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ABSTRACT Stock index is an indicator that describes the changes in the total price level of the stock market,
and it is susceptible to many dynamic factors, with such characteristics as high dimension, uncertainty,
non-linearity, time delay, complexity, etc., resulting in abnormal and missing values in stock index data,
which will lead to instability or unreliability of the stock index tracking model. In order to solve these
problems, we take the historical stock index as the input, model the internal dynamic changes of features,
and learn the change rule. Firstly, we introduce an attention mechanism, that is, to assign different weights
to the implicit state of the long short term memory network (LSTM) through mapping weights and learning
parameters. We further propose a stock index data preprocessing model of the LSTM based on the attention
mechanism. Secondly, the group method of data handling type neural networks (GMDH-NN) is a self-
organizing datamining technology, which is especially suitable formodeling complex systems. Sowe choose
a discrete form of Kolmogorov-Gabor (K − G) polynomial of the first-order as the reference function of
GMDH-NN to establish the general relationship between input and output variables. We further present a
deep evolutionaryGMDHpolynomial neural network (DGMDH) to perform stock index tracking.Moreover,
for a high-dimensional stock index dataset, the traditional external criterion can no longer meet the needs
of reality, so we propose a tracking error external criterion (TEEC) for stock indices, which is based on the
difference between allocation yield and target yield. The TEEC provides better information for selecting the
optimal complex DGMDH model. Our experiments clearly show the effectiveness of our methodology.

INDEX TERMS LSTM, attention mechanism, GMDH neural network, tracking error external criterion,
high-dimensional index tracking.

I. INTRODUCTION
A. RELATED WORK
A plethora of complex data will be generated in the financial
and securities markets of our globalized economy every day

The associate editor coordinating the review of this manuscript and

approving it for publication was Paolo Crippa .

[1]. Facedwith such a large amount of data, the traditional sta-
tistical methods can no longer meet the application demands
[2], [3]. Making sophisticated statistical methods applicable
to the existing market data and to provide better data analysis
for investor decision-making have become a hot topic. In par-
ticular, in the fields of index tracking, portfolio management,
and risk hedging, broad application platforms for feature
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selection methods arise [4], [5]. Index tracking is a signif-
icant investment strategy [2], [3] in fund management that
aims to replicate the movements of a specific market index.
It involves selecting stocks from the target index to achieve
a similar yield as the overall market performance. Compared
with active investment, index tracking has the advantages of
low risk, low transaction frequency, low transaction costs, and
low management costs.

There are two common strategies for index tracking. In the
full replication method, all assets in the target index are
also purchased [6]. In theory, this method can perfectly
track the index, but when there are too many index con-
stituents, the cost of purchasing all assets will be too high.
It also entails high management cost, which is generally
not feasible in practice. The other strategy is the incomplete
replication method, i.e., purchasing some assets in the target
index to track the index [2], [3]. Although this method has
certain errors, it can greatly reduce the input cost. In prac-
tice, the question how to select the assets from the target
index to reduce tracking error (TE) arises. However, feature
selection analysis is an important approach to solve this
problem [7], [8].
According to the level of the feature index, we can divide

the discussion of feature selection into three cases [9], [10]:
fixed dimension, divergent dimension, and high dimension.
The dimensionality directly affects the selection of feature
selection methods. Therefore, research on feature selection
with different dimensions has important theoretical signifi-
cance and application value.

In the face of a large quantity of explanatory variables used
to describe sample characteristics, data dimensionality reduc-
tion can help us build a target feature selection model which
is easier to interpret and has better generalization capabili-
ties. Currently, two widely employed techniques for reducing
data dimensionality are feature extraction and feature selec-
tion [11]. Feature extraction involves mapping the original
high-dimensional feature space to a lower-dimensional space.
A typical method is principal component analysis. However,
principal component analysis does not consider the relation-
ship between independent and dependent variables in the
process of data dimensionality reduction. Also, when there
are too many explanatory variables, the extracted principal
components are usually difficult to interpret [12]. Unlike
feature extraction, feature selection directly chooses a subset
of features from the original feature space. Notably, represen-
tative methods for feature selection encompass approaches
from evolutionary computation [13], [14]. Evolutionary com-
putation methods often have many parameters, such as the
crossover and mutation rates and the population size. Their
optimal configuration is often difficult to determine.

The GMDH-NN, an automated model, excels in deter-
mining variables, structure, and parameters [15]. Moreover,
the selected features offer excellent interpretability, com-
pensating for principal component analysis limitations. Its
success spans diverse fields like economy, engineering, and

others [16], [17]. Notably, the GMDH-NN’s potential in high-
dimensional index tracking remains underexplored. Origi-
nally proposed in 1967 by academician A. G. Ivakhnenko
of the Ukrainian Academy of Sciences [18], [19], this
heuristic data mining algorithm became a milestone in
self-organizing data mining theory. In the 1990s, German
scholar Mueller and software expert Frank further devel-
oped the theory and algorithm in the Software Knowledge
Miner [20]. Recently, the GMDH-NN gained popularity in
various applications. For instance, Xiao et al. proposed a
GMDH-NN based semi-supervised feature selection for cus-
tomer classification [16]. Mo et al. developed a GMDH-NN
based hybrid model for container throughput forecasting,
leveraging selective combination forecasting in nonlinear
subseries [15]. Jeddi and Sharifian introduced a GMDH-NN
ensemblemodel for network function virtualization workload
forecasting in cloud computing [17], and many others.

