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ABSTRACT Adenoid hypertrophy is a pathological condition characterized by the enlargement of the
adenoids in children, which may lead to various problems. The conventional manual measurement is time-
consuming and subject to subjective errors. Previous automated methods based on landmark detection in
X-ray images have shown reliability. However, these methods neglect global features, making it difficult
to locate landmarks accurately and thus affecting adenoid-to-nasopharyngeal (AN) ratio estimation when
migrating to MRI images. In this paper, we first apply a deep-learning method to automatically assess
adenoid hypertrophy in MRI images. We propose an adenoid network (ADNet) to capture local and global
features near landmarks to achieve accurate landmark localization. Specifically, ADNet uses an encoder-
decoder architecture where we employ a depthwise separable convolution-based encoder to extract local
features and then employ an adaptive convolution-based decoder to capture global features. We collected a
dataset of 500 cephalometric MRI images to train and evaluate the performance of the proposed model. Our
experimental results demonstrate that our network achieves state-of-the-art performance with an average
radial error of 4.85 pixels for landmark detection, an average successful detection rate of 96% within
15 pixels, and an error of 0.026 for the calculated AN ratio.

INDEX TERMS Adenoid hypertrophy, deep learning, medical image processing, landmark detection.

I. INTRODUCTION
The adenoid is a collection of lymphoid tissue situated in the
posterior region of the nasopharyngeal airway, forming a part
of Waldeyer’s ring. Adenoids can become physiologically
enlarged at the age of 2-10 years old, then degenerate around
the age of 8-10 years, and usually atrophy completely by
the age of 12-14 years [1]. However, adenoidal infection and
inflammationmay result in pathological adenoid hypertrophy
(AH), obstructing the upper airway. This can lead to mouth
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breathing, recurrent sinusitis, otitis media, changes in facial
growth in children, or more severe complications such as
obstructive sleep apnea syndrome, impaired cognitive func-
tion, and abnormal intellectual development. These serious
complications often result in the need for adenoidectomy to
improve the overall quality of life [1], [2], [3], making timely
diagnosis and treatment of adenoid hypertrophy crucial.

Currently, the main diagnostic methods for detecting ade-
noid hypertrophy include flexible fiber-optic nasal endoscopy
and nasopharyngeal radiological examination (such as lateral
cephalography) [1], [4]. Nasal endoscopy enables direct
visualization of the adenoids and adjacent structures, allow-
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FIGURE 1. An example of the Fjioka assessment method based on cephalograms, the AN ratio is measured through four
landmarks. LM1, LM2, LM3, and LM4 are the four landmarks that we need to detect.

ing for measurement of adenoid enlargement severity and
proportionate airway blockage. This provides strong evidence
for preoperative diagnosis and evaluation of postoperative
outcomes. However, the invasive nature of nasal endoscopy
makes it challenging for many children to cooperate with
physicians during the examination, limiting its clinical
use [5]. As a result, lateral cephalography has become the
most commonly used tool for detecting adenoid hypertrophy,
and numerous studies demonstrate its high reliability in
identifying AH [6], [7].

Among all assessment methods based on cephalograms,
the most notable is based on calculating the adenoid-to-
nasopharyngeal (AN) ratio, described by Fujioka [8]. This
method aims to determine the ratio between the measurement
of the adenoid tissue (defined by the distance between the
basiocciput region and the most convex part of the adenoid
pad) and the nasopharyngeal aperture (defined by the distance
between the sphenobasiocciput and the posterior edge of
the hard palate) [8]. As shown in FIGURE 1, four relevant
landmarks are manually marked on the cephalograms to
measure the AN ratio. However, accurate identification of
these landmarks is highly dependent on the examiner’s clin-
ical experience, leading to different results among different
examiners. Furthermore, this task is time-consuming and
involves repetitive work that may affect doctors’ productivity.
Therefore, it’s meaningful to develop an accurate and
efficient algorithm for the automatic measurement of AN on
lateral cephalograms.

