, (4)

wheremc andmp are positive coefficients. The Ising machine
searches for the bit configuration {bi,j} that minimizes the
quadratic cost function HQUBO.
The tabu search technique was introduced to enhance the

search efficiency upon the multiple executions of the Ising

FIGURE 4. System architecture (a hybrid FPGA/CPU system). (a) Block
diagram. (b) Timing chart.

machine for finding multiple opportunities in a market situ-
ation under the constraint of forbidding duplicate positions.
The procedure and timing of registering and deregistering
entries in the tabu list are described in Section III. In the
QUBO formulation, the number of decision variables for
an N -stock universe is N (N + 1) and the size of the
solution space (all possible points of the decision variables)
is 2N (N+1), including constraint violation solutions. We use
a heuristic method (an Ising machine) to solve the QUBO
problems. Hence, the verification of solutions is necessary
and implemented in the system as a function other than the
Isingmachine. In addition, the penalty function, Eq. (3), gives
no penalty to the two cases (a cycle without the dummy
node and split cycles) shown in Fig. 3. Those solutions are
excluded by the verification. Note that those solutions are not
advantageous in the evaluation of the cost function, Eq. (2).

III. SYSTEM
To accelerate the decision of opening positions and the
issuance of orders after receiving a market feed (informing
the change of ask or bid of a stock), the submodules related to
the position opening are, in an FPGA, hardwired (instantiated
as custom circuits) and inlined as a task pipeline from a
receiver (RX) to a transmitter (TX), which are functional
without the intervention of a software processor (CPU).
The SBM module involved in the pipeline is an inline-type
accelerator (not a look-aside type one), featuring a consec-
utive execution operation and a tabu search function. The
management of the positions including the decision of closing
positions is carried out by the CPU (software processing).
Overall, the system is a hybrid FPGA/CPU system.
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A. ARCHITECTURE
Figure 4 (a) shows the block diagram of the hybrid
FPGA/CPU system. The system components in the FPGA
part are, in the order of data flow, a receiver (RX), a price
buffer (P) that accommodates the price list of ask and bid
for the N tradable stocks, the SBM module, a judgment
module with a memory unit for the open list (O), a message
generator, and a transmitter (TX). The SBMmodule includes
two memory units for a market graph (M ) and a tabu list (T ),
a preprocessing unit (pre) for preparing the market graph, and
a core processing unit (core) for the discrete optimization.
Those components are implemented as independent (not
synchronized) circuit modules, which are connected by
directed streaming data channels with FIFO (first-in-first-
out) buffers. The CPU part controls the whole system and
manages the positions using state machines for opened
positions (see APPENDIX A). The market information
(including the changes in ask or bid) is received by both the
FPGA and CPU parts. The order (buying/selling) packets are
issued only from the FPGA part. The execution-result packets
informing the results (fill/lapse) of the orders are received by
the CPU part. The FPGA and CPU parts are connected with
the peripheral component interconnect-express (PCIe) bus.

Figure 4 (b) shows the timing chart for the operation of
the SBM module when representative events (Events 1 to 8)
happen. When no event happens for a certain time, the
SBM module is idling (polling to the FIFO buffers from the
price buffer and judgment modules). When a market feed
arrives (Event 1), the SBM module immediately starts the
preprocessing. The preprocessing unit receives the 2N data
of ask and bid and then generates the N (N − 1) data of
weight wi,j (market graph, M ) with referring to a memory
unit for similarity si,j which is updated once a day before the
trading hours. Afterward, the SBM module starts the main
(core) processing (the optimal path analysis). Then the SBM
module verifies the solution (the path found) in terms of
the constraint violations (including the cases of Fig. 3) and
compares the evaluation of the path found with the threshold.
If the verification and evaluation pass, the SBM module
registers the pair in the tabu list T and concurrently informs it
as an open candidate to the judgment module (Event 2). The
judgment module determines the open positions by finally
checking them in terms of Pmax (the maximum number of
intraday positions) and other control signals, then registers
them in the open list O and issues order packets via the
message generator (Event 2).

Here, the judgment module registers the open pair position
in the open list O when the opening is decided (before the
issuance of orders) and deregisters them when the closing
of the pair position is confirmed with the message from the
CPU part. When the number of pair positions is decreased,
the judgment module informs the updated open list O to the
SBM module, which forces the SBM module to refresh the
tabu list T by copying the open list O for avoiding duplicate
positions.

