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ABSTRACT The use of video surveillance to monitor interrogation behavior can effectively maintain
judicial civility in the context of law enforcement cases. However, analyzing and reviewing law enforcement
videos can be a time-consuming and resource-intensive process, particularly in the manual identification of
interrogation violations. This work is dedicated to the development of an intelligent recognition system for
interrogation violations by using a spatio-temporal attention fusion SlowFast Network. To address the issue
of feature information underutilization in the slow path of the traditional SlowFast, a slow-to-fast path is
incorporated into the original SlowFast to enhance learning. The model fuses the attention of spatial and
temporal channels, replacing the traditional convolution module with this new approach. The proposed
model was evaluated using the publicly available UCF101 action recognition dataset, resulting in a 1.52%
improvement in Top-1 recognition accuracy compared to the traditional SlowFast. Based on two custom
interrogationmisconduct datasets, the proposedmodel was evaluated, achieving a recognition rate of 99.16%
for interrogation misconduct. This demonstrates its effectiveness in identifying misconduct behaviors
inside interrogation rooms. Compared to some advanced behavior recognition models, the proposed model
demonstrates strong competitiveness in identifying misconduct during interrogations.

INDEX TERMS Attention fusion, enhance learning, law enforcement, SlowFast, violation recognition.

I. INTRODUCTION
The prohibition of using torture to extract confessions is a
fundamental aspect of civilized interrogation practices, and
many countries have implemented laws and regulations that
strictly forbid its use. For instance, China’s Criminal Law and
Criminal Procedure Law, enacted in 2013, explicitly prohibit
the use of torture to extract confessions. Despite these legal
measures, the use of torture for this purpose remains a signif-
icant problem, presenting a challenge for judicial oversight
agencies worldwide in curbing its occurrence. This is crucial
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in upholding judicial justice and safeguarding the legitimate
rights and interests of criminal suspects. In addition to the
establishment of relevant laws and regulations, the use of
technological means to prevent and detect improper behavior
by interrogation officers in real-time has become a powerful
measure. Therefore, audio and video surveillance equipment
has become standard in interrogation rooms.

Some scholars have conducted relevant research on the
recognition of improper interrogation behavior by law
enforcement personnel. Wang [1] constructed a 3D model
of the human body in the interrogation scene and utilized
3D spatial scene and 2D video feature constraints for the
recognition of misconduct such as beating, hanging, and
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binding in the interrogation room. Li et al. [2] enhanced the
network’s ability to recognize non-compliant behavior by
adding dense connection blocks to the traditional network
to aid in the learning of temporal features. Tan et al. [3]
combined 3D convolution and LSTM, using LSTM to model
the short-term features extracted by 3D convolution along the
time axis, assisting in the recognition of violent behavior in
public security monitoring videos. However, most existing
algorithms for recognizing improper interrogation behavior
preselect human behavioral features, which have drawbacks
such as scene dependency and algorithm dependency. From
a video perspective, there is a lack of real-time modeling
capability for temporal dynamics, which severely hinders the
promotion and application of intelligent surveillance.

This research comes from the real needs of the public
security system in China, focusing on the detection of assault,
long squat, push-up, abnormal running, abnormal jumping,
assault with stick and normal behavior. The corresponding
categories contain violent behaviors, long time behaviors and
normal behaviors, with obvious differences in timing feature
information, which tests the performance of the model more.
In order to improve the efficiency of the detection, relevant
improvements have been made to the network, which have
made significant contributions. Firstly, a new mechanism
for feature extraction from different spatial locations in the
Slow path of the SlowFast network has been developed,
as well as a mechanism for fusing feature information with
the Fast path, in order to better handle spatial information.
Secondly, a weight adjustment adaptive mechanism has been
proposed for each Fast path to Slow path information to
improve the model’s attention to different channels. Finally,
two customized interrogation behavior datasets have been
constructed, containing normal behaviors and various types
of violations, and an in-depth performance evaluation of the
proposed model has been conducted based on these datasets.

The paper is organized as follows. Section II introduces
the development and related research in the field of viola-
tion behavior recognition, including traditional handcrafted
methods and deep learning methods. Section III describes
the specific details of the proposed new model architecture.
Section IV primarily presents the experiments conducted on a
publicly available dataset. Section V focuses on the collection
of interrogation behavior dataset and performance evaluation.
Finally, Section VI summarizes the contributions of the paper
and outlines the future work objectives.

