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ABSTRACT Due to the continuous and dynamic nature of gaze estimation, the true gaze point at each
moment is closely related to the previous moment. Simply detecting individual frames of facial images
cannot yield accurate gaze information. In current CNN-based gaze estimation methods, the effective
utilization of eye movement temporal information and the ability to capture global relationships in the
feature extraction process remain problematic. Addressing these concerns, this paper proposes a novel gaze
estimation framework, named FE-net, which incorporates a temporal network. This framework introduces
channel attention modules and self-attention modules, enhancing the comprehensive utilization of extracted
features and reinforcing the contribution of valuable regions to gaze estimation. We further integrate an
RNN structure to learn the temporal dynamics of eye movement processes, significantly improving gaze
direction prediction accuracy. This framework predicts the gaze directions of left and right eyes separately
using monocular and facial features and computes the overall gaze direction. FE-net achieves state-of-the-art
accuracy of 3.19◦ and 3.16◦ on the EVE dataset and the MPIIFaceGaze dataset, respectively.

INDEX TERMS Appearance-based gaze estimation, attention mechanism, convolutional neural networks,
deep learning.

I. INTRODUCTION
In the current landscape, computer screens have evolved
into the primary tools for visualizing external information.
To comprehend the content that captivates observers, a more
accurate tracking of their points of interest is crucial. The
utilization of a camera positioned above the screen to capture
changes in the observers’ eyes and determine their gaze posi-
tions has emerged as a prominent trend. This approach finds
extensive applications in domains such as human-computer
interaction [1], [2], virtual reality [3], and assisted driving [4],
[5], enabling a better understanding of what draws observers’
attention.

Over the past few decades, researchers have proposed a
plethora of gaze estimation methods, which can be broadly
categorized into two main types: model-based methods and
appearance-based methods. Model-based methods aim to
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recover a constructed 3D geometric eye model by identifying
specific parameters unique to an individual, and subsequently
utilize this model to estimate gaze direction [6], [7], [8],
[9]. However, due to the inherent diversity of human eyes,
the constructed 3D eye models tend to vary from person to
person. These methods often require individual calibration
to recover personalized parameters, such as near-infrared
corneal reflections, iris contours, iris radius, and kappa angle.
The collection of specific data relies on specialized detection
equipment, and strict usage conditions, including a con-
strained working distance between the user and the camera,
often limit their applicability to laboratory environments.

Appearance-based methods, on the other hand, do not
require specialized equipment. Instead, they utilize regu-
lar RGB cameras to directly learn the mapping function
from facial appearance to eye gaze direction. These meth-
ods have gained popularity and become mainstream due to
their simplicity, wide applicability, good generalization, and
the maturing of deep learning techniques in recent years.
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Zhang et al. [10] were the first to apply CNN networks
for gaze estimation. They extracted eye images from facial
images and used them to estimate gaze direction by extract-
ing features specifically from the eye region. Due to the
limitations of eye features, a facial-feature-only gaze estima-
tion method was later proposed [18]. Recently, there have
been methods that simultaneously use facial images and eye
images cropped from the facial region as input, employing
three-stream networks to extract features from the face, left
eye, and right eye images [11], [12], [13], [14]. However,
these methods treat facial and eye images as independent or
parallel feature sources and employ simple techniques, such
as simple concatenation or fully connected layers, to fuse
information from facial and eye images, overlooking their
inherent relationships at a granular level of features.

In practical applications, gaze estimation systems typically
take video sequences of eye and facial images as input. These
videos contain valuable temporal information that can be
utilized to improve gaze estimation. In addition to the static
features obtained from the images, the temporal information
from the videos can contribute to better gaze estimation.
Recurrent neural networks (RNNs), such as Long Short-Term
Memory (LSTM) [15], [16], have been widely employed
in video processing tasks. RNNs automatically capture the
temporal information for gaze estimation. However, most
existing methods focus on static information and overlook
temporal sequence information.