At the timing of Event 2, the SBM module starts the
main processing again (the consecutive execution operation)
without refreshing the tabu list (already up-to-date) and
preprocessing (no new market feed arrives), resulting in
another order at the timing of Event 3 (the SBM module
could find another tradable path efficiently due to the tabu
list). When the SBM does not output an effective solution
(Event 4), the tabu list T and the open list O are not
updated. Note that considering the pair based on a direct path
(/ a bypass path) corresponding to the ineffective solutionmay
satisfy the threshold if it is evaluated on a bypass path (/ a
direct path), we designed that in this case (Event 4) the pair
is not registered in the tabu list. When the SBM outputs an
effective solution but it is rejected by the judgment module
[for example, due to excess positions (> Pmax)] (Event 5),
the tabu list T is updated but the open list O is not updated.
When a new market feed (Event 6) (or a close confirmation
information, Event 7) arrives, the market graph M (or the
tabu list T ) is updated by the preprocessor (or by copying the
open list), at the beginning of the next execution of the SBM
module (Event 8).

As seen in Event 5, the SBM module determines regis-
tering in the tabu list without considering the decision by
the judgment module. This design contributes to reducing
the latency (not to incorporate the feedback latency from the
judgment module). Note that the registration in the tabu list
in the case of Event 5 seems to be undesirable (might miss a
trading opportunity) but the over-registration in the tabu list
does not matter practically because the tabu list is updated
when the positions decrease (Event 8).

B. CUSTOMIZED SBM CORE CIRCUIT
The core processing unit (core) is architecturally similar to
the basic SBM circuit design [18] but partially modified
for the specific QUBO problem described in Sec. II-B. The
weight wi,j in Eq. (2) and tabu list Ti,j in Eq. (3) are stored
in separate memory units (the M memory and T memory in
Fig. 4), which are directly accessed by the SBM computation
units. Based on the specific pattern of the coupling matrix Q,
inefficient parts (the products with zero) in the pairwise
interaction computation in the SB algorithm are omitted.

In the consecutive execution operation, the SBM module
repeats the main processing (simulating the time-evolution
of a coupled oscillator network) with different initial states
generated by an internal random number generator (RNG),
Xorshift RNG [47]. This contributes to efficiently finding
another good solution even when the market graph M and
the tabu list T are not updated (Event 4). The latency of the
RNG is hidden by overlapping the operations of the SBMcore
and the RNG; the RNG generates an initial state for the next
execution of the SBM core while the SBM core is processing.

C. IMPLEMENTATION
We implemented the system described in Sec. III-A with a
CPU server with a network interface card (NIC) and an FPGA
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FIGURE 5. System implementation. (a) Architecture and implementation
details of the SBM. (b) Placement of functional modules in the FPGA.

board having another network interface (see APPENDIX B
for details).

Figure 5 (a) shows the architecture and implementation
results of the SBM module for 15-stock universes [N=15
stocks, N (N − 1)=210 pairs]. The numbers of nodes and
edges (directed) in the market graphs supported are, respec-
tively, 16 and 240, including the dummy node explained
in Sec. II-B. Among three variants of simulated bifurcation
(adiabatic, ballistic, and discrete SBs) [19], ballistic SB is
adopted in this work, with the SB parameters of Nstep=50
and dt=0.65. The machine size (the number of spins) is
256 spins with a specific spin-spin connectively for the
QUBO problem described in Sec. II-B, and the computation
precision is 32-bit floating point. Figure 5 (b) shows the result
of the placement of system modules in the FPGA. The SBM
module (core and pre) is dominant, and the circuit resources
used are listed in Fig. 5 (a). The system clock frequency
determined as a result of the circuit synthesis, placement,
and routing is 233 MHz. The clock cycles of the SB main
processing (core) and preprocessing (pre) are 6,900 cycles
per run (138 cycles per SB step) and 216 cycles per run,
respectively. The computation time (the module latency) per
run (tpre + tcore) is 30.6 µs, where the SBM core processing
is dominant (tcore=29.6 µs). The system-wide latency from
the market feed arrival to the order packet issuance depicted
in Fig. 4(b) as a red arrow is 33 µs (including the latencies
of the RX, price buffer, SBM, judgment, message generator,
and TX modules).