II. RELATED WORK
The core of interrogation violation recognition is the recog-
nition of human behavior. With the advancement of deep
learning, computer vision has made significant progress
and has been applied to various fields, including human
behavior recognition, which is a critical application area.
Human behavior recognition involves understanding the
image content, which is more challenging than recognizing or
detecting objects in an image due to the diverse and complex
human poses and factors such as occlusion and background

clutter. Various human behavior recognition methods have
been developed as research hotspots. Based on the feature
extraction method, these methods can be categorized into
traditional manual-based methods [4], [5], [6] and deep
learning-based behavioral feature extraction methods [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18].

A. TRADITONAL METHODS
The traditional method of manually extracting features for
human behavior recognition can be classified into two types:
key point and motion trajectory extraction. Local key point
model features are often described using spatiotemporal inter-
est points, which are key points that change significantly in
both space and time duringmotion. Schuldt et al. [4] proposed
a descriptor that uses high-order representation features to
construct a video representation based on local spatiotempo-
ral features, and combined this representation with an SVM
classification scheme to recognize motion patterns. Lowe [5]
introduced the classical SIFT (Scale Invariant Feature Trans-
form) descriptor based on the scale-invariant property, which
can be used to reliably match between different views of an
object or scene. Scovanne et al. [6] combined the spatiotem-
poral relationship properties of video images and introduced
the SIFT operator for video-based human behavior analysis.
This new descriptor can better represent the 3D properties of
video data in action recognition applications. However, the
traditional manual feature extraction method has limitations,
such as being restricted to specific needs due to small data in
the initial sample database, simple scenes, and single actions.
Moreover, manual feature extraction is time-consuming and
inefficient, requiring significant manpower. External factors
can easily disturb the effect of manual feature extraction,
making it unstable, and the recognition accuracy has much
room for improvement.

B. DEEP LEARNING METHODS
Since the emergence of AlexNet [7], deep learning has played
a crucial role in the field of computer vision. Convolutional
Neural Networks (CNNs) have been employed for feature
extraction on videos. However, recognizing each frame of
a video with a CNN alone is not sufficient, as videos have
an additional temporal dimension that influences the seman-
tic content. Researchers have explored various methods to
address this challenge. Karpathy et al. [8] studied various
methods for extending CNN connections in the temporal
domain to leverage local spatiotemporal information. They
attempted four different methods for fusing cross-temporal
information, but the results were not satisfactory. Simonyan
and Zisserman [9] proposed using two channels with different
structures to process spatial and temporal information sepa-
rately, and fused the information at the end of the process,
yielding competitive results with manual feature extrac-
tion. Regarding information fusion in dual-stream networks,
Feichtenhofer et al. [10] investigated fusion strategies for
network architectures and studied various methods for spatial
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and temporal fusion of ConvNets in order to best utilize
spatiotemporal information. They found that early fusion of
features continued to yield better results. Tran et al. [11]
proposed a 3D convolutional neural network, which extended
the 2D convolutional kernel to 3D by increasing the tempo-
ral dimension, to handle spatiotemporal information feature
extraction. This approach outperformed traditional 2D con-
volutional networks. Feichtenhofer et al. [12] developed the
SlowFast model, which used both slow and fast network
branches to achieve efficient video recognition, significantly
improving the accuracy and speed of video understand-
ing tasks. Attention mechanisms have also been applied
in the vision domain. Arnab et al. [13] used pure Trans-
former modules to address classification problems in the
video domain. However, compared to CNN, the model has
fewer inductive biases and requires pre-training to achieve
good results. Ge et al. [14] proposed a convolutional LSTM
action recognition algorithm based on attention mechanism,
aiming to enhance the accuracy of action recognition by
effectively extracting salient regions of actions in videos.
Bertasius et al. [15] extended the vision transformer from
the image domain to the video domain by directly learn-
ing spatiotemporal features from a sequence of frame-level
patches. They adapted the standard Transformer architec-
ture to videos and proposed the Timesformer architecture
based on spatiotemporal attention mechanisms. Compared
to 3D convolutional networks, this model trains faster and
achieves higher testing efficiency. Sharma et al. [16] proposed
a video action recognition model based on soft attention,
which focuses on identifying important elements in video
frames based on the ongoing actions. Patrick et al. [17]
proposed trajectory attention, which aggregates information
along the implicitly determined motion path, to better capture
the temporal information contained in videos and effectively
assist video understanding. Xiang et al. [18] proposed a sim-
ple and efficient temporal self-attention transformer, which
implements a spatiotemporal self-attention mechanism with-
out increasing computation or the number of parameters
compared to 2D transformer networks.