To address the existing challenges in gaze estimation,
we propose a novel approach that combines facial fea-
tures with eye features. In our method, we sequentially
predict the gaze direction of each eye and calculate the
overall gaze direction by considering both eyes. To over-
come the issue of underutilization of features, our method
incorporates attention mechanisms to enhance the contribu-
tion of relevant regions for gaze estimation. and combined
with GRU to incorporate temporal information for gaze
estimation. The main contributions of this paper are as
follows:

1) We propose a framework called FE-Net that combines
facial features with eye features. Compared to state-of-
the-art algorithms, FE-Net achieves superior accuracy.

2) We have introduced an AC module to the concatenated
features of facial and ocular characteristics, which
serves as an attention mechanism integrating chan-
nel attention and self-attention. This module facilitates
the redistribution of weights to the fused features of
the eyes and face, enabling accurate extraction of key
features.

3) To capture the temporal dynamics inherent in the
observer’s eye movement process, we have incorpo-
rated GRU (Gated Recurrent Unit) modules into our
network architecture. This structure effectively mod-
els and captures the temporal information present in
eye-tracking data, aiding in our understanding and pre-
diction of eye movement behavior, thereby enhancing
gaze accuracy.

II. RELATED WORK
In the past five years, appearance-based gaze estimation
methods have been greatly inspired by machine learning
and deep learning algorithms. The development of deep
learning has provided favorable conditions for the advance-
ment of gaze estimation. Recently, deep learning models,
such as Convolutional Neural Networks (CNN) and Recur-
rent Neural Networks (RNN), have been employed for gaze
estimation.

Zhang et al. [23] proposed the GazeNet framework, which
is an appearance-based gaze estimation method utilizing the
VGG network. This network combines facial pose and eye
region data, injects head pose angles into the first fully con-
nected layer, and trains a regression model on the output
layer. The Itracker model introduced by Krafka et al. [11]
is based on the AlexNet architecture. This model employs a
multi-region network with various inputs, extracting valuable
information beyond using eye images alone, and achieves
good performance even without calibration. Additionally,
methods utilizing dilated convolutions [12], [19] effec-
tively capture feature information at different scales, thereby
improving gaze accuracy.

In addition to CNN networks, the Transformer, initially
proposed by Vaswani et al. [20]for natural language pro-
cessing tasks, has been utilized for gaze estimation tasks.
Due to its ability to capture global context, Transformers
have demonstrated excellent performance in computer vision
tasks. Cheng and Lu introduced the GazeTR model [21],
which was the first to apply Transformers to gaze estimation.
They utilized a hybrid Vision Transformer (ViT) [32] for
appearance-based gaze estimation tasks and achieved state-
of-the-art results on multiple datasets. Apart from feature
extraction, Cheng et al. [22] proposed an attention mod-
ule that integrates features from both eyes, ensuring the
effective utilization of informative features. Additionally,
Cheng et al. [38] proposed a strategy that employs binocular
images as input and leverages binocular asymmetry to opti-
mize the entire network.

In RNN architectures, Long Short-Term Memory (LSTM)
can be utilized to handle the temporal information in video
data. Due to the valuable information contained in video
data beyond image data, studies [15], [16], [17] have demon-
strated the effectiveness of incorporating temporal features
to enhance gaze estimation accuracy. The specific approach
involves fusing static features extracted from images with
sequential features extracted from videos. Zhou et al. [16]
enhanced the Itracker network proposed in [18] by remov-
ing the facial grid and utilizing concatenated static features
from the eye region images to predict gaze outcomes. They
employed a bidirectional LSTM (bi-LSTM) to capture the
temporal features between video frames and estimate gaze
vectors in the video sequence. Park et al. [17] created a
new dataset comprising facial eye-tracking video frames in
four directions. They employed GRU, LSTM, and other
techniques to extract temporal features between frames.
Additionally, they collected and incorporated screen content
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FIGURE 1. The proposed model diagram for gaze prediction combining facial images.

that the observers fixated on for saliency detection, further
optimizing gaze prediction.