B. CONTRIBUTIONS
The CSI 300 index, released jointly by the Shanghai and
Shenzhen stock exchange on April 8, 2005 [2], [3],
serves as a valuable financial tool. It effectively portrays
the CSI 300 index compilation target and operating status,
serving as a reliable evaluation criterion for investment
performance. Moreover, it establishes the foundation for
index-based investment and fosters innovation in index
derivative products. In our research, we leverage this index
as a fundamental pillar and proudly present the following
significant contributions:

(1) Our data is derived from the time series dataset which
includes the closing prices of the CSI 300 index. Stock index
is susceptible tomany dynamic factors, with such characteris-
tics as high dimension, uncertainty, non-linearity, time delay,
complexity, etc., resulting in abnormal and missing values in
stock index data, which will lead to instability or unreliability
of the stock index tracking model. To address these chal-
lenges, we present a novel LSTM network-based stock index
data preprocessing model incorporating the attention mech-
anism. This innovative approach optimizes the initial stock
index data, transforming it into a more coherent, comprehen-
sive, and sequential dataset, enabling effective learning across
time series.

(2) GMDH-NN establishes a general relationship between
input and output variables by employing a reference func-
tion. To this end, we adopt a discrete form of the first-order
Kolmogorov-Gabor (K − G) polynomial as the reference
function, leading us to develop the concept of the deep
evolutionary GMDH polynomial neural network (DGMDH).
This innovative approach incorporates an external criterion
system, allowing for the selection of diverse external criteria
based on specific modeling objectives. Moreover, it enables
the creation of novel external criteria as necessary. For high
dimensional stock index data, the traditional external criteria
can no longer meet the needs of practical applications. Here,
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FIGURE 1. LSTM structure diagram.

we propose a TEEC for the stock index, which is based on
the difference between allocation yield and target yield.

(3) The DGMDH is a neural network that follows a heuris-
tic self-organizing principle. It employs an evolutionary
computing technique to determine input variables and model
parameters through a series of operations involving seed-
ing, rearing, crossbreeding, selection, and rejection of seeds.
We apply DGMDH to perform feature selection on high-
dimensional stock index data and create an evolutionary stock
index tracking model. Lastly, we utilize the Copeland scoring
sorting technique [21] and random weighted Copeland scor-
ing sorting to analyze and validate the learning capacity of
our methodology.

C. PAPER ORGANIZATION
The outline of this paper is as follows. Section II intro-
duces the fundamentals, including LSTM principle and
GMDH-NN. Sections III describes a high-dimensional index
tracking model, which involves LSTM data preprocessing
model, TEEC and high-dimensional index tracking based on
DGMDH, respectively. Sections IV gives an example of index
tracking based on DGMDH in detail. Section V presents
the experimental setup and dataset. Section VI shows the
experiment results and analysis in detail. SectionVII provides
the conclusions.

II. FUNDAMENTALS
A. LSTM PRINCIPLE
Compared to general neural networks, Recurrent Neural
Network (RNN) excels in handling sequence-changing data
and possesses memory capabilities. However, conventional
RNNs suffer from certain limitations such as gradient explo-
sion, gradient disappearance, and inadequate handling of
long-term dependencies [18]. These drawbacks can be effec-
tively addressed by long-term and short-term neural networks
(LSTM). LSTM consists of several modules, including an
input gate, output gate, forget gate, and a memory cell (cell
unit). This architecture enables efficient processing of time
series information, as depicted in Figure 1.

Regarding the length of memory, what kind of information
should be forgotten, and what kind of information should be
remembered, the LSTM network can perfectly solve these
problems through the structures of forget gate, input gate, and
output gate etc..

B. GMDH-TYPE NEURAL NETWORK
GMDH-NN, initially proposed by Ivakhenko [18], [19], is a
powerful technology in self-organizing data mining. It excels
at autonomously organizing variables, structures, and param-
eters within the model. Over the years, GMDH-NN has found
widespread applications in diverse fields such as engineering,
science, and economic research [17], [22]. In this section,
we will outline the construction process for the initial model
of DGMDH.

To establish the general relationship between input and
output variables, GMDH-NN utilizes a reference function.
Typically, the discrete form of the K − G polynomial is
adopted as this reference function [19], [23]:

Y = f (X1,X2, . . . ,XM )

= a0 +

M∑
i=1

aiXi +
M∑
i=1

M∑
j=1

aijXiXj

+

M∑
i=1

M∑
j=1

M∑
k=1

aijkXiXjXk + . . . , (1)

Here, the output is represented as Y , while the input vector
is denoted as X = (X1,X2, . . . ,XM ). The coefficient or
weight vector is represented by a. A first-order linear K −G
polynomial, encompassing n variables, takes the following
form:

Y = f (X1,X2, . . . ,Xn) = a0 + a1X1 + a2X2 + · · · + anXn.
(2)

All sub-items are considered as the n initial models in the
modeling network structure.

v1 = a1x1, v2 = a2x2, . . . , vn = anxn. (3)