Interrogation violations often involve violent behavior,
making it an important area of research in behavior recogni-
tion. However, detecting violent behavior poses a significant
challenge due to its volatile, fast, and difficult-to-capture
nature. Compounding this challenge is the lack of a norma-
tive assessment guide to aid in the identification of violent
behavior. To address this issue, researchers have explored
different approaches. Datta et al. [19] used the motion tra-
jectories and limb orientations of people in a scene to detect
violence. They used the motion trajectory and direction infor-
mation of a person’s four limbs to detect human violence
in videos, such as punching, kicking, and using objects to
strike. Lam et al. [20] evaluated the use of multiple fea-
tures and their combinations in a violence scene detection
system, providing an empirical basis for selecting capable
feature sets to deal with heterogeneous content in movies
that include violence scenes. Hassner et al. [21] developed

a violence flow descriptor (ViF) based on the size of flow
vectors, which were then classified as violent or non-violent
using a support vector machine (SVM) in crowd scenes.
Ding et al. [22] proposed a 9-layer 3D-CNN for violence
video detection and achieved a score of 91% on a hockey
game dataset. However, their work used 3D convolution
but employed 2D pooling, resulting in the loss of temporal
information in the input signal. Dong et al. [23] developed
a multi-stream convolutional neural network framework that
processes RGB images from the spatial network and optical
and acceleration stream images from the temporal network
separately using convolutional neural networks. The classifi-
cation results are then obtained through fusion at the end of
the model. Zhou et al. [24] proposed a new input modality,
image acceleration field, to better extract motion attributes.
First, each video is constructed as an RGB image. Second,
the optical flow field is computed using consecutive frames,
and the acceleration field is obtained based on the optical flow
field. Third, FightNet is trained using three input modalities,
namely RGB images for the spatial network, optical flow
images for the temporal network, and acceleration images.
By fusing the results of different inputs, violence interactions
are detected by determining whether the video tells a violent
event.

In summary, attention mechanisms have been widely
applied in the field of behavior recognition, and their per-
formance has been improved to some extent when combined
with most existing models. Regarding the detection of inter-
rogation misconduct, most of these behaviors have violent
characteristics, and the behavior expressions may be more
implicit, with less data available, making their detectionmuch
more difficult than normal behavior detection. The current
focus of violence behavior detection is on how to com-
bine spatiotemporal features for behavior detection, but there
still exist problems of low detection accuracy and excessive
computational complexity. Based on these ideas and issues,
research on detecting misconduct in interrogation rooms can
be carried out.

III. THE PROPOSED SPATIO-TEMPORAL ATTENTION
FUSION SLOWFAST
In this section, a more detailed description of the pro-
posed Spatio-Temporal Attention Fusion SlowFast (STAF-
SlowFast) is provided. The main difference between images
and videos lies in the temporal dimension. The traditional
SlowFast model is a deep neural network that distinguishes
between input paths with different sampling rates, as pro-
posed by Feichtenhofer et al. [12]. The model is divided
into slow and fast paths based on the number of input
frames. The slow path mainly uses deep 2D convolution
and non-degenerate temporal convolution to process spatial
information, while the fast path uses shallow 3D convolution
to extract short-term features in time. However, the traditional
SlowFast model’s one-way connection only considers the
fusion of feature information from the fast path into the slow
path, and it does not fully utilize the feature information
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FIGURE 1. Overview of the proposed Spatio-Temporal Attention Fusion
SlowFast.

in the slow path. To address this issue, a spatio-temporal
attention fusion module replaces the traditional convolutional
module by adding a slow-to-fast path to the original network,
facilitating learning. The spatio-temporal attention fusion
module comprises channel attention and spatial attention,
where channel attention is the information exchange compo-
nent from the fast path to the slow path, and spatial attention
is the information exchange component from the slow path
to the fast path. Both extract video features and fuse them
into the corresponding paths. The channel attention mecha-
nism uses adaptive weight coefficients to capture essential
information from the feature maps and discard irrelevant
features, which helps to improve the network’s performance.
The spatial attention mechanism is used to emphasize the
regions of interest and reduce interference from irrelevant
regions. By fusing spatial and temporal information, the
STAF-SlowFast network achievesmore efficient and accurate
behavior recognition than the traditional SlowFast model and
some existing behavior recognition networks on the public
medium-sized video dataset, as well as the interrogation vio-
lation dataset.

Fig. 1 depicts the overall architecture of the pro-
posed Spatio-Temporal Attention Fusion SlowFast (STAF-
SlowFast) network. The feature map of the slow pathway is
represented as [B, C, T, H,W], where B is the batch size, C is
the number of channels, T is the temporal duration, and H and
W are the spatial height and width, respectively. Similarly,
the feature map of the fast pathway is denoted as [B, βC,
αT, H, W], where α and β denote the frame rate ratio and
channel ratio, respectively, as defined in the original SlowFast
paper by Feichtenhofer et al. [12]. The STAF module is the
key contribution of the proposed network, replacing the tra-
ditional convolutional module. The next section will provide
a detailed description of the STAF module.