Benefiting from the rapid development of artificial
intelligence, deep learning-based methods have made great
progress in many tasks such as medical image classifi-

cation [9], retinal vessel segmentation [10], brain tumor
segmentation [11], [12] and so on [13], [14]. Despite
these advances, research on the use of deep learning-
based methods for radiographic adenoid hypertrophy (AH)
assessment remains limited [15], [16]. Furthermore, existing
methods are primarily based on X-ray images and do not
perform well when applied to other image formats such
as Magnetic Resonance Imaging (MRI) images. Given the
potential radiation risks associated with X-rays, especially for
lateral cephalometric X-rays, patients and their families may
be uncomfortable with this, making taking regular check-ups
during conservative treatment may be difficult. In contrast,
MRI is a non-invasive, non-radiographic examination, with
no radiological or biological damage to brain tissue, andMRI
images have a relatively high resolution of soft tissue, thus it
is more suitable for examining the adenoids [17]. However,
up to date, no automated diagnosis method for adenoid
hypertrophy based on MRI images has been proposed. Given
the above, the automatic method for AH assessment in MRI
images is extremely essential.

In this paper, we propose the first deep learning model for
automatically measuring AN ratios in MRI images to detect
AH and assess its severity in patients. Specifically, we pro-
pose a novel network called Adenoid-Net (ADNet) with
encoder-decoder architecture for accurate landmark detection
around adenoid sites and then calculate the AN ratio. Our
model involves a sequence of convolutional neural networks
as the feature extractor to extract features that guide landmark
detection and a landmark detection head to export the position
of predicted landmarks. In the feature extractor, we employ
a depthwise separable convolution-based encoder to extract
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local features, making the network pay more attention to
important regions. We then introduce adaptive convolution
in the decoder to catch long-range and deformation features.
The landmark detection head predicts the heatmaps for
landmarks and finally outputs the coordinates of four
landmarks. For efficient acquisition of numerical coordinates,
we integrate a numerical coordinate regression layer [18] into
the detection head after the heatmap-generating layer. The
numerical coordinate regression layer enables the network to
be fully differentiable, thereby overcoming the limitations of
heatmap-based methods [18]. To evaluate the effectiveness
of our model, we collected 500 lateral MRI images with
professional annotations from Shuguang Hospital for this
study. Our experimental results show that our model can
automatically locate the four adenoid landmarks with an
average point error of 4.85 pixels and then measure the AN
ratio with an average error of 0.026. Thus, our model can be
a powerful tool for physicians to access AH in MRI images,
reducing the burden of repetitive work for physicians and
improving their efficiency.

In summary, the key contributions of this work are as
follows:

• We first apply the deep learning-based approach to the
automatic assessment of AH inMRI images.We propose
a novel model named ADNet to study the task of
landmark detection around adenoids in MRI images and
thereby automatically evaluate the presence of AH in
patients, which can effectively mine local and global
features to achieve fast and accurate landmark detection.

• We propose an adaptive convolution module that can
make the convolution randomly sampled by learning the
offset of sampling points to adapt to the deformation
features. We propose a simple and effective encoder to
extract features which significantly reduces the number
of model parameters.

• Experimental results show that our network can
effectively detect four landmarks and assess adenoid
hypertrophy with high accuracy, indicating it can be
an effective method to assist physicians in analysis and
diagnosis.

The rest of this paper is organized as follows. Section II
outlines the work related to medical image landmark detec-
tion. Section III describes the details of the proposed model.
Section IV presents the experimental setup and discusses the
result. Finally, Section V draws the conclusions and discusses
further work of this paper.

II. RELATED WORK
In this section, we present recent work that is most relevant
to our work, including human pose estimation, medical
landmark detection methods and deformable convolution.

A. HUMAN POSE ESTIMATION
The main goal of Human Pose Estimation (HPE) is to detect
joint key points of the human body, which is a key point

localization task in computer vision and is widely used as a
fundamental task for semantic segmentation, pedestrian re-
identification, action recognition, etc.