In recent advancements, addressing the limitation of CNN
models in establishing long-range connections for capturing
local information to model global images, Wu et al. [24]
have introduced a self-supervised approach. This method
leverages advanced cues from the eye region to refine facial
features in gaze estimation. It uses high-level knowledge to
filter the distractive information and bridges the intrinsic
relationship between face and eye features. Zhou et al. [25]
proposed a weighted network with an adaptive adjustment
regression strategy, which learns the varying contributions of
different regions to gaze estimation outcomes under free head
movement. And there are somemethods incorporate attention
mechanisms to enhance the consideration of interrelation-
ships between distinct regions. Nagpure and Okuma [26]
propose a novel multi-resolution fusion transformer based
gaze regression head which is efficient as well as accu-
rate to predict gaze values from multi-resolution features.
Song et al. [27] propose an encoder-decoder network with
residual blocks and attention blocks. Dai et al. [28] pro-
posed a method based on the convolutional neural network
with residual blocks, in which the attention mechanism is
integrated into the network to improve the accuracy of gaze
tracking. Although the aforementioned methods have incor-
porated attention mechanisms, their focus has been primarily
directed towards entire facial images, neglecting the specific
attention to eye-region images and thus failing to compre-
hensively exploit the reciprocal interplay between facial and
ocular information. Regarding the exploration of temporal
dynamics, there exists a relative scarcity of approaches that
consider the influence of multiple consecutive frames on
gaze estimation. Among these, the methods [15], [16], [17]
employed time-series networks to extract dynamic temporal
information from eye movement processes, yet they over-
looked the effective utilization of both ocular and facial
features. Our approach, however, simultaneously harnesses
ocular and facial features, sequentially enhancing the weight
of meaningful features through channel attention and self-
attention mechanisms. Moreover, we leverage a time-series
network to extract dynamic temporal information from the

eye movement process, thereby further improving the accu-
racy of gaze estimation.

III. PROPOSED MODEL AND ALGORITHM
In this section, we will provide a detailed description of
how we designed the end-to-end gaze estimation network.
We propose a model called FE-Net, which takes both facial
images and eye images as inputs to predict gaze directions.
We incorporate channel attention and self-attention modules
after the concatenation of facial and eye features. These
modules effectively extract and amplify the most informative
features from the face and the eyes. The FE-Net network is
depicted in Figure 1.

FE-Net consists of three main parts: (1) Eye-net and Face-
net, which form the backbone network of the model and
utilize the first four layers of the ResNet-18 CNN network.
In the Eye-net, the number of channels in the fourth layer
is adjusted to facilitate concatenation with the facial features.
(2) TheACmodule, which is an attentionmechanismmodule,
consists of the concatenation of the ECA channel attention
module and the self-attentionmodule. This module applies an
attention mechanism to the feature map obtained by concate-
nating the facial and eye features, allowing for the selection
of relevant features for more effective utilization. (3) The
GRU module, which is an RNN network composed of the
time-series module GRU. It utilizes the GRU architecture to
capture temporal dependencies and sequential information in
the input data. Eye-tracking technology is a real-time end-to-
end technique, as the process of eye movements unfolds as a
coherent sequence. To capture temporal information, we have
incorporated an RNN network into our model. In this frame-
work, the Face-net and Eye-net are responsible for extracting
static features from a single face image and its corresponding
left and right eye images, respectively. These facial features
are concatenated with the left and right eye features and
then fed into the AC module. The AC module employs its
built-in channel attention module and self-attention module
to selectively capture important features. Subsequently, the
output is passed to the GRU module for learning temporal
dynamics. Our proposed model operates in two fundamen-
tal states: forward propagation and backward propagation.
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FIGURE 2. Eye-net (top) and Face-net (bottom) network architecture diagrams.

Forward propagation is utilized to compute the intermedi-
ate variables at each layer, while backward propagation is
employed to calculate the gradients at each layer.