A. SPATIAL ATTENTION
In the proposed model, Spatial Attention (SA) aims to extract
features from various spatial locations in the slow path using
weighted processing and fuse them with the fast path in
the channel dimension, thereby enabling the network to
handle spatial information more effectively and improve its
performance.

The fusion method employed in this study involves reduc-
ing the channel dimension through a 1 × 1 × 1 convolution
operation with a kernel size, resulting in a reduction of chan-
nels to βC. Following this, the output dimension of the Spatial
Attention (SA) module remains unchanged, and its output
is upsampled to the nearest neighbor in the time dimension.
The time length T is extended to αT, which aligns it with
the fast path in the temporal dimension. Finally, the output is
incorporated into the features of the fast path, illustrated as

Out [B,βC+βC,αT ,H ,W ]
f

= Con
(
SA

(
Down(I [B,C,T ,H ,W ]

s )
)

, I [B,βC,αT ,H ,W ]
f

)
(1)

where Down(·) is the down-sampling operation, Con(·) is the
fusion operation in the given dimension, and SA(·) is the
spatial attention module. In the proposed model, the extended
CA3D (3D-Coordinate Attention) is used as the spatial atten-
tion module.

The extended CA3D definition is shown in Fig 2. Based
on the CA module proposed by Hou et al. [25], its
temporal dimension is extended as below. For a given
input X = [x1, x2 . . . , xc] three pooling kernels of size
(1,W ,T ) , (H , 1,T ) and (H ,W , 1) are used along the hor-
izontal, vertical and temporal coordinates, respectively. For
each channel encoded to obtain z, it is encoded as

zch(h) =
1
WT

∑
0 ≤ j < W
0 ≤ g < T

xc (h, j, g) (2)

zcw(w) =
1
HT

∑
0 ≤ i < H
0 ≤ g < T

xc (i,w, g) (3)

zct (t) =
1
HW

∑
0 ≤ i < H
0 ≤ j < W

xc (i, j, t) (4)

The three transformations described above enable feature
aggregation in both spatial and temporal directions, resulting
in a pair of spatiotemporal perceptual feature maps. This
approach allows our attention module to capture area block
features in both the two-dimensional spatial and temporal
directions, respectively, which enhances the network’s ability
to accurately locate the features of interest. After obtaining
the corresponding feature maps separately, followed by a
shared 1× 1× 1 convolutional transformation, feature fusion
is performed by

f = δ(F1
(
[zch, z

c
w, zct ]

)
) (5)

where the function F1(·) is a shared 1 × 1 × 1 convolutional
transform function, [·, ·] is a concat operation along the spa-
tial dimension, and δ is a nonlinear activation function.

After the above operation, the feature map f ∈

R
C
r ×(H+W+T ) is obtained. The feature map f is decomposed

in the spatial dimension to obtain three independent tensors

f t = R
C
r ×T , f h = R

C
r ×H and f w = R

C
r ×W . Then, using the

three convolutional transformations, it will be converted into
a tensor with the same channel size as the input X. Finally,
the corresponding attention weights d tc (g), dhc (i) and d

w
c (j)
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FIGURE 2. 3D coordinate attention module.

obtained after the sigmoid function will be subjected to a
matrix product operation with the original input to obtain
yc(g, i, j):

yc (i, j, g) = yc (i, j, g) × dhc (i) × dwc (j) × d tc (g) (6)

B. CHANNEL ATTENTION
There are two functions of the channel attention (CA),
including:

-Adaptively adjust the weight of each fast path to the slow
path to improve the model’s attention to different channels;

- Extract important features in the input data and focus
more attention on these features to better capture important
information in the input data and improve the performance of
the model.

The feature fusion of channel attention is given by

Out [B,βC+C,T ,H ,W ]
s

= Con
(
CA

(
Down(I [B,βC,αT ,H ,W ]

f )
)

, I [B,C,T ,H ,W ]
s

)
(7)

where I [B,βC,αT ,H ,W ]
f is the fast path initial input, Down(·) is

the maximum pooling downsampling in the T -th dimension,
I [B,C,T ,H ,W ]
s is the slow path initial input, Con(·) is the fusion
operation in the specified dimension, and CA(·) is the channel
attention module. For the specific fusion, maximum pooling
is chosen to downsample the fast path in the T dimension after
the output of the CA module matches the input dimension.
Finally the output of the CA module is fused with the slow
path in the channel dimension for feature information.