The speed performance and solution accuracy of
FPGA-based ballistic SB have been evaluated using various
NP-hard benchmark problems and demonstrated to be
competitive with other state-of-the-art Isingmachines in [19].
Here we show the capability of the SBM module to find
the trading opportunities of the proposed strategy within
the time constrains using the historical market data of the
TSE. Assuming an N=15 universe (210 pairs) selected

FIGURE 6. Probability of finding the trading opportunities within the time
constraints versus the number of SB time-evolution steps (Nstep).
As Nstep (or the time per SBM execution) increases, the probability of
finding better solutions (satisfying constrain conditions) per SBM
execution increases but the number of SBM executions in the duration of
an instantaneous market situation decreases.

in the bank/insurance sections as in Sec. IV, we sampled
619 market situations that include at least one trading
opportunity each in the period from Aug. 1, 2017 to
Jul. 31, 2020 and, for each market situation, examined
the number of the trading opportunities and the duration
time (the time until one of ask/bid prices in the N=15
universe changes). Also, we examined how many trading
opportunities the consecutive-execution SBM finds in the
duration time out of all the possible trading opportunities,
with varying the time per SBM execution. SB simulates
the bifurcation process of coupled oscillators with the
predetermined number of discrete time steps (Nstep). The
solution accuracy improves with increasing Nstep [17], [19]
but the time per SBM execution also increases (the number
of SBM executions in the duration of an instantaneous market
situation decreases). Figure 6 shows the ratio of the number
of trading opportunities found by the SBM module to the
number of all the possible opportunities in the 619 samples
as a function of Nstep. The ratio, or the probability of
finding the trading opportunities within the time constraints,
is maximized at Nstep=50 to be 96.0 %.

IV. EXPERIMENT
The trading system described in Sec. III was installed at
the JPX Co-location area of the TSE and operated through
real-time trading to examine whether the strategy based
on the consecutive optimal path searches in the N -node
market graph in Sec. II is executable. The trading results are
comparedwith a backcast simulation of the strategy assuming
the orders issued are necessarily filled.

The proposed strategy determines the opening of positions
based on an instantaneous market situation (a price list of ask
and bid for the N -stock universe). Because of the latency
of a system that executes the strategy and the activities of
other trading entities, the orders issued are not necessarily
filled at the ask/bid prices used for the decision-making.
We developed a simulator that processes the historical market
feeds provided by the TSE and emulates the internal state
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FIGURE 7. Performance of the strategy. (a) Cumulative amount of
transaction in billion JPY and (b) cumulative profit and loss in million JPY.
Simulation data is from Aug. 1, 2017, to Aug. 31, 2022 (1,239 business
days). Real trade data is from Mar. 1, 2022, to Aug. 31, 2022 (125 business
days), adjusted with the simulation at the first day.

of the trading system. The simulator assumes that the orders
issued are necessarily filled at the intended prices.

Figures 7 (a) and (b) show the cumulative values of the
amounts of transactions per day and the profit and loss
(including ask-bid spread costs and commission) per day for
real-time trading (red line) and backcast simulation (black
line) with fixed strategic parameters of N=15 (210 pairs),
Pmax=16, and Atrans=1.5 million Japanese yen (JPY). The
15 stocks were selected from the bank/insurance sections
in terms of high liquidity. The simulation data is from
Aug. 1, 2017, to Aug. 31, 2022. The real trade data is from
Mar. 1, 2022, to Aug. 31, 2022, being adjusted with the
simulation at the first day.

The annualized return and risk over the simulation period
(approximately 5 years) are, respectively, 7.5 % and 9.5 % for
an investment of 24 million JPY (Atrans × Pmax). The Sharpe
ratio of the strategy is 0.79, where the Sharpe ratio [48]
is, in this work, the ratio of the mean to the standard
deviation of the return (the profit and loss per period for
an investment) from a strategy as in [49]. The strategy
proposed can be profitable (a positive annualized return) for
the long term (approx. 5 years), especially has shown a high
annualized return of 18.5 % for the period of Aug. 1, 2017, to
Feb. 28, 2020, before the COVID-19 pandemic.