Equation 3 combines n initial models in pairs to generate
C2
n = n(n− 1)/2 intermediate candidate models for the first

layer. The transfer function is as follows:

w = f (vi, vj); i, j = 1, 2, . . ., n; i ̸= j. (4)

In Equation 4, w represents the estimated output.
The external criteria values of intermediate candidate mod-

els are calculated. Based on their order, the best models are
selected and combined to generate new candidates for the
next layer. This process is repeated to obtain intermediate
candidate models for subsequent layers. The termination
rules are determined by the principle of optimal complex-
ity [23]. As the complexity of the model increases, the
external criterion value initially decreases and then increases.
The model with the minimum external criterion value repre-
sents the optimal complexity model.
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III. HIGH-DIMENSIONAL INDEX TRACKING
A. LSTM DATA PREPROCESSING MODEL
In practical scenarios, data may be unavailable or miss-
ing [24]. If the proportion of missing records is small,
complete records can be processed directly while discarding
the missing ones. However, in reality, a significant portion
of the data is often missing, especially in multivariate data.
Deleting cases becomes inefficient as it leads to the loss of
valuable information and introduces bias. This bias results
in systematic differences between incomplete and complete
observation data. Consequently, it is crucial to address the
issue of missing data.

In multivariate time series, missing data is very ubiqui-
tous [25]. There are three kinds of methods available to deal
with the missing value of time series: The first is the already-
mentioned direct deletion method, which may discard some
important information in the data. The second filling method
is based on statistics, such as mean filling, median filling, and
common value filling, but this method ignores the time series
information. The third filling method is based on machine
learning, like k-nearest neighbors, recurrent neural networks,
or expectation-maximization. However, this method again
rarely considers the temporal information between two adja-
cent data. In view of that, we use the LSTM time series data
preprocessing model to make up for the missing data [26].
Meanwhile, it can optimize the original stock index data into
continuous, complete, and more sequential stock index data,
as well as finish the learning task from time series to time
series.

The LSTM time series data preprocessingmodel calculates
the average of a certain number of items along the time
axis in a progressive manner. It helps mitigate the impact of
periodic and irregular changes, enabling the discovery of the
underlying development trend. By eliminating fluctuations,
this model facilitates the analysis and prediction of the series’
long-term trend [27], [28].

This paper proposes an LSTM model with an attention
mechanism to preprocess stock index data, aiming to reduce
the influence of local minimization and improve the accuracy
of index tracking in the GMDH model. The LSTM model
with attention mechanism, depicted in Figure 2, consists
of an input layer, LSTM layer, Attention layer, and output
layer. By utilizing the LSTM layer and Attention layer, the
historical stock index data are processed to achieve predic-
tion functionality. The resulting output layer provides stock
indices with enhanced continuity, completeness, and time
series representation.

In Figure 2, the input sequence is represented by
x1,x2,. . . ,xn, which consists of stock index data for a period of
time. These inputs are transmitted to the LSTM unit to gener-
ate the corresponding hidden layer outputs, h1,h2,. . . ,hi. The
hidden layer incorporates an attention mechanism to com-
pute the attention probability distribution values, α1,α2,. . . ,αi,
for each input. The model’s layers are described as
follows:

FIGURE 2. LSTM structure diagram with attention mechanism.

(1) Input layer. It treats historical stock index data as the
input of the predictionmodel, represented byX=[x1 · · · xt−1,
xt · · · xn]T .

(2) LSTM layer. It learns the feature vector of the input
layer. The number of historical days is set to n, and the step
lengthm is set to 3, that is, based on the stock index data from
the first day to the third day, the LSTM is used to predict
the stock index on the fourth day; based on the stock index
data from the second day to the fourth day, the LSTM is
used to predict the stock index on the fifth day, and so on.
Finally, n new stock index data are obtained. We construct
the LSTM structure to comprehensively grasp the extracted
features and internal change rules. The output of the LSTM
layer is referred to as h, and the output at step t is denoted as:

yt = LSTM (HC,t−1,HC,t ).

(3) Attention layer. The input to the attention mechanism
layer is the activated output vector h from the LSTM network
layer. The probability of different feature vectors is calcu-
lated based on the weight distribution principle, continuously
updated and iterated for better weight parameters. The cal-
culation formula for the weight coefficient of the Attention
mechanism layer can be expressed as:

et = utanh
∑

(wht + b), (5)

αt =
exp(et )
t∑
j=1

(et )
, (6)

st =

i∑
t=1

(αtht ). (7)

In the formula, et represents the attention probability distri-
bution value determined by the LSTM network layer’s output
vector ht at time t . The weight coefficients are represented by
u and w, while b denotes the bias coefficient. The output of
the attention layer at time t is represented as st . This paper
utilizes the mean value of the characteristics within the t-th
step of the stock index sequence as the input et in formula (6).

(4) Output layer. The output layer in this case takes the
input from the attention mechanism layer. It is a fully con-
nected layer that calculates the output Y=[y1,y2,. . . ,yn]T
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using a prediction step of m. The prediction formula for this
can be expressed as:

yt = Sigmoid(wo, bo).