A. FACE-NET AND EYE-NET
The network architecture of Eye-net and Face-net are
depicted in Figure 2. Both Face-net and Eye-net utilize the
ResNet-18 [29] convolutional neural network. This network
introduces residual blocks in traditional convolutional neural
networks, which effectively address the issues of gradient
vanishing or explosion and degradation. It performs well in
feature extraction. The architectures of Face-net and Eye-
net are shown in the following figure. The input size for the
eye image is 128 × 128 × 8, and for the face image is 256 ×

256 × 3. To ensure smooth concatenation of extracted eye
features with face features, in the Eye-net network, we adjust
the stride to 1 during the process of expanding the channel
size to 512 in the fourth layer. We also add a convolutional
layer at the end to adjust the feature size to 128. In the
Face-net, we add a convolutional layer at the end to adjust
the feature size to 32. We believe that eye tracking is more
related to eye features and eye features are more important
than face features. Therefore, we retain 32 features for face
and 128 features for each eye. Finally, we concatenate these
features to obtain a feature matrix of size 160 × 8 × 8.

B. AC MODULE
1) EFFICIENT CHANNEL ATTENTION
ECA module is a channel modeling technique based on
attention mechanisms. It can be seen as an improved version
of SENet [30]. The dimension reduction operation used in
SENet has a negative impact on the prediction of channel
attention and leads to inefficient and unnecessary dependency

FIGURE 3. The specific location of the ECA channel attention module.

modeling. To avoid the influence of dimension reduction on
channel attention learning, ECANet proposes a non-reductive
local cross-channel interaction strategy. In convolutional neu-
ral networks, each channel corresponds to different feature
information. The ECA attention mechanism weights each
channel to extract the most important features and suppress
less important ones. This helps the network to focus more on
useful information, thereby improving the expressive power
of the features.

As shown in Figure 3, after the face and eye images are ini-
tially processed by the backbone networks to extract features,
the face features and eye features are concatenated. To extract
the channel features of the fused eye-face representation,
we input the concatenated features into the ECA module.
Given the input feature map X, X ∈ RH×W×C, where H
represents height, W represents the width, and C represents
the number of channels. First, a non-reductive global average
pooling (GAP) operation is applied to the input featuremap to
obtain aggregated convolutional features. The ECA module
adaptively determines the kernel size K using an adaptive
function as shown in Equation (1). Then, a one-dimensional
convolution is performed to learn the channel attention using
the sigmoid function, which calculates the weight G for each
channel, as shown in Equation (2). Finally, the generated
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FIGURE 4. Self-attention module.

channel attention weights G are multiplied with the original
feature map X and scaled to enhance the feature responses of
important channels. The weighted feature map Y is obtained
as shown in Equation (3).

k = ψ (C) =

∣∣∣∣ log2(C)γ
+
b
γ

∣∣∣∣
odd

(1)

where γ = 2, b = 1. C represents the number of channels.

G = σ (W1 ∗ B+ b1) (2)

where W1 ∈ RC×C ′

is the weight matrix, σ represents the
Sigmoid activation function, b1 ∈ RC is the bias vector, and
B represents the embedded features.

Y = X ⊗ G (3)

where⊗ denotes element-wise multiplication along the chan-
nel dimension.

2) SELF-ATTENTION MODULE
The self-attention mechanism is the core idea of the Trans-
former architecture [20], and it is used to extract global
information from the input by computing weighted sums of
the feature maps. As shown in Figure 4, the Transformer con-
sists of three components:Multi-Head Self-Attention (MSA),
Multi-Layer Perceptron (MLP), and Layer Normalization
(LN). Here, we refer to the positional encoding and patch
embedding process from [32] and [33]. We create a learn-
able f itoken and encode it as 0. We obtain the feature matrix
Y (i) ∈ RH×W×C after the channel attention mechanism,
where H and W represent the size of the feature matrix,
C represents the number of channels, and i represents the
feature matrix of the i-th frame in the input video, where
i≤3. Here, H=W=8 and C=160. The feature matrix Y (i) is
divided into 64 one-dimensional vectors Y (i)1 ∼ Y (i)64 , and
these vectors are encoded with positions 1 to 64. Finally,
we concatenate f itoken with these vectors to obtain the feature

matrix X =

[
f itoken;Y

(i)
1 ;Y (i)2 ; . . . Y (i)64

]
.