The cumulative value of the amount of transaction
by the system (3,817,201,458 JPY) over the experiment
(750 hours of real-time trading) is coincident well (+2.6 %)
with the simulation value (3,719,389,258 JPY). The fill rate
at the intended prices was 93.4 % and the remaining included
the fills at less-favorable prices and the lapses. Most of
the lapses occurred just after the opening of the morning

sessions. In this experiment, when the order for one of the
paired stocks lapses, the position for the other (if the order is
filled) is also closed immediately for experimental simplicity
(see APPENDIX A), allowing the system to execute more
transactions under the constrain of the maximum number
of positions (Pmax). This is the reason for the increased
transaction amount observed in the experiment. Based on
the good agreement in the cumulative transaction amounts
and detailed comparison analysis of transactions between the
experiment and simulation, we conclude that the strategy
proposed is executable with the trading system with a latency
of 33 µs.

Figure 8 (a) and (b) show typical transaction behaviors
by the trading system observed on Mar. 10, 2022, and
Apr. 1, 2022, respectively. The number of the market
feeds informing the changes of ask/bid of stocks in the
N (= 15)-stock universe on Mar. 10 (/Apr. 1) were 1,101,741
(/1,007,773), which arrived at intervals of 18.0 ms (/19.6 ms)
on average.

On Mar. 10, 2022, the system decided the opening of the
pair position (8750, 8355) [selling code 8750, buying code
8355] at 9:12:14 AM in JST (734 seconds after 9:00:00 AM)
based on the evaluation of the bypass path (8750 → 8303 →

8355) found by the SBM module. It was confirmed by the
backcast simulation that the evaluation value of the direct
path (8750 → 8355) did not satisfy the threshold, meaning
that this trading opportunity was missed if the bypass path
was not evaluated for decision-making. On that day, both the
prices of codes 8750 and 8355 were moving up (uptrend), but
the relative difference of the prices (the spread) of the pair
position decreased after the position opening, resulting in the
profitable closing of the pair position before the end of the
trading hours [Fig. 8 (a)].

On Apr. 1, 2022, the system decided the opening of the pair
positions (8304, 8355) [selling code 8304, buying code 8355]
and (8308, 8355) [selling code 8308, buying code 8355] at
9:12:11 AM in JST (731 seconds after 9:00:00 AM) based
on the evaluation of the direct paths (8304 → 8355) and
(8308 → 8355). The two pair positions were found by the
consecutive execution operation of the SBM module in the
instantaneous market situation (before the market situation
changed). On that day, the prices of codes 8308, 8304, and
8355 were, overall, moving up (uptrend), but the spreads
of the pair positions decreased after the position opening,
resulting in the profitable closing of the pair positions before
the end of the trading hours [Fig. 8 (b)].

V. DISCUSSION
The market graph used in this work is a directed/weighted
graph with edges describing pairwise (dyadic) relationships
between stocks. The collective evaluation of the stocks for
detecting the trading opportunities is incorporated through
the network analysis (path search) including the bypass
evaluation and the consecutive search with the tabu search
technique.
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FIGURE 8. Typical transaction behaviors of the trading system on
(a) Mar 10, 2022, and (b) Apr. 1, 2022. (a) The open decision (8750, 8355)
was made based on the evaluation of the bypass path (8750→ 8303→

8355). (b) Multiple pairs (8308, 8355) and (8304, 8355) were opened in a
market situation.

Higher-order networks [11], [12] directly represent triadic
or polyadic relationships in groups of three or more nodes
and go beyond the paradigm of graph modeling dyadic
relationships. Representing financial markets as higher-order
networks has been studied for analyzing and predicting the
structure and dynamics of the markets [13], [14], [15]. For
example, the dependency between two stocks under the
condition of the third stock can be represented by the triadic
terms [13], [14], [15].

Simulated bifurcation (SB) numerically simulates the time
evolution of a nonlinear oscillator network according to
the Hamilton equations of motion. An SB time-evolution
step updates the position and momentum of each oscillator
based on the joint force caused by the interactions with
the other oscillators (the joint force is the gradient of
the potential/cost function). The cost function that SB
evaluates is not limited to the second-order function (dyadic
interactions) and may include the higher-order terms (triadic
and polyadic interactions). Kanao et al. have extended SB to
higher-order cost functions and showed that the higher-order
SB outperforms the second-order SB with additional oscil-
lators (higher-order cost functions can be transformed to
second-order ones by adding auxiliary variables) when
solving Boolean satisfiability problems including third-order
cost functions [21].