In the formula, the predicted output value at time t is
represented by yt . The weight matrix is denoted as wo, while
the deviation vector is represented by bo. Additionally, the
activation function chosen for the Dense layer in this study is
the Sigmoid function.

B. TRACKING ERROR EXTERNAL CRITERION
When our DGMDH is applied to modeling in different fields,
the selection of external criteria plays the key role. The right
mathematical descriptions need to be constructed accord-
ing to the modeling purpose [15], [23]. In the traditional
GMDH-NN model, the most commonly used external crite-
rion is the regularization criterion, which focuses on the errors
in the established model test set.

In the field of finance, the TE is usually used to measure
the difference between allocation yield and target yield [2],
[3]. Let ŷi be the estimated or predicted value of the
CSI 300 index yi, with i = 1, . . .,T , and errori = ŷi − yi.
Then we can define the external criterion TEEC of DGMDH
as follows:

TE =

√∑
(errori − error)2

T − 1
, (8)

here, T represents the largest number of stocks and error is
the mean of all the errori values.
The DGMDH algorithm is used to construct a high-

dimensional index tracking model, forming a multilayer
network structure. Starting from the initial model input layer,
the complexity of the model increases. The stopping rule is
determined by the principle of optimal complexity: as the
model complexity gradually increases, the external criterion
value initially decreases and then increases. The optimal
complexity model corresponds to the minimum value of the
external criterion. The DGMDH algorithm stops when the
external criterion value can no longer be improved, ensuring
an optimal balance between data fitting accuracy and predic-
tion ability.

C. DGMDH
The DGMDH is a method of self-organizing data mining for
complex nonlinear systems. It is a combined method of data
processing based onK−G polynomials to identify non-linear
systems through continuous screening and combination. The
basic principle of the DGMDH algorithm is that a series of
active neurons are generated by cross combination in pairs of
each input unit of the system. The best transfer function for
each neuron is determined by selecting the internal criteria.
Then the generated neurons are screened by selecting the
external criteria. The screened neurons are again combined
in pairs to generate new neurons. This is repeated until the
new neurons are no better than the previous generation. Then

the optimal complex model is produced. By finding the best
balance point between the fitting accuracy of the sample and
the prediction accuracy of the new data set, the algorithm
can reflect the real internal relationship of the system to the
greatest extent even when the sample data is small or the
data noise is large. The layer by layer selection of the model
structure and variables in the modeling process ensures the
convergence speed of the calculation, which also significantly
reduces the impact of the subjective factors.

Suppose the input data consists of N samples with
n attributes v1, v2, . . ., vn and a label Y . The training set,
Tr , contains m samples, while the test set is denoted as Te.
The initial input layer of DGMDH is obtained, and new
candidate models are generated by combining pairs of models
from the previous layer. Below are the basic steps of feature
selection and high-dimensional index tracking model using
DGMDH [15], [23]:

Step 1 Randomly divide the sample data into training
and testing sets.
Step 2 Generate the initial model, which is a linear
K − G polynomial: f (x1, x2, · · · , xn) = a0 + a1x1 +

a2x2 + · · · + anxn.. For DGMDH multilayer neural
network modeling, use all sub-terms of the K −G poly-
nomials as the initial input model of the network: v0 =

a0, v1 = a1x1, · · · , vn = anxn.
Step 3 Obtain the first intermediate model by combin-
ing the initial models in pairs, using the linear reference
function y = f (vi, vj) = a0 + aivi + ajvj.
Step 4 Adopt the least squares method to estimate the
parameters of the candidate model on the training set.
Step 5 Use external criteria to evaluate the perfor-
mance of candidate models on the training set. Select
the best models as input for the next layer.
Step 6 Repeat steps (3)-(5) to generate the second,
third, . . . , nth layer intermediate network. Obtain inter-
mediate candidate models with increased model com-
plexity. The termination rule of the algorithm is the
optimal complexity principle [23]. As the model com-
plexity increases gradually, the external criteria, which
have a supplementary property, will initially decrease
and then increase. The global minimum value of the
external criteria corresponds to the high-dimensional
index tracking model of optimal complexity.

D. HIGH-DIMENSIONAL INDEX TRACKING BASED ON
LSTM-DGMDH NETWORK
Our high-dimensional stock index tracking model, LSTM-
DGMDH, combines LSTM and deep evolutionary GMDH-
type neural network. Our model mainly includes: (1) A stock
index data preprocessing model based on LSTM network
with attention mechanism, which optimizes the original data
into continuous, complete, and sequential stock index data.
(2) We utilize DGMDH to execute feature selection of high-
dimensional stock index data and develop an evolutionary
stock index tracking model. (3) For a high dimensional
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FIGURE 3. Structure diagram of high-dimensional index tracking model.

stock index dataset, the traditional external criterions can
no longer meet the needs of reality. Consequently, to better
analyze external criterion of DGMDH, TEEC is used to select
optimal complex model. The structure diagram of our high-
dimensional stock index tracking model is shown in Figure 3.