The original HPE methods [19] depend on hand-crafted
features to learn the relations between different body parts
to describe the human body. However, they are limited in
accuracy especially under severe occlusions and complex
conditions. Toshev et al. [20] applied Convolutional Neural
Networks to the human pose estimation task for the first
time, which can directly get the specific coordinates of the
body parts. However, this method directly regression fits the
image coordinates, which in turn is highly nonlinear, making
it difficult for the network to learn such a mapping. To cope
with this problem, Thompson et al. [21] proposed a method
to obtain key point coordinates by generating a Gaussian
heatmap, where each pixel in the heatmap represents the
probability of the existence of an articulation point. Since
then, most HPE methods employ Gaussian heatmap based
methods to detect joint key points. To deal with body
parts with different scales, such as face, hands, and feet,
Newell et al. [22] proposed a Stacked Hourglass Network
(SHG) that captures features at each scale by stacking several
hourglass modules with pooling and upsampling. To cope
with the challenge of occluded joints, invisible joints, and
complex backgrounds in the wild for HPE, Chen et al. [23]
proposed a two-stage network called Cascaded Pyramid
Network (CPN) with a GlobalNet and a RefineNet, and
the GlobalNet is responsible for the easy samples and the
RefineNet aims at handling those challenging samples. Most
existing architectures use the high-to-low and low-to-high
processes to learn multi-scale features. However, recovering
from low-resolution representations does not cover the loss of
information of downsampling. To maintain high-resolution
representations through the whole process, Sun et al. [24]
presented a novel architecture named HighResolution
Net (HRNet).

Medical image landmark detection and HPE are both key
points detection tasks, and there are some correlations in
methodology. Some papers apply HPE methods to medical
landmark detection tasks without adjustment. However,
compared with natural images, medical images are not
such rich in information and have very little difference
between pixels. Therefore, the human pose approach cannot
be directly transferred to medical landmark detection tasks.
In the next section, we describe the work related to medical
landmark detection.

B. MEDICAL LANDMARK DETECTION
In the field of medical image analysis, accurate localization
of anatomical landmarks is a critical step in treatment
planning. Recent advances in deep learning have lead to
the development of several effective methods for landmark
detection. Zhong et al. [25] used a two-stage U-Net heatmap
regressing method for skull landmark detection. They embed
attention mechanisms with global stage heatmaps to guide
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the local stage heatmap patches. To address the challenges
of detecting landmarks with different levels of resolutions
and semantics, Chen et al. [26] proposed an attentional
feature pyramid fusion module to fuse high resolution and
semantic enhanced features to achieve higher accuracy for
cephalometric landmark detection. To achieve large-scale
landmark detection, Liu et al. [27] proposed a two-stage
model to segment two bones and detect 175 key points in CT
images, in which the first stage produces coarse segmentation
and landmark and then the second stage crop the regions
of interest from the original image for further segmenta-
tion refinement and landmark detection. Khanal et al. [28]
proposed a method combining with Densenet to detect
the landmarks of spinal bone corners. Noothout et al. [29]
employ a global-to-local localization approach in which
the global convolution network performs regression and
classification to simultaneously get displacement vectors
and the presence of landmarks of interest separately, and
then landmarks are refined by analyzing local sub-images.
To allow a model to learn anatomical context rather than
depending on handcrafted graphical models, Oh et al. [30]
proposed a novel framework consisting of the Local Feature
Perturbator and the Anatomical Context loss, forcing the
network to gaze relevant features more globally and learn
the anatomical context based on spatial relationships between
the landmarks.

In conclusion, most existing landmark detection methods
are based on Gaussian heatmap regression to learn the
positions of landmarks of medical images, suggesting the
great applicability of heatmap regression. In view of this,
in this paper, we consider utilizing heatmap regression to
detect landmarks.

C. DEFORMABLE CONVOLUTION
In the field of visual recognition, a key challenge is
accommodating geometric variations in object scale, pose,
and viewpoint. Typically, researchers address this challenge
by either training models on a large dataset with sufficient
variations or using transformation-invariant features and
algorithms like SIFT (scale invariant feature transform) [31].
However, the design of such algorithms relies heavily on
human expertise and empirical intuition. To overcome these
limitations, deformable convolution [32] was introduced
to learn spatial offsets that enable the network to adjust
its sampling position based on the previous feature map
and adapt to the geometric changes of the object. This
method adds offsets to the regular grid sampling locations in
standard convolution, thereby achieving free deformation of
the sampling network. As a result, the network can adjust the
convolution receptive field and sampling locations according
to the object scale and shape, significantly improving its
ability to model deformed features.

