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ABSTRACT Many robotic systems have emerged in the recent past as cutting-edge solutions to enhance
the capabilities of ophthalmic surgeons in order not only to increase the quality of conventional operations
but also to enable new and advanced interventions such as gene- and stem-