IV. EXAMPLE OF LSTM-DGMDH FOR INDEX TRACKING
Next, the index tracking algorithm of LSTM-DGMDH for
high-dimensional financial data is shown in Algorithm 1.
Let us consider a concrete example of index track-
ing [23]. Assume that each sample of dataset D after
LSTM pretreatment with N samples includes five attributes
v1, v2, v3, v4, v5 and the sample label Y . Then the proce-
dure of feature selection and high-dimensional index tracking
model with LSTM-DGMDH can be illustrated as in the fol-
lowing steps (see Figure 4).
(1) Split dataset D equally and horizontally into training

set A and testing set B.

Algorithm 1 Algorithm Description
Input: Dataset T (closing prices or yield rates after LSTM
pretreatment)
Output: The optimal model Yopt

1: Utilize closing prices or yield rates of stocks vi (i =

1, 2, . . .,N ) to get initial input features of DGMDH;
2: Combine pairs of initial features to gain C2

N medium
alternative models in first layer;

3: Calculate the external criterion value TE for each output
yit according to Equation (8) in i-th layer;

4: Get the minimum value of TEEC TEmin in i-th layer;
5: Repeat steps 3-4 with l = l+ 1, and if TEmin ≥ TE , then

STOP, else set TE = TEmin and CONTINUE;
6: Return Yopt .

FIGURE 4. Structure diagram of GMDH-type neural network.

(2) Build a degree 1 polynomial, K − G, to represent the
relationship between dependent variables Y and initial inde-
pendent variables v1, v2, v3, v4, v5 : Y = f (v1, v2, v3, v4, v5)
in the input layer of DGMDH (Figure 4 (Initial model)).

(3) Combine pairs of initial models to generate novel
potential models yt (t = 1, 2, . . .,C2

5 ) in the first layer, such
as y1 = V1 +V2 = a1v1 +a2v2, y2 = V1 +V3 = a1v1 +a3v3
(model parameters calculated in set A).

(4) Select the TEEC as the external criterion for neu-
rons selection. The neurons of each layer is evaluated by
the TEEC. The selected neurons are retained as input of
the next layer. The unselected neurons will be eliminated
(Figure 4 (First layer)).

(5) Generate the local model of the first layer by defining
the transfer function wk = fk (vi, vj) with k = 1, 2, . . ., 10.
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The parameters of wk are estimated using the training set A.
These models are then evaluated on the testing set B based
on an external criterion, and the models wk (k = 1, 2, 5, 10)
are selected as input variables for the next layer. The selected
models from the initial layer are combined to create potential
models for the second layer, for example, z2 = b1w1+b10w10
(refer to Figure 4 (Second layer)).

(6) Calculate the TEEC value for each model in the second
layer using the model selecting set A. Choose the model with
the minimum external criterion as the input for the third layer
(Figure 4 (Third layer)).

(7) Repeat the process described in (5) and (6) to obtain the
TEEC value in the third layer. According to the theoretical
framework of optimal complexity, the smallest TEEC value
corresponds to the optimal complexity model, and subse-
quently, we find y2 = Yopt = f (v) (Figure 4 (Optimal
layer))).

(8) Once Yopt is identified, search for the initial models
included in Yopt . In this example, it includes four initial
models: v1, v3, v4, v5. In other words, only these four features
(v1, v3, v4, v5) are part of the optimal complexity selection.
(9) Take v1, v3, v4, v5 into Yopt , to obtain the ultimate high-

dimensional index tracking model for test set B.

V. EXPERIMENTAL SETUP AND DATASET
In the presented experiments, we utilize DGMDH for feature
selection and high-dimensional index tracking of stock index
data. The DGMDH’s potential for high-dimensional index
tracking, performance, and stability will be explored and
evaluated.

CSI 300 index datasets are employed for testing our
DGMDH. The experimental evaluation comprises two parts.
Firstly, we compare our method against five commonly used
index tracking techniques: nonnegative adaptive elastic-net
(NAEN) [2], nonnegativeminimax concave penalty estimator
(NMCPE) [3], multiple spline regression (MSR) [29], Gaus-
sian processes regression (GPR) [30], and index tracking
with cardinality constraints (ITCC) [6]. Secondly, we assess
the effectiveness of our approach through statistical analysis.
To mitigate random effects, a 5-fold cross-validation is con-
ducted, with four folds for training and one for testing. Ten
independent runs of all experiments are performed, and the
average results are reported. The execution platform consists
of a PC with a 3.60 GHz Intel(R) Core(TM) i7-7700M CPU,
8GB RAM, and Microsoft Windows 10 operating system.

Our datasets include the closing prices and yield rates of
the CSI 300 index and all its constituent stocks from July 1 to
November 30, 2021. Notably, the constituents of the index
remained unchanged during this period [2], [3]. Moreover,
our datasets are comprised of the following three aspects:

(1) The data characteristics of some stocks are missing
within a period of time or within a few days. Since these
data contain time characteristics, we exploit LSTM to fill in
these missing data. The dataset for our experiments contains
a total of 102 observations (corresponding to the 102 work
days in the interval) and 300 covariates. The data is divided

into two parts: 80% of the observations are allocated for
training, while the remaining 20% are reserved for testing.
Consequently, the resulting model is highly dimensional due
to its training on this dataset.

(2) In addition to the closing prices, we also consider
the yield rates of stocks to generate new datasets. Mean-
while, it should be noted that the CSI 300 index adjusts its
constituents semi-annually, so our data set contains data in
half a year. This is completely different from the previous
approaches, which only consider data across the years.