For the CA module in the present model, we chose CAM
module proposed by Woo et al. [26]. The corresponding
module is shown in Fig. 3 The overall architecture of the
CAM module is similar to SENet [27], except that it uses

FIGURE 3. CAM module.

FIGURE 4. Selected UCF101 records.

both the average pool feature Fcavg and the maximum pool
feature Fcmax . These two features are used to greatly improve
the representational ability of the network. A Multi-Layer
Perceptron MLP is used to compute the importance weights
Mc (F) for each channel, depicted as

Mc (F) = σ (MLP (AvgPool (F)) +MLP (MaxPool (F)))

= σ
(
W1

(
W0

(
Fcavg

))
+W1

(
W0

(
Fcmax

)))
(8)

where σ is a sigmoid function, W0 and W1 share MLP

weights,W0 ∈ R
C
r ×C , and W1 ∈ RC×

C
r .

IV. BENCHMARK DATASET EXPERIMENTS
A. EXPERIMENTS SETUP
The effectiveness of the proposed model is first validated
using the publicly available behavior dataset UCF101 [28].
This dataset, derived from the YouTube video website, is a
typical video dataset for behavior recognition. It consists of
a total of 101 action categories, 13,320 videos, and 27 hours
of footage. The dataset includes five main action categories:
(1) human-object interaction, (2) simple physical action,
(3) human-human interaction, (4) playing a musical instru-
ment, and (5) sports. Fig. 4 displays some of the behaviors
included in the dataset.

The experimental hardware utilized is the Inspur Yingxin
server NF5280M6, equipped with the NVIDIA A40 GPU
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TABLE 1. Network hyperparameter settings.

graphics card. The software environment employed is the
Ubuntu 18.04 LTS operating system. All evaluated deep
learning models are based on PyTorch (version 1.13.0).
An important objective of this work is to conduct ablation
experiments to confirm the validity of the models. Since fixed
model parameters are necessary for ablation experiments, the
hyperparameters were uniformly set for all models, as pre-
sented in Table 1.

To make the model training more appropriate, the experi-
ments used the Warm_up pre-warming training strategy. The
initial learning rate for pre-warming was 0.01 and the total
number of pre-warmings was 34. Dropout regularisation was
used to mitigate overfitting problems and set Dropout_rate to
0.5. The training, validation, and test datasets were split 6:2:2.
The input image size was [704,576], and the input image was
randomly cropped to size [224,224] in training and [256,256]
in testing.

For evaluating the proposed method, the experiments
evaluation metrics as shown in Table 2 were used in the
experiments.

B. ABLATION EXPERIMENT
The proposed SlowFast network with spatio-temporal atten-
tion fusion comprises three essential components: spatial
attention, channel attention, and attention fusion. This section

TABLE 2. Evaluation indicators.

details the mechanisms for acquiring spatial and channel
attention, along with the attentional fusion mechanism. It also
employs ablation experiments to select the optimal model.

Regarding channel attention, we conducted a comparative
evaluation between the CAM module and the ECA module
[29], which is an enhancement of SENet [27]. Although
SENet’s dimensionality reduction reduces model complex-
ity, it breaks the direct correspondence between channels
and their weights. Therefore, Wang et al. [29] decided not
to employ dimensionality reduction to calculate channel
attention, instead trading a small number of parameters for
significant performance improvement.

Concerning spatial attention, we comparatively evaluated
three attentional mechanisms: Coordinate Attention, Spatio-
Temporal Attention (ST-Attention) [30], and Extended 3D
Coordinate Attention (CA3D). We selected ST-Attention,
which extends self-attention along the temporal axis to a 3D
temporal convolution module, as proposed by Wei et al. [30].
The module is applicable to the video domain and can be
directly incorporated into many other spatiotemporal net-
works, enabling the model to accurately capture dynamic
changes and spatiotemporal structure in the video, thus
enhancing the model’s performance in these tasks. For the
base model, the following three options were considered. (1)
Scheme 1 investigates the impact of channel attention on the
model. We employed the basic SlowFast model as a foun-
dation and substituted the convolutional fusion connection
method with the Channel Attention (CA)module. (2) Scheme
2: To investigate the effect of using convolution for fusion
connection in different single pathways, the SlowFast model
was used as the base and the fusion direction was changed.
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TABLE 3. Results of ablation experiments.

FIGURE 5. Converged connection network.