The feature matrix X is then fused using the multi-head
self-attention mechanism (MSA). It is further mapped to

(Queries) Q ∈ Rn×dk , (Keys) K ∈ Rn×dk , and (Values)
V ∈ Rn×dv using the multi-layer perceptron (MLP), where
n is the batch size, dk and dv are the dimensions of each
feature. In this model, we have dk = dv = 8. The output of the
self-attention module is computed as follows Equation (4):

Attention (Q,K ,V ) = soft max
(
QKT
√
dk

)
V (4)

where soft max denotes the softmax function, QKT repre-
sents the dot product between Queries and Keys, and the
scaling factor

√
dk is used to normalize the dot product. The

result is then multiplied element-wise with V .
Transformers also employ the skip connection idea [29].

The input feature matrix is first processed with Layer Nor-
malization (LN) to stabilize training and facilitate faster
convergence. Then, it goes through the multi-head self-
attention (MSA) mechanism and the multi-layer perceptron
(MLP) to obtain the output Y. LN is used in each layer of the
Transformer to ensure stable training. The Transformer layer
can be represented as follows:

x′
= MSA (LN (X))+ X (5)

G = MLP
(
LN

(
x′
))

+ x′ (6)

where X represents the input feature matrix, which has the
same dimensions as the output feature matrix G of each layer
in the Transformer. The dimension ofG is given byG ∈ R1×d ,
where d = 160.

C. TEMPORAL NETWORK
After the AC module, we utilized a Gate Recurrent Unit
(GRU) cell, which is a type of recurrent neural network [34].
Similar to Long-Short TermMemory (LSTM) [35], GRUwas
introduced to address issues related to long-term memory
and gradient vanishing or exploding during backpropagation.
Compared to LSTM, GRU has a simplified internal struc-
ture by incorporating update gates and reset gates to control
the flow and retention of information, leading to improved
accuracy.

When dealing with sequential data, the computation pro-
cess of Gated Recurrent Unit (GRU) can be simplified into
two steps: update gate and reset gate computation. The update
gate zt and reset gate rt are calculated based on the input
xt and the previous hidden state ht−1. Here, σ represents
the sigmoid function, and Wz and Wr are the corresponding
weight matrices. The formulas for calculating the update gate
and reset gate are shown in equations (7) and (8) respectively.

zt = σ (Wz · [ht−1, xt ]) (7)

rt = σ (Wr · [ht−1, xt ]) (8)

By using the update gate and reset gate, we can compute
the new hidden state ht by combining the candidate hidden
state (ht ′ ) and the previous hidden state ht−1. The formulas
for calculating the candidate hidden state and the new hidden
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FIGURE 5. The determination of the final direction.

state are given by equations (9) and (10) respectively.

ht ′ = tanh (Wh · [rt ⊙ ht−1, xt ]) (9)

ht = (1 − zt)⊙ ht−1 + zt ⊙ ht ′ (10)

where tanh represents the hyperbolic tangent function, Wh is
the weight matrix, and ⊙ denotes element-wise multiplica-
tion (Hadamard product). In the FE-Net model, three GRU
units are set up to predict the gaze direction of the third video
frame given three consecutive video frames as input.

D. DETERMINATION OF GAZE DIRECTION
After obtaining the gaze directions for the left eye and right
eye separately using FE-Net, we further calculate the overall
gaze direction by determining the final point of gaze (PoG).
Figure 5 illustrates the process of determining the final gaze
direction. Firstly, the model sequentially obtains the gaze
directions for the left eye and right eye. Next, we intersect
the gaze rays with the screen plane. By applying camera
transformations relative to the screen plane, we compute the
intersection point of the gaze rays with the screen plane,
which represents the coordinates of the point of gaze (PoG).
The functionf represents the calculation process. The gaze
direction for the left eye is denoted as ĝl , and the gaze
direction for the right eye is denoted as ĝr . The calculation
of the final PoG viewpoint p̂ is given by Equation (11).

p̂ =
1
2

(
f
(
ĝl
)
+ f

(
ĝr
))

(11)

Finally, we convert p̂ back to the final gaze direction ĝ using
the inverse function f −1. The calculation process of ĝ is
described by Equation (12).