(3) In order to evaluate our model fully, we usually select
a small subset (such as half of the total samples) of all
constituent stocks to track the target index. In this paper,
we generate four datasets from the CSI 300 index. (i) with
102 observations and 300 covariates named (‘‘Clopri102’’);
(ii) 51 observations with closing prices (Observations on odd
days were selected by averaging the interval of one day, this
is abbreviated as ‘‘Clopri51’’); (iii) 102 observations with
yield rates (‘‘Yierat102’’); (iv) 51 observations with yield
rates (‘‘Yierat51’’).

To understand these datasets more clearly, we show the
statistical distribution chart for these datasets. In Figure 5,
we showcase the distribution of closing prices or yield rates
of first nine stocks. In first line subgraphs, the horizon-
tal axes represent the date. The y-coordinate is the closing
prices of Clopri102 and Clopri51, respectively. In the second
line of subgraphs, we also set the x-coordinate as the date.
The y-coordinate represents the yield rates of Yierat102 and
Yierat51, respectively.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
A. ERROR ESTIMATE
In this study, three different model performance evalua-
tion indexes are selected, namely the root mean square
error (RMSE), the absolute mean percent error (MAPE), and
the relative square root error (RRSE).

RMSE =

√√√√ m∑
i=1

(̂yi − yi)2/m,

MAPE =

m∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣/m,

RRSE =

√√√√ m∑
i=1

(̂yi − yi)2/
m∑
i=1

(yi − y)2.

Here, yi represents the actual value of the i−th instance, while
ŷi is its corresponding predicted value. The test set size is
denoted asm, and y denotes the average value of yi across the
m test instances. A smaller evaluation index indicates better
prediction performance for the model.

Additionally, in finance fields, TE given in Equation 8 is
often measured as the variance of the difference between
portfolio return and index return. The error estimate (rank)
results of the six methods on four datasets can be found in
Table 1.
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FIGURE 5. Visualization of Clopri102, Clopri51, Yierat102 and Yierat51 datasets, respectively.

TABLE 1. Error estimate (rank) on CSI 300 index. For the RMSE, MAPE,
RRSE and TE, the evaluation results of six different methods are shown in
lines 1-7, lines 8-14, lines 15-21 and lines 22-28 on four datasets,
respectively.

We find that on the Clopri102 dataset in terms of RMSE,
our DGMDH is almost as good as NMCPE, and outperforms
the other regression approaches including NAEN,MSR, GPR
and ITCC. For the Clopri51 dataset, DGMDH obtains the

lowest RMSE result of all methods. On the Yierat102 dataset,
the NAEN and our DGMDHperform the same and better than
the other regression approaches. On the Yierat51 dataset, our
DGMDH is again the best. In a word, in terms of RMSE,
DGMDH performs similar to NMCPE. MSR and GPR are
relatively poor on our four datasets. Our method also has the
smallest total error sum and total rank sum. In terms of the
MAPE, our methodology and NMCPE are again the best on
the Clopri102 dataset and outperform the other approaches.
NAEN and ITCC are also good. For the Clopri51 dataset, our
DGMDH is slightly worse than NMCPE but outperforms the
other methods. GPR is the worst possible method. For the
Yierat51 and Yierat102 dataset, the MSR is the best and our
method is second. For the dataset, the results of the regression
analysis are somewhat similar to the Yierat102 dataset above.
DGMDH comes the second, and is superior to the other
approaches including NAEN, NMCPE, GPR and ITCC. GPR
is the worst. For the total error, The MSR clearly has the
minimum error in all regression approaches. Our DGMDH
resembles the NAEN, both outperform all of the rest. For the
total rank, it distinctly shows that our DGMDH is superior to
any other regression method.

In the RRSE of Table 1, for the DGMDH methodol-
ogy, it is the best and outperforms the other approaches
including NAEN, NMCPE, MSR, GPR and ITCC regression
approaches on Clopri102, Clopri51 and Yierat102 datasets.
For the Yierat51 dataset, the result of the regression anal-
ysis of NAEN is the best, and somewhat similar to the
Yierat102 dataset above. DGMDH comes second, which is
superior to other approaches includingNAEN,NMCPE,GPR
and ITCC. The NMCPE and MSR methods are comparable
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FIGURE 6. The results of error estimate (rank) on CSI 300 index. The error estimate and rank value
of six different methods are shown in Figure 6 (a) and (b), respectively.

to our DGMDH, while GPR is the worst approach in our
experiments. In terms of both the total error and total rank,
it evidently shows that our DGMDH outperforms the other
regression approaches.

The TE in Table 1 illustrates that DGMDH gets better
classification results for all of the datasets employed in the
experiments for most of the datasets used. In particular, our
method is obviously superior to NAEN,MSR,GPR and ITCC
on Clopri102 and Clopri51 datasets. Moreover, on Yierat102
and Yierat51 datasets, our DGMDH methodology is simi-
lar to the NAEN method, which are superior to the other
approaches studied in the paper. The second best approach is
NMCPE, and the worst is GPR, while the rest are strikingly
similar. With respect to both total error and total rank, it evi-
dently shows DGMDH and NAEN have the same level of
TE. They are slightly lower than other methods. The NMCPE
and ITCC methods are similar, and the GPR method has the
biggest TE.