Only the SA module was used for fusion. (3) Scheme 3
investigates the impact of adding Slow-Fast paths and how
different spatial attention mechanisms affect the network.
We employed the Slow-Fast model as the base and intro-
duced a Slow-Fast path connecting to the SA module. This
retained the original Fast path and Slow path, which were
fused through convolutional connection. The model’s archi-
tecture is illustrated in Fig. 5. (4) Scheme 4 explores the
the impact of combining different types of channel attention
and spatial attention. We modified the original convolutional
fusion method of the Fast path in Fig. 5 by incorporating the
CA module for fusion connection. Fig. 1 depicts the model’s
structure, with both the SA module and CA module altered.

A total of 16 combinations were considered, as presented
in Table 3, which also displays the experimental results of
the different combinations. From the results of Scheme 1 and
Scheme 3, it is evident that merely changing the convolu-
tional fusion method of the original SlowFast model does not

significantly enhance, or even slightly decreases, the recog-
nition performance. Meanwhile, the experimental results of
Scheme 2 demonstrate that changing the fusion direction
alone has little impact on the model. The same is true when
adding the SA module without changing the convolutional
fusion of the Fast path. However, fusing the three com-
binations of channel attention and spatial attention leads
to a significant boost in model performance, with a small
computational cost for a considerable increase in accuracy.
Specifically, SlowFast+ CA3D

+CAM achieved a 1.52%
improvement in Top-1 accuracy.

C. COMPARATIVE EXPERIMENT
As presented in Table 3, the combination of SlowFast+
CA3D

+CAMyielded the best results on the UCF101 dataset,
thus selected as the final proposed scheme for comparison
with four other models, namely C3D, Timesformer, TSN
[31] and basic SlowFast. Table 4 shows the experimen-
tal results, where the proposed scheme only slightly falls
short of the Top-1 value of Timesformer. However, when
it comes to GFLOPs, which reflects computational power,
Timesformer’s computational complexity is 30 times higher
than the proposed solution. Furthermore, STAF-SlowFast has
fewer model parameters than C3D, Timesformer, and Slow-
Fast, and only slightly more than TSN, which has the lowest
number of parameters but onlymarginally better performance
than C3D. STAF-SlowFast outperforms the other four models
across all three metrics (number of model parameters, Top-1
accuracy, and GFLOPs).

D. ATTENTIONAL FUSION MECHANISMS ANALYSIS
To investigate the contribution of attentional fusion mech-
anisms in the network, we used a Grad-CAM visualisation
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TABLE 4. Comparison of performance of existing models.

FIGURE 6. Map of Grad-CAM visualization features.

model [32] for evaluation. We viewed the SlowFast and
STAF-SlowFast heat maps for the two channel convolutional
layers prior to output. We selected two videos from UCF101
for the heat map visualisation analysis, and the final results
are shown in Fig. 6. The figure clearly shows that the original
SlowFast network does not focus well on the key feature
regions, whether in the slow or fast path. The proposed
STAF-SlowFast network mainly focuses on the human body
structure in the Slow path, and the Fast path mainly focuses
on the video motion pixel part, which helps the network to
perform spatiotemporal feature extraction.

For the role of different selections of SA and CA mod-
ules corresponding to the model, the Grad-Cam visualization
model was used to observe the heat map after the first fusion
behavior of the model.

Heat maps (a) and (b) in Fig. 7 show that the two separate
paths using convolution for information fusion have similar
effects, as evidenced by the uniform heat distribution on
the surface of the video in both the slow and fast paths.
This proves that the author’s choice of fusion direction is
correct and that the flow direction of the fusion does not
make a practical difference to the model. Comparing (a)
and (c), it can be observed that the model using attention
modules exhibits a more concentrated heat map in the spatial
dimension, which is beneficial for extracting spatial back-
bone information. When comparing (a) and (d), it is evident
that the distribution of the heat map is relatively uniform. This
suggests that the convolutional fusion of the two paths does
not significantly enhance the extraction of spatiotemporal
information compared to the original model. The heat map (d)

FIGURE 7. Comparison of fusion convolution module and attention
module heat maps.

TABLE 5. STAF-SlowFast comparative results with other models.

with the CA3D module exhibits a more concentrated heat map
in the temporal dimension, which is beneficial for extracting
temporal backbone information. In summary, the SA and CA
modules using attention mechanisms are more effective for
extracting spatiotemporal information than traditional convo-
lution modules, and fusing information can effectively help
the network to train feature extraction.

E. HMDB51 DATASET’S-BASED EVALUATION
From the experimental results, it can be observed that for
datasets with large amounts and diverse categories of data,
our proposed model can outperform the original SlowFast
network in terms of performance. However, it is unclear
how our model performs on datasets with small amounts
and few categories of data. Therefore, we investigated the
performance of our model using the HMDB51 dataset [33].