ĝ = f −1 (p̂) (12)

IV. EXPERIMENTAL RESULTS
A. DATASET
The EVE dataset [17] provides a total of 12,308,334 frames
of video data, including natural eye movements of 54 partici-
pants while fixating on a screen, alongwith information about
the screen content being observed. In this study, we only

utilized the eye-tracking data from the participants in this
dataset. The gaze angles in the dataset range from−60 to+60
degrees vertically and −70 to +70 degrees horizontally. The
dataset also includes a significant amount of head motion.
We followed the standard segmentation and reported the final
results based on the test sequence as outlined in [17]. The test
set labels for this dataset were not publicly available, and our
testing process was conducted on the official website of the
dataset.

The MPIIFaceGaze dataset [23] is one of the most widely
used datasets for appearance-based gaze estimation methods.
It consists of 213,659 images captured over several months in
the daily lives of 15 subjects, with no restriction on head pose.
The images are collected from real-world environments, pro-
viding a diverse range of lighting conditions and head poses.

B. EVALUATION METRICS
In the MPIIFaceGaze dataset, this study employed the
commonly used leave-one-out criterion for gaze estimation
evaluation. We used 14 subjects as the training dataset, 1 sub-
ject as the testing dataset, and calculated the average error
accuracy across 15 experiments as the performance met-
ric. For the validation of the EVE dataset, we utilized the
pre-defined splits of the dataset, consisting of 39 subjects for
training, 5 subjects for validation, and 10 subjects for testing.
The evaluation metric used in this study is the angular error.
A higher angular error indicates lower accuracy of the model.
The angular error can be defined using Equation (13):

Langular = arccos

(
g · ĝ

∥g∥
∥∥ĝ∥∥

)
(13)

where g represents the angle of the true gaze direction, while
ĝ represents the angle of the predicted gaze direction.

The gaze point distance error is represented as shown in
Equation (14), which denotes the Euclidean distance between
the estimated gaze point and the target gaze point.

Ldist = ∥GE − GT ∥ (14)

where GT represents the coordinates of the actual gaze posi-
tion, and GE signifies the coordinates of the predicted gaze
position.

C. MODEL CONVERGENCE ANALYSIS
We performed a convergence analysis of our FE-Net on the
EVE dataset, and the results are shown in Figure 6. The error
on the validation set is consistently higher than the training
set, not due to parameter settings or overfitting issues, but
rather due to the intrinsic nature of the problem. Each indi-
vidual has a specific offset in their eye’s optical axis and
gaze direction, which the model can only learn relatively
general features from the training set. The angular error for
both the left and right eyes rapidly decreases throughout the
entire iteration process and reaches its minimum value at
approximately 3500 steps. Overall, the proposed network has
demonstrated fast and robust convergence.
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FIGURE 6. Loss curve during training.

TABLE 1. Comparison results with Other methods on the EVE dataset.

D. COMPARATIVE EXPERIMENTS ON THE EVE DATASET
The use of the EVE dataset for testing is relatively limited
among existing methods. Thus, we attempted to replicate the
techniques proposed in papers [21] and [15] to conduct com-
parative analysis. The corresponding test results are presented
in Table 1.
In the method presented in paper [21], facial images

were utilized as inputs, and a self-attention mechanism was
employed to process the feature maps. Both paper [17]
and [15] integrated time series RNN networks into their
methods. The EyeNetGRU method exclusively focused on
extracting temporal information from eye video frames, while
the Gaze360 method solely extracted time information from
facial video frames. Neither of these approaches incorpo-
rated attentionmechanisms. In contrast, our proposedmethod
integrates fused features from both facial and eye sources
and includes a GRU module for dynamic feature extraction.
The achieved angular error result is 3.19◦, which is 0.26◦

lower than the error from the Gaze360 method. The 2D gaze
position error is 3.55cm, showing a reduction of 0.28cm in
error compared to the Gaze360 method. These final results
highlight the superiority of our proposed approach.