B. COMPARISON OF TOTAL ERROR AND RANK
In Table 2 and Figure 6, for the total results and mean result
of error estimate, we can see that our method is equal to
NMCPE, which represent the best level of the regression
analysis algorithms. The MSR and GPR are relatively poor.
In terms of the total results and mean result of rank value, it is
clear that our DGMDH methodology is superior to all of the
others. It is worth mentioning that the NAEN and NMCPE
are strikingly similar. The GPR proves to be the worst in our
experiments.

C. STATISTICAL ANALYSIS
The general comprehensive evaluation methods can be
divided into two types: absolute value and ranking value.
The absolute value directly represents the situation of the
evaluated objects, while the ranking value represents their
priority order. Correspondingly, the combination evaluation
methods are also classified based on their forms: The first
type uses the absolute numerical form of evaluation results
for calculation and combination. For instance, the least square
method is used as the combination evaluation method. The
second type uses the ranking type of evaluation results as

TABLE 2. For the RMSE, MAPE, RRSE and TE, the total and mean results
of error estimates (ranks) on six different methods are shown. The total
results and mean results of error estimate of six different methods are
shown in line 2-5 and line 6, respectively. The total results and mean
results of rank value of six different methods are shown in line 8-11 and
line 12, respectively.

the basis for calculation. The Copeland method, used in this
paper, belongs to this type.

1) COPELAND SCORING SORTING METHOD
The Copeland Scoring SortingMethod is a combination eval-
uation approach that assigns scores based on a program’s
merits. It was introduced by A.H. Copeland from the Univer-
sity of Michigan during a mathematics seminar. This method
emphasizes the principle that the minority is subordinate
to the majority [31]. It is parameter-free and uses global
comparisons instead of simple scores. Due to its simplicity
and effectiveness, it finds extensive application in elections.

Let’s consider a scenario with m evaluation objects,
denoted as Xi (i = 1, 2, . . .,m), each having p evaluation
indexes. The value of the jth evaluation index of the ith

evaluation object is represented as aij.
Suppose there are m evaluation objects, where Xi (i =

1, 2, . . .,m) represents the ith evaluation object, and each
evaluation object has p evaluation indexes, where aij (i =

1, 2, . . .,m) represents the jth evaluation index value of the
ith evaluation object.
The evaluation index values aij (j = 1, 2, . . ., p) of the

evaluation object Xi (i = 1, 2, . . .,m) will be compared with
the evaluation index values akj (j = 1, 2, . . ., p) of another
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FIGURE 7. The stacking histograms of Copeland scoring sorting method for the total of Wins/Losses/Net are shown in Figure 7 (a) , (b) and
(c), respectively.

FIGURE 8. The histograms of the six algorithms using the random weighted Copeland scoring sorting
method are depicted in Figure 8 (a) , (b), (c), and (d) respectively.

evaluation object Xk (k = 1, 2, . . .,m).

yj =


+1 aij > akj
0 aij = akj j = 1, 2, . . ., p.
−1 aij < akj

(9)

where yj represents the score of the evaluation object Xi
when compared with the j-th evaluation index value of the
evaluation objectXk , then

∑p
j=1 yi is the comprehensive score

of the evaluation object Xi when compared with all indexes
of evaluation object Xi, thus the comparison between the two
evaluation objects is completed, and then according to this
method, the scores of Xi in comparison to X1, X2, . . . , Xm are
calculated respectively, and m scores can be obtained. The
sum of these m scores is the final score of evaluation object
Xi. Similarly, calculate the final scores for the remaining
m − 1 evaluation objects. Higher scores indicate more seri-
ous ecological harm, while lower scores indicate less harm.
Finally, rank the evaluation objects based on their scores.

Table 3 presents the results of the Copeland scoring sorting
method for six different methods. Additionally, Figure 7 (a),

(b), and (c) display the stacking histograms of the Copeland
scoring sorting method for Wins/Losses/Net . In order to
compare the performances of different error evaluation
methodologys in pairs, we assign an index value of+1 (Wins)
to a higher score, −1 (Losses) to a lower score, and 0 if the
scores are equal. Net represents the difference between Wins
and Losses. Based on the information in Table 3 and Figure 7,
it is evident that our DGMDH method achieves the highest
score, surpassing other state-of-the-art regression analysis
methods. The second score is theNMCPEmethodology in the
evaluation of RMSE and TE, while the NAEN is the second in
RMSE, and the GPRmethodology is the worst in all datasets.

2) RANDOM WEIGHTED COPELAND SCORING SORTING
METHOD
To validate the decision results of the Copeland scoring sort-
ing method, a weighted operation is employed to differentiate
the importance and authority of each expert. The weight wk
is assigned to the k-th expert, enabling the definition of the
Copeland scoring sorting method for the evaluation object
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FIGURE 9. The histograms of random weighted rank sorting of six algorithms are shown in Figure 9 (a) , (b), (c)
and (d), respectively.