The HMDB51 dataset consists mostly of clips from
movies, as well as a small portion from public databases
such as the Prelinger Archive, YouTube, and Google Videos.
The dataset contains 6849 clips, divided into 51 action cate-
gories, with at least 101 clips per category. Action categories
can be classified into five types: (1) facial actions without
object manipulation, (2) facial actions with object manip-
ulation, (3) general body movements, (4) body movements
with object interactions, and (5) human interactions with each
other.
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FIGURE 8. Environment of the interrogation room.

According to Table 5, it can be observed that our proposed
model outperforms all models except Timesformer on the
small dataset. Due to the limited amount of data and the
simplicity of the model, the Top-1 metric is lower than that
of Timesformer. However, both the number of parameters
(Params) and the number of GFLOPs are significantly lower
than Timesformer. In summary, the proposed STAF-SlowFast
improvement is effective, as it demonstrates performance
improvements on both small and large datasets.

V. APPLICATION FOR IDENTIFYING VIOLATIONS
This work is driven by the actual requirements of a Chinese
public security agency. In this section, we apply the proposed
system to detect interrogation violations. In consideration
of the sensitivity of the data and the protection of personal
privacy, the dataset used for training is not directly obtained
from the interrogation scene surveillance video. Instead, it is
a simulation and emulation of the interrogation violation
scenario under the supervision of a professional judge, who
then records the relevant violations.

In order to detect abnormal behavior while also distin-
guishing between normal and abnormal behaviors, we con-
structed two datasets, namely Dataset I and Dataset II.
Dataset I consists of various categories of abnormal behaviors
and solely simulates the occurrence of misconduct within
interrogation rooms. It is used to evaluate the model’s ability
to accurately identify abnormal behaviors. The purpose of
constructing Dataset II is to provide a more realistic dataset
that better simulates the interrogation room environment and
the occurrence of unforeseen events. Dataset II is an extension
of Dataset I and includes additional categories of abnormal
behaviors as well as normal behaviors. The model is expected
to recognize both types of behaviors and accurately identify
different types of abnormal behaviors within Dataset II.

A. DATA ACQUISITION
The simulated interrogation room environment is depicted
in Fig. 8, with the camera positioned above the inter-
rogator’s seat. The camera model used is a Hikon camera
DS-2DC4423IW-D, featuring 4 megapixels, a maximum
aperture of F1.6, a focal length ranging from 4.8mm to
110mm, and a video recording size of 704 × 576 pixels.

TABLE 6. Four categories of behaviors and the determining rules.

TABLE 7. Expansion behavior and rules.

The Dataset I was constructed by categorizing small video
clips and storing them in folders based on specific rules. All
clips were saved in .avi format. Table 6 shows the categories
and the corresponding rules used for categorization.

Three new categories, namely abnormal jumping, fight-
ing, and normal behavior, were added to Dataset II. Normal
behavior was used as a control group for abnormal behavior.
The specific descriptions of the newly added behaviors are
shown in Table 7.
To increase the complexity of the dataset and better simu-

late real-life scenarios, stools, tables, and people were added
to block the view of the person committing the act during the
experiment. During filming, the number of people gradually
increased from one to four, adjustments were made to the
brightness of the location, changes were made to clothing and
the use of hats, and the camera angle was varied to subject
the model training to a range of factors. For the dataset,
to enhance its challenging nature, certain portions of the
collected data are subjected to operations such as rotation,
flipping, adding noise, and applying color filters. This aims
to improve the generalization capability and robustness of the
learning model in later stages.

Following the shooting scheme designed above, the details
of dataset I are obtained as shown in Table 8.
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TABLE 8. Interrogation behavior dataset I.

FIGURE 9. Selected trial infringement datasets.

TABLE 9. Interrogation behavior dataset II.

The Dataset I comprises videos of the real environment
and the simulated construction environment and includes
four action categories: Assault, Long Squat, Push-Up, and
Abnormal Running. The total number of videos is 912 with a
total duration of 3 hours and 16 minutes. Fig. 9 displays some
of the recorded action clips.

Dataset II is more challenging as compared to Dataset I
with larger amount of data and more categories. The detailed
description of the collected datasets is shown in Table 9.

Dataset II comprises videos from both real-world scenarios
and simulated environments. It consists of a total of seven
action categories, namely, assault, long squat, push-ups,

FIGURE 10. Some of the new action category fragments.

TABLE 10. Results of the interrogation dataset I for different models.

abnormal running, abnormal jumping, assault with stick, and
normal behavior group. The dataset comprises 2375 video
clips, with a combined duration of 5 hours and 8 minutes.
Among them, Fig. 10 shows some newly added action seg-
ments captured during filming.

B. PERFORMANCE EVALUATION BASED ON DATASET I
All metrics listed in Table 1 were used for evaluation, and
the model training parameters remained the same as in
Section IV-A (Table 2). Following the ablation experiments
on the public dataset, our proposed STAF-SlowFast archi-
tecture exhibited superior performance. Table 10 compares
the results of various models with our proposed model on
the interrogation violations dataset. The correct rates for each
network model were 96.57% (C3D), 97.28% (Timesformer),
97.28% (SlowFast), 92.93% (TSN), and 98.91% (STAF-
SlowFast), respectively.

The results above demonstrate that the STAF-SlowFast
network outperforms other existing behavior recognition
models on the interrogation violations dataset, achieving the
best results in the Top-1 metric. Table 11 presents the results
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TABLE 11. STAF model performance compared to other existing models on Dataset I.

TABLE 12. Comparison of STAF-SlowFast with existing models on Dataset II.

of test sample identification for the different models and the
STAF-SlowFast network separately.

According to Table 11, it can be observed that the C3D,
Timesformer, TSN, and SlowFast models show lower detec-
tion metrics for long squats, push-ups, and abnormal running
behaviors, indicating their inability to effectively detect these
behaviors. However, a significant improvement in accuracy is
observed for the STAF-SlowFast in all behavior categories,
indicating its ability to accurately identify them. The recall
rate for all three categories reached 100%, indicating that
the STAF-SlowFast network can capture the characteristics of
each category very well. The F1-score evaluation metrics also
showed improvements compared to other models, demon-
strating the effectiveness of our network model in identifying
and classifying irregular violations.

C. PERFORMANCE EVALUATION BASED ON DATASET II
The model training parameters were uniformly applied for
performance evaluation using the metrics from Dataset I.
In Table 12, we compared the results of different models with
our proposed model on the newly constructed interrogation
behavior dataset. The accuracy of each network model was

as follows: 92.78% (C3D), 97.49% (Timesformer), 98.54%
(SlowFast), 94.75% (TSN), and 99.16% (STAF-SlowFast).

The column ’Evaluation Indicators’ in the table 12 demon-
strates that the STAF-SlowFast network outperforms other
existing behavior recognition models on the new interro-
gation misconduct dataset, achieving the best performance
in the top-1 metric. Due to the considerably larger size
of the new dataset compared to the initial one, the final
results are higher than those obtained on the initial dataset.
To investigate the advantages of the STAF-SlowFast over
other models, Table 12 presents the recognition results of
different models compared to STAF-SlowFast on the test
samples.

In the remaining part of Table 12, our proposed
STAF-SlowFast demonstrates excellent performance across
all categories. As interrogation misconduct may pose a threat
to the safety of personnel inside the interrogation room, our
model needs to accurately identify each misconduct behav-
ior, respond promptly, and distinguish between normal and
abnormal behaviors. By observing the table, it is evident
that the STAF-SlowFast, with the inclusion of the pathway
attentionmechanism, outperforms the original SlowFast in all
three metrics. This indirectly demonstrates the feasibility and
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enhanced accuracy of our approach in identifying violation
behaviors.

VI. CONCLUSION
This paper proposes a spatio-temporal attention fusion Slow-
Fast network for intelligent detection of interrogation viola-
tions. Themodel utilizes the slow-fast and fast-slow pathways
to exchange information between different layers and intro-
duces an attention mechanism to focus on the regions and
temporal sequences required for action recognition. Through
ablation experiments, the attention acquisition and fusion
mechanisms in the spatial and temporal channels are opti-
mized. The combination of Slow-Fast + CA3D

+ CAM
achieves the best performance. On the UCF101 dataset, the
proposed model improves the Top-1 detection accuracy by
1.52% compared to the SlowFast. On the HMDB51 dataset,
the accuracy reaches 69.85%, surpassing the SlowFast but
still leaving room for further improvement. Furthermore,
we further apply this model to the identification of inter-
rogation misconduct in Dataset I and Dataset II, achieving
accuracies of 98.91% and 99.16% respectively. This demon-
strates the effectiveness of the model in recognizing indoor
misconduct behaviors during interrogations. Compared to
some state-of-the-art behavior recognition models, the pro-
posedmodel proves to be highly competitive. However, it still
faces challenges in training on insufficient data, such as the
HMDB51 dataset. In futurework, wewill focus on addressing
this issue.
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