In our task, the morphology of adenoids is very complex
and adaptive, whichmakes the localization of key pointsmore
difficult. Therefore, we introduce deformable convolution to
help our network extract the features of adenoids better.

III. METHOD
A. NETWORK STRUCTURE
We propose a novel model named ADNet for adenoid land-
mark detection in MRI images. FIGURE 2(a) illustrates the
overall framework of ADNet. Our proposed model consists
of an encoder, a decoder, and a landmark detection head.
The encoder is used for multi-level feature extraction of the
image, and then the decoder upsamples to recover the image
resolution. Skip connections are used between each encoder
layer and its corresponding decoder layer to compensate for
the loss of information due to downsampling. Finally, the
detection head predicts the landmarks coordinates based on
the extracted features. We introduce each component of the
proposed network in the following sections.

1) ENCODER
For the overall structure of the encoder, we first use a
standard Visual Geometry Group (VGG) block [33], i.e.,
two standard 3 × 3 convolution layers (Conv) each followed
by a batch normalization layer (BN) and a rectified linear
unit (ReLU) to extract the image features initially. Then,
to extract information at each resolution for multi-scale
features, we stack four blocks of our depthwise-inverse-
bottleneck (DI) block, between which 2 × 2 maximum
pooling is adopted for downsampling to reduce the resolution.

The details of the DI block are shown in FIGURE 2(b).
Each DI block consists of a depthwise convolution, two
vanilla convolution layers, and residual connections. Depth-
wise convolution applies a different convolution kernel to
each input channel to extract spatial features with the kernel
size of 7 × 7 and padding of 3. And then, the vanilla
convolution layers use a 1 × 1 convolution kernel to combine
features of different channels to perform cross-channel
feature selection. By introducing these modules, the network
can learn the importance distribution of the input terms to
focus more on features in important regions. This DI block
has an inverse bottleneck layer structure, with the middle
layer having the largest number of channels. It extracts,
expands, and compresses features at each layer and then
adds the final features to the original input features through
residual connections. The inverse bottleneck layer structure
can effectively reduce information loss. The effectiveness of
the encoder is demonstrated using experimental results in
Section IV-F.

2) DECODER
Similar to the way the encoder is organized, we stack a
VGG block and three convolution-adaptive (Conv-adapt)
blocks, where each Conv-adapt block consists of a standard
3 × 3 convolution block (Conv + BN + ReLU layer) and an
adaptive convolution. To upsample the low-resolution feature
maps to the high-resolution feature maps, we use transpose
convolution operation between adjacent Conv-adapt blocks.
To achieve interaction between deep and shallow information,
we use skip connections to connect the encoder with the
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FIGURE 2. Framework of ADNet. Firstly it extracts features through an encoder-decoder type network, with skip-connection to retain spatial
information. Secondly, it outputs four heatmaps to predict landmarks. Finally, it employs a numerical coordinate regression layer to infer the position of
landmarks based on heatmaps.

FIGURE 3. Structure of adaptive convolution module.

decoder. This approach allows for the efficient extraction of
features from multiple resolutions and the integration of both
deep and shallow information for more accurate predictions.

The adaptive convolution module is implemented using
a two-branch structure and the its details are shown in the
FIGURE 3.

One of the branches employs deformable convolution
to learn the offset of each sampling point position in the
convolution kernel. The deformable convolution enables

the kernel to be randomly sampled within a certain range
of the current position rather than being restricted to
the regular grid points of conventional convolution. The
deformable convolution consists of two steps: first, it gets the
offsets and deformation parameters via 3 × 3 convolution;
second, it calculates the offset sampling points using bilinear
interpolation. Formally, we calculate the output of each input
point as follows:

YDeform(p) =

∑
k

wkx(p+ skpk + 1pk ), (1)

where wk denotes the weight of convolution kernel, x(p) rep-
resents the feature vector of the input featuremap x at position
p, and y(p) represents the feature vector of the output feature
map Y at position p. sk is the adaptive dilation factor, pk
denotes the handpicked offset, and 1pk is the spatial offset.
Note that usually the offsets 1pk and sk are fractional,
resulting in non-integer coordinates that cannot be localized
in the image data. To address this, we apply the bilinear
interpolation method to determine the location of the sampled
points, which is defined as follows:

x(p) = 6pG(q, p)x(q), (2)

where G(·) denotes the bilinear interpolation kernel and q
represents all integer positions in the feature map x.
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The other branch employs a vanilla 3 × 3 convolution,
whose output is calculated as follows:

YNormal(p) = 6kwk ∗ x(p+ pk ). (3)

Then the final output of adaptive convolution is obtained by
combining the output of the two branches, which is defined
as follows:

YAdap = YDeform + YNormal. (4)

The adaptive convolution module can dynamically
adjust the shape and size of the convolution kernel
according to the input, which enables the module to
adapt to various perceptual field sizes and shapes. This
ability to modify the kernel size and shape facilitates more
precise feature extraction of the target object, resulting in
improved performance. Furthermore, the module can learn
the importance of each pixel point in the input feature map,
which allows the network to focus more on the features
of crucial regions and enhance the model’s perceptual and
expressive power.

3) LANDMARK DETECTION HEAD
Landmarks in the vicinity of adenoids maintain local
morphological features and structural stability despite local
disorder. Therefore, the local neighborhood centered on the
landmarks is a remarkable marker for dependent mining.
Intuitively, the features closer to the landmarks can provide
more accurate guidance for detection. With this in mind,
we define the heatmap using Gaussian functions to highlight
the location of landmarks.

It is worth noting that there are two defects in the process
of generating coordinates from the heatmap: 1) obtaining
the final coordinates from the heatmap requires the use of
argmax, which is non-differentiable and cannot be learned
directly; 2) the coordinates obtained are restricted to integers,
leading to inaccuracies that depend on the resolution of the
heatmap. While the supervisory signal is directly derived
from the heatmap, these two defects lead to the separation
of the loss function from our target coordinates, thus
impacting the prediction results. To address these problems,
we adopt the method proposed in [18]. Specifically, we add
the differentiable spatial to numerical transform (DSNT)
layer to our landmark detection head at the last layer so that
we can get numerical landmarks from the heatmap and make
the network a fully differentiated end-to-end network, which
leads to better performance.

B. LOSS FUNCTION
Considering that the final output of the model is numerical
coordinates, we define the core term of loss function as
computing the two-dimensional Euclidean distance between
the prediction µ and ground truth q, which can be expressed
as follows:

Leuc(µ, q) = ||q− µ||2. (5)

TABLE 1. Summary of the dataset used in this study.

The Euclidean loss function has been shown to be effective in
optimizing the distance between predicted and actual position
according to the previous studies [34].

However, relying solely on this metric may lead to
confusion with the problem of different heatmaps pro-
ducing the same coordinate output. To address this issue,
we incorporate pixel-level supervision of the heatmap during
training by introducing regularization. Regularization has
also been shown to play a critical role in improving model
generalization [35]. Therefore, the final loss function is a
combination of the Euclidean loss and a regularization term
defined as:

L = Leuc(DSNT (P), q) + Lreg(P,Q), (6)

where P and Q denote the predicted heatmap and heatmap
generated from ground truth, respectively. And the regulariza-
tion is Jensen-Shannon divergence that is defined as follows:

JS(P||Q) =
1
2
6p(x)log(

2p(x)
p(x) + q(x)

)

+
1
2
6q(x)log(

2q(x)
p(x) + q(x)

). (7)

IV. EXPERIMENT
A. DATASET
To our knowledge, there is no publicly available landmark
dataset of adenoid MRI images. In this study, we collected
lateral cephalometric MRI images from 331 patients in
Shuguang Hospital. Then we select three images for each
patient, including the nasal septum image, the left one and
the right one next to it. After removing images of poor quality,
we obtained a total of 500 usable images. These images are
converted from DCM format to PNG, then uniformly resized
and cropped to 540× 640. The dataset is annotated with four
marker points on MRI images by two specialized physicians
and in consent. For each image, we obtain the positions of
four landmarks and the AN ratio. If the AN ratio is greater
than 0.6, the child is suspected of having AH. We divide
the dataset into a training set, validation set, and test set in
the ratio of 7:1:2, respectively, for our experiments. And the
details of the dataset are shown in TABLE 1.