TABLE 3. Copeland scoring sorting method, Wins/Losses/Net .

yi as follows: bi =
∑m

k=1 wkb
k
ij where

∑n
k=1 wk = 1,

0 ≤ wk ≤ 1. Here, the Net of Table 3 is only taken into
account. Random weights within the range of 0-1 are gen-
erated to implement the random weighted Copeland scoring
sorting method for the Net value. The results are presented
in Table 4 and Figure 8, yielding similar conclusions as the

aforementioned Copeland scoring sorting method. Clearly,
our DGMDH method is the most preferred among all error
evaluation methods. Moreover, for the NMCPE regression
analysis methods, it is the second level on RMSE, MAPE and
Tracking error evaluation methods. However, for the RRSE,
the NMCPE method is the third level and the second on the
list is NAEN method. For the most error evaluation methods,
the regression analysis performance of MSR, GPR and ITCC
methods is relatively weak.

3) RANDOM WEIGHTED RANK SORTING
In this section, in order to further verify the decisive results
of our method, a weighted operation is used to distinguish
the importance and authority of each rank sorting of Table 1
for six methods. Table 5 and Figure 9 present the results
of random weighted rank sorting of six algorithms on each
dataset. The results indicate that DGMDH outperforms the
other regression analysis approaches. More specific observa-
tions can be made here. Firstly, in terms of the total random
weighted rank sorting, it is clear that DGMDH may obtain
the lowest error results than NAEN, NMCPE, MSR, GPR
and ITCC approaches studied. What’s more, the NAEN and
NMCPE are rather similar, and obviously superior to MSR,
GPR and ITCC. Secondly, for the RMSE, MAPE and Track-
ing error, although the NAEN is slightly weaker than the
NMCPE, however, the NAEN is obviously superior to the
NMCPE in our experiments. Thirdly, the GPR is consistently
the worst in all of the error estimate methods. In addition, the
MSR and ITCC are obviously similar, they may outcome the
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TABLE 4. Random weighted copeland scoring sorting method,
Wins/Losses/Net .

TABLE 5. The results of random weighted rank sorting.

GPRmethod, but may not superior to the NAEN andNMCPE
for most error estimation method yet.

4) COMPARISON WITH DIFFERENT INDEX TRACKING
METHOD
The NAEN and NMCPE belong to partially linear mod-
els. It is an important semi-parametric regression model,
which adds more non-parametric parts than the linear model.
Therefore, the partial linear models not only inherit the char-
acteristics of linear ones that are easy to interpret, but also
retain the flexibility of non-parametric regression models.

Meanwhile, they overcome the curse of dimensionality con-
fronted by non-parametric regression model. The MSR is a
non-linear and non-parametric regression method, which is
a local regression method that uses a spline function to sim-
ulate complex non-linear relationships. It divides the entire
non-linear model into several regions, which are fitted by
a linear regression line in each specific region. The slope
of the spline function is constant in each specific area, but
varied in different areas. However, this locality may affect
the regression performance of time series data. The GPR
belongs to non-parametric function approximation, which
relies more on sample data where predicting and estimat-
ing are concerned. Therefore, it is the number of variables
that determines the calculation amount and the effect of
regression. The ITCC method: the main disadvantages of
the principal component analysis algorithm are: on the one
hand, it does not consider the relationship between indepen-
dent variables and dependent variables in the process of data
dimensionality reduction, resulting in the ambiguity of the
meaning of each characteristic dimension of the principal
components, so when there are many explanatory variables,
the extracted principal components are generally difficult
to explain. On the other hand, non-principal components
with small variance may also contain crucial information on
sample differences, because dimension reduction and dis-
carding can impact subsequent regression analysis. DGMDH
algorithm is a combined method of data processing based on
K − G polynomials to identify non-linear systems through
continuous screening and combination. By finding the best
balance point between the fitting accuracy of the sample and
the prediction accuracy of the new data set, the algorithm
can reflect the real internal relationship of the system to
the greatest extent even when the sample data is small or
the data noise is large. The layer by layer selection of the
model structure and variables in themodeling process ensures
the convergence speed of the calculation, which also greatly
reduces the impact of the subjective factors.

VII. CONCLUSION
We propose a high-dimensional stock index tracking method
called LSTM-DGMDH network. It utilizes LSTM and deep
evolutionary GMDH-type neural networks. Ourmethod com-
petes well with other approaches for the high-dimensional
datasets of the CSI 300 index. It is feasible for three reasons:
(1) Our stock index data preprocessing model optimizes the
original data using the attention mechanism. This ensures the
data is continuous, complete, and sequential. (2) DGMDH
selects relevant input variables and generates a concise model
structure through the incomplete induction method. This
avoids concerns about variable multicollinearity. (3) Tradi-
tional external criteria are inadequate for high-dimensional
stock index datasets. Hence, we employ TEEC for bet-
ter external criterion analysis and optimal complex model
selection. The heuristic self-organizing method dynamically
selects the model structure and estimates parameters with-
out requiring a specific form of the model. Researchers can
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choose the best solution from the model scheme results.
We also utilize DGMDH for feature selection and index
tracking in other high-dimensional financial datasets. In the
future, we foresee the LSTM-DGMDH network extending its
applications to a wider range of financial datasets, beyond the
CSI 300 index. This advancement will position our method
to contribute to the analysis and prediction of global stock
market trends, offering valuable insights for investors and
researchers worldwide.
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