E. ABLATION EXPERIMENTS ON THE EVE DATASET
The previous results indicated that our method achieved
favorable results on the EVE dataset. However, they did not

TABLE 2. Ablation experiments based on the EVE dataset.

provide evidence for the effectiveness of the AC module and
GRU module. Therefore, we conducted ablation experiments
specifically targeting the ACmodule and GRUmodule on the
EVE dataset to demonstrate their effectiveness. During the
ablation process, the ECA module was replaced with an FC
layer. Since the self-attention module reduces the dimension-
ality of the feature maps, we introduced an average pooling
layer as a substitute for the self-attention module. Finally, the
GRU module was replaced with an FC module.

The results of the ablation experiments in Table 2 demon-
strate that the addition of the channel attention mecha-
nism, self-attention mechanism, and GRU temporal sequence
reduces the testing error from the initial 3.46◦ to 3.19◦, result-
ing in a total error reduction of 7.8%. When only the GRU
module was added, the error decreased by 0.12◦ compared to
using the backbone network alone. In the presence of both
attention mechanisms, the difference in error between adding
and not adding the GRU module was 0.08◦ (3.27◦-3.19◦),
indicating that the GRU module captures more inter-frame
temporal features, leading to improved model performance.
Furthermore, the addition of the AC module to the original
backbone network reduced the error from 3.46◦ to 3.27◦,
resulting in a total error reduction of 0.19◦. When the AC
module was added in combination with the GRU module,
the difference in error between adding and not adding the AC
module was 0.15◦ (3.34◦-3.19◦).

In order to further demonstrate the impact of the ECA
channel attention mechanism and self-attention mechanism
in the AC module on the model performance, Table 3 is
provided, which illustrates the effects of adding the channel
attention mechanism and self-attention mechanism in the
presence of GRU. Based on the testing data from the EVE
dataset, it can be observed that the percentage of errors below
2◦, after adding the self-attention mechanism, increased
from 28.2% (FE-Net (only GRU)) to 31.5% (FE-Net (self-
attention + GRU)). Furthermore, after adding the channel
attention mechanism, the percentage of errors below 2◦ fur-
ther increased to 33.5% (FE-Net (all attention)), resulting in a
cumulative improvement of 5.3% compared to the case with
only GRU. Additionally, when observing the percentage of
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FIGURE 7. The effects of incorporating the AC module and GRU module on each individual.

FIGURE 8. For each individual in the MPIIFaceGaze dataset.

TABLE 3. Impact of Channel Attention and Self-Attention in the AC
Module with GRU on Model Performance (based on EVE dataset).

errors below 4◦, it was found that adding the self-attention
mechanism increased the percentage from 70.5% to 73%.
Moreover, after adding the channel attention mechanism,
the percentage of errors below 4◦ further increased from
73% to 76%, resulting in a cumulative improvement of 5.5%
compared to the case with only GRU. These results provide
evidence that the addition of the channel attentionmechanism
and self-attention mechanism contributes to the improvement
of model performance.

We also conducted individual testing and comparisons on
each person in the test set. Figure 7 presents the comparative

results of FE-Net with the addition of the AC module and
GRU module, compared to FE-Net with only the backbone
network, for each test subject. The evaluation results of
gaze estimation for the ten test subjects indicate a signifi-
cant improvement in accuracy with the addition of the AC
module and GRU module for nine of them, while only test
07 showed a slight decrease in performance. Due to indi-
vidual differences, we cannot guarantee that our proposed
method is suitable for every person. However, based on the
data results, it can be observed that our proposed approach,
which incorporates attention mechanisms and the GRU mod-
ule, is effective for the majority of individuals, resulting
in a cumulative average error reduction of 7.8% compared
to FE-Net with only the backbone network. These findings
provide strong evidence for the meaningfulness of adding the
AC module and GRU module.