Combining market representation as higher-order net-
works with SB-based network analysis would be one of the
interesting future works.

VI. CONCLUSION
We proposed a pairs-trading strategy that finds trading
opportunities for any two stocks in an N -stock universe

through solving an optimal path search problem in market
graphs and have demonstrated with the real-time transaction
records in the TSE that the strategy is executable in terms
of response latency with the automated trading system using
the SB-based embeddable Ising machine for the market graph
analysis.

The market graph for the N -stock universe is an
N -node fully-connected directed graph with each edge
weight corresponding to the product of instantaneous price
difference and dynamic time warping (DTW) distance-based
similarity between a pair of stocks. In the graph, two nodes
connected by the minimum-weight one-way directed path
selected from among all possible direct and bypass paths
(a collective evaluation of the graph) are considered to
correspond to the best trading opportunity. The optimal path
search is formulated in the form of QUBO and consecutively
executed by the SB-based Ising machine to find multiple
trading opportunities in an instantaneous market situation
with avoiding duplicate detections by a tabu search technique.

The automated trading system is a hybrid FPGA/CPU
system. The FPGA part (hardware processing) decides the
opening of a pair of long/short positions using the SB-based
Ising machine customized to the specific QUBO and then
issues the corresponding orders, while the CPU part (software
processing) manages the opened positions (including the
decision of closing positions). The system-wide latency from
the market feed arrival to the order packet issuance is 33 µs
for N=15 or 210 pairs.
The trading system was installed at the JPX Co-location

area of the TSE and operated for a real-time trading period
of 125 business days or 750 hours. The real-time transaction
records were compared with a backcast simulation of the
strategy assuming the orders issued are necessarily filled
at the intended prices. Based on the good agreement in
the cumulative transaction amounts and detailed comparison
analysis of transactions between the experiment and simu-
lation, we have concluded that the response latency of the
system with the SB-based Ising machine is sufficiently low
to execute the pairs-trading strategy based on optimal path
search in market graphs.

Automated trading systems with embedded Isingmachines
(simulated bifurcation machines) would be applicable to
the strategies based on various network analyses of mar-
ket graphs or higher-order networks defined by various
return/risk measures and other trading strategies that rely on
high-speed discrete optimization.

APPENDIX A
POSITION MANAGEMENT
The position management module manages N (N − 1) state
machines corresponding to all the pairs. Fig. 9 shows the
states and transitions of the state machine. Initially the pair
position (i, j) has been closed (closed state). When an
execution packet (informing that the order of one of the
stock pair is filled) is received, the state shifts to opening
state (T1 transition) and then stays waiting for the remaining
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FIGURE 9. State diagram for a state machine for the pair position
management.

results to be received (T2). If the fill of the orders for the
pair is confirmed as intended, the state shifts to opened (T3).
Otherwise (unintended), the state shifts to closing (T4). The
management module always monitors the prices (bid and
ask) of all the tradable stocks and detects the convergence
of the spread when opened (the confirmation of a profit more
than a threshold) for the opened pair. If the closing condition
is satisfied, the state shifts to closing (T5). In the closing
state, the state stays waiting for the related positions to be
all closed (T6); the management module issues the orders for
closing via the message generator in the FPGA and then (if
necessary) repeats ordering until all the positions are closed.
If the closing of the positions is confirmed, the state shifts
back to closed (T7).

APPENDIX B
IMPLEMENTATION DETAILS
An FPGA board and a high-speed network interface card
(NIC) are mounted on a host server with dual CPUs (Intel
Xeon Silver 4215R) and DDR-DRAM modules (384 GB).
The FPGA (Intel Arria 10 GX 1150 FPGA) on the board has
427,200 adaptive logic modules (ALMs) including 854,400
adaptive look-up-tables (ALUTs, 5-input LUT equivalent)
and 1,708,800 flip-flop registers, 2,713 20Kbit-size RAM
blocks (BRAMs), and 1,518 digital signal processor blocks
(DSPs). The system components in the FPGA described
in Section III were coded in a high-level synthesis (HLS)
language (Intel FPGA SDK for OpenCL, ver. 18.1). The
FPGA interfaces including a PCIe IP (PCIe Gen3 × 8),
a 10Gbps Ethernet PHY IP and communication IPs (RX, TX)
were written in Verilog HDL and incorporated in the board
support package (BSP).
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