B. IMPLEMENT DETAILS
In this study, we conduct experiments on a Tesla V100 GPU
using the PyTorch deep learning framework. We resize the
images to 256 × 256 pixels in the training process. We use
random resize, horizontal flip and random rotation (±15◦) as
data augmentation techniques to reduce overfitting. During
training, we use the Adam [36] optimizer with the learning
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TABLE 2. Confusion matrix.

rate initialized as 1e-4 and multiplied by 0.5 every 50 epochs.
The number of epochs and batch size are 200 and 16,
respectively.

C. EVALUATION METRICS
To verify the performance for the detection of landmarks of
different models, we calculated the mean radial error (MRE)
between the predicted coordinates and ground truth, which is
defined as:

MRE =
1
n

n∑
i

Ri, (8)

where n denotes the number of landmarks and Ri stands
for the Euclidean distance between the predicted landmark
coordinates and the ground-truth coordinates. We also
calculate the successful detection rate (SDR) to evaluate the
percentage of predicted landmarks located within a certain
threshold distance from the ground truth. Besides, for the
determination of adenoid hypertrophy, we calculated the
average AN ratio error (ANE), average accuracy (ACC),
precision (PRE), recall (Recall), and macro F1 score to test
the performance of the model as follows:

ANE =
1
n

∑
i

|AN i
pre − AN i

gt |, (9)

where AN i
pre and AN

i
gt denote the predicted AN ratio and the

ground-truth AN ratio of the ith sample respectively.

ACC =
TP+ TN

TP+ TN + FP+ FN
, (10)

PRE =
TP

TP+ FP
, (11)

Recall =
TP

TP+ FN
, (12)

where TP, TN , FP, and FN denote the amount of true
positive, true negative, false positive, and false negative
samples respectively, the details are shown in TABLE 2.

F1 = 2
PRE × Recall
PRE + Recall

. (13)

D. BASELINE COMPARISON
To evaluate the performance of our model, we compare
ADNet with other baseline models. These models include
three well-known key point detection networks: SHG [22],
CPN [23] and HRNet [24], and UNet-a baseline network
for medical image processing. These key point detection
methods are all based on Gaussian heatmaps, where they
model keypoint locations as heatmaps and train convolutional

networks to predict the heatmaps. In this work, we utilize the
SHG with 4 stages for comparison, where stage denotes the
number of hourglass modules. CPN [23] is another classical
baseline for keypoint detection that uses a cascaded two-
stage network and we follow its official implementation.
HRNet [24] is a strong and popular baseline that maintains
high resolution at each stage of the network and fuses
features at different scales. It has been shown to perform
well in several areas such as human pose estimation,
face feature point detection, and object detection. It is
worth noting that there are two main variants of HRNet,
including a small network and a large network: HRNet-
W32 and HRNet-W48, where 32 and 48 denote the widths
(channels) of the latter three stages of the high-resolution
sub-networks, respectively. In this task we use HRNet-32 and
adopt the official implementation of open source. For UNet,
we extended the official implementation by incorporating a
landmark detection head, making it able to predict landmarks
based on the heatmap.

E. MODEL PERFORMANCE
The accuracy and loss curves over epochs of each model
on the training and validation sets are shown in FIGURE 4.
And we present the comparison curves of the accuracy, ANE,
and MRE for each model on the training and validation
sets in different stages in FIGURE 5. In FIGURE 5a,
after roughly 20 epochs, our model consistently outperforms
other models in terms of accuracy. Specifically, our model
achieves an accuracy of over 90% after just 40 epochs
and maintains this level with a relatively smooth curve.
In contrast, other models require around 160 epochs to reach
90% accuracy and experience greater fluctuations throughout
training. Similarly, in FIGURE 5d, our model outperforms
other models after 50 epochs, and the accuracy stays between
84% and 86%. Due to the small size of the validation set
(only 50 images), the accuracy of all models fluctuates more
significantly. However, our model demonstrates smoother
fluctuations than other models, indicating its more stable
performance and highlighting the effectiveness of our model.
FIGURE 5b, 5e, 5c, and 5f demonstrate that our model has
lower ANE and MRE values than the other models after
35 epochs, suggesting that our model enables more precise
landmark localization and assessment of AH.

The results of our model and the baseline models and the
manual method on the test set we collected are presented
in TABLE 3. From the results, it’s obvious that the SHG,
CPN, and HRNet don’t perform well in this task with the
ANE value above 0.07, and HRNet has the worst result with
the ANE value of 0.095. The accuracy of AN (evaluated by
ANE) is determined by the results of landmark localization,
which also indicates their poor performance for landmark
detection in this task. Whereas UNet is relatively better with
the ANE value of 0.063, possibly because of the concentrated
feature regions and smaller inter-pixel differences in medical
images compared with natural images and the limited amount
of data available. It’s clear that our method performs much
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TABLE 3. Experimental results of our ADNet and baseline models.

FIGURE 4. The accuracy and loss curves over epochs of each model on the training and validation sets.

FIGURE 5. Comparison curves of accuracy, ANE, and MRE over epochs of each model on the training and validation sets.

better than all of them, with the ANE value of 0.026 and the
ACC value of 94%, indicating that our network can determine
whether the child has adenoid hypertrophy or the severity of
the adenoid hypertrophy from the pictures more accurately.

In addition, the ANE of the medical professional’s manual
method is 0.033 and the classification accuracy reaches 95%.
These results indicate that our model reaches the level of
medical experts in diagnosing of AH. Besides, the manual
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FIGURE 6. Examples of predictions from different models. Automatically located (red) and manually annotated landmarks (green)
in MRI images.

TABLE 4. MRE results of our proposed ADNet and baseline models in
MRI images.

method is very time-consuming, taking 3-5 seconds per
image processing on average. In comparison, our model
is faster, with the inference process completed in about
0.6 seconds per image. As a result, ADNet can be a reliable
and efficient tool to assist doctors in AH diagnosis. While
our model has achieved a classification accuracy of 94%,
it is necessary to improve its accuracy further to ensure the
reliability in medical applications.

Then we compare our model with baseline models on
the performance of landmark detection evaluated by MRE
shown in TABLE 4. Our proposed method achieves the
smallest error for all landmarks and the average MRE value
is 4.85, which is 3.55 less than the suboptimal method UNet
of 8.30. And SHG, CPN, and HRNet perform much worse
in this task with the MRE value exceeding 9, and HRNet

reaching 15.95. This result may be due to the fact that other
models share a common limitation in that they focus mainly
on local features, whereas lacking a global representation of
the structure or shape, which may lead to errors in landmark
detection. Given that our task involves tiny detection area
with significant interference information in the head, it is
crucial to consider global contextual information. Our
proposed encoder and adaptive convolution can effectively
integrate contextual information, allowing the network to
learn global structure information and improve performance.
Besides, those baseline models predict landmark positions
directly from the heatmap, and the accuracy of positions is
heavily dependent on the resolution of heatmaps. In contrast,
our proposed method with the DSNT layer enables the
network to obtain numerical coordinates so that it can achieve
more accurate positioning regardless of the resolution of
heatmaps. Given the critical importance of accurate landmark
detection in ensuring precise AN ratio calculation and
AH assessment, the excellent performance of our model
in landmark detection strongly suggests its excellence in
diagnosing AH.

We compare the ground truth with the prediction of our
proposed ADNet and baseline models in FIGURE 6, where
the green and red points denote the prediction and the ground
truth of the landmarks, respectively. As is shown in the figure,
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TABLE 5. The performance of our proposed ADNet and baseline models in MRI images for SDR.

TABLE 6. Ablation studies for each module of our proposed ADNet.

our proposed ADNet achieves more accurate localization for
four landmarks than other models.

We present the SDR results of ourmodel and baselinemod-
els in TABLE 5. The results demonstrate that our proposed
method outperforms the baseline models for different value
ranges of SDR. The ADNet can achieve landmark detection
errors within 10 pixels with 93.25% probability, which is
about 20% higher than the second-best performing method
UNet, andwithin 15 pixels with 96 probability, which is about
6% higher than UNet. These results powerfully demonstrate
the high accuracy of our model and its potential as a clinical
aid for diagnosis. And although UNet outperforms ADNet
for detection rates within 20 pixels of error-a clinically
acceptable error at landmark LM1 and landmark LM2, our
method performs better by 8% and 6% at landmark LM3 and
landmark LM4, respectively. Landmark LM1 and landmark
LM2, which possess distinct features, are relatively easier
identified. Whereas landmark LM3 and landmark LM4 rely
more on the network’s ability to capture adenoidal region
features, indicating our approach of modeling long-range
reliance and capturing global information can improve the
CNN’s performance for landmark detection.

F. ABLATION STUDY
In this section, we conduct ablation studies to analyze
the impact of each module on the model’s performance.
Specifically, we evaluate three variants of our proposed
model: AD-1, AD-2, and AD-3. AD-1 uses the standard
VGG blocks in the encoder stage. AD-2 removes the adaptive
convolution module in the decoder, making it also the
standard VGG blocks. AD-3 only supervises the heatmap like
other methods without DSNT layer [22], [23], [24].
The results of ablation studies are shown in TABLE 6.

The result of AD-1 shows that our encoder is more suitable
for this task, with the MRE values increasing by 0.45,
1.15, and 0.62 for landmark LM3, landmark LM4, and
average, respectively, and the ANE value increasing by 0.018.
This result suggests that our proposed encoder can extract
features more effectively, with an attention-like function

allowing the network to focus more on crucial features and
the inverse bottleneck structure avoiding information loss,
leading to more precise localization. Besides, our encoder
significantly reduces the number of parameters added by
the adaptive module. Then the result of AD-2 indicates
that the model without the adaptive convolution module
shows poor performance on the location of landmark LM2,
landmark LM3, and landmark LM4, with the average MRE
value 0.75 higher than ADNet. This result demonstrates the
importance of capturing global dependencies for landmark
detection. At last, the result of AD-3 suggests that removing
the DSNT layer has the most significant impact on the
performance of the model, with an average MRE value of
7.35 and the value of ANE of 0.048. Compared to our model
ADNet, AD-3 has a 2.50 higher MRE value and 0.022 higher
ANE value, indicating that the DSNT layer is very effective
in ensuring accurate landmark detection.

V. CONCLUSION
In this paper, we propose an efficient model for adenoid
hypertrophy diagnosis with limited data. We consider AH
measurement as a landmark detection task, and propose an
end-to-end network named ADNet to detect the landmarks.
We improve the feature extractor to capture deformation
features and long-range dependency, and use a new landmark
detection method to obtain landmarks coordinates. We con-
duct substantial experiments on our collected dataset. The
results show that our network can effectively measure the
AN ratio based on MRI images to predict and assess adenoid
hypertrophy, eliminating possible error caused by human
operation and greatly reducing time consumption. Therefore,
this automated assessment method can be applied to relevant
clinical studies as well as community level health screening.

The current version of ADNet still has limitations: in the
field of medical imaging, models trained by one imaging
protocol are often not applicable to data collected by another
imaging protocol. To further improve the performance of
the model, we will try to collect more datasets on different
imaging protocols to train our model. Making the network
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better adapted to data from other domains is one of our
future research directions. Besides, there is potential for
improvement of the model to achieve more precise landmark
detection and accurate assessment of AH. To this end, we will
continue to collect the head MRI images and explore more
accurate methods for landmark detection and AH diagnosis.
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