The EVE dataset consists of eye images and facial images
captured from various angles, with generally good lighting
conditions. This enables obtaining decent accuracy even in
scenarios where there are significant variations in the test sub-
jects’ poses. However, the dataset exhibits limited robustness
to changes in lighting conditions. For example, in Figure 7.
test03 demonstrates a case where the experimental participant
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TABLE 4. Performance of FE-Net on the MPIIFaceGaze dataset.

wore tinted glasses. The occlusion caused by the glasses
resulted in lower brightness in the eye image. Furthermore,
the refraction and reflection of light caused by the glasses’
lenses further deteriorated the test performance, leading to
poor results. Apart from this particular scenario, the dif-
ferences in error rates among other test participants were
relatively small.

F. CROSS-DATASET VALIDATION
To further demonstrate the effectiveness of FE-Net, we con-
ducted retraining and testing on the MPIIFaceGaze dataset
and compared it with the latest existing methods based on the
same dataset. In Table 4, we summarized the research content
of eight other methods for gaze estimation to conduct a com-
parison. We particularly focused on the inputs used by these
eight methods and their corresponding error results. Notably,
the trend in recent gaze estimation is leaning towards utilizing
both facial and ocular images as inputs. Hence, we evaluated
the accuracy of single-eye gaze prediction using both facial
and individual ocular images, followed by the computation of
the final gaze point. Our FE-Net achieved lower angular error
compared to the other eight methods. Specifically, it achieved
a reduction of 0.07◦ in error compared to the highly accurate
STTDN. Clearly, our method outperforms the others.

In addition to testing the final gaze direction of both eyes,
we also examined the gaze directions of the left and right
eyes separately for comparison. By converting the monocular
gaze lines to monocular screen gaze points, we obtained the
midpoint of the predicted gaze points for both eyes and cal-
culated the final gaze direction accordingly. As shown in the

table, the error in monocular gaze direction is relatively large.
However, after applying our gaze calculation strategy, the
average error of the final gaze direction decreased by 0.09◦

compared to the monocular error. This geometric-based gaze
determination strategy is computationally simple, efficient,
and highly effective.

In Figure 8, we present the results of our predictions for
each individual in the MPIIFaceGaze dataset. The data high-
lights the performance of our FE-Net model on each person’s
gaze estimation. Notably, FE-Net performed best on person
ID p0 with an angular error of 2.09◦ and worst on person ID
p14 with an error of 5.46◦. Compared to the EVE dataset,
the predictions on the MPIIFaceGaze dataset show smaller
variations in errors among different individuals. We attribute
this to the richer variety and lighting conditions present in
the MPIIFaceGaze dataset, which contributes to its enhanced
robustness and diversity.

V. CONCLUSION
Addressing the limitations of CNN’s capacity to capture
global relationships during feature extraction and the under-
utilization of temporal dynamics that lead to lower gaze
estimation accuracy, this study introduces a novel gaze esti-
mation network called FE-net, integrating channel attention
and self-attention mechanisms. Through experimentation,
we empirically demonstrated the effectiveness of incorpo-
rating attention mechanisms in enhancing gaze accuracy.
Additionally, we incorporated a GRU module to learn the
impact of temporal dynamics on gaze estimation. Compar-
ative evaluations against state-of-the-art methods indicated
that FE-net achieved cutting-edge accuracy on the publicly
available EVE and MPIIFaceGaze datasets, with errors of
3.19◦ and 3.66◦ respectively. However, facial-based gaze
estimation remains challenged by factors like lighting condi-
tions, facial differences among observers, and head postures,
leading to still unsatisfactory accuracy. Future endeavors will
focus on robustly addressing individual calibration issues
to enhance gaze estimation’s robustness, and we intend to
explore the integration of observed screen saliency informa-
tion to further improve estimation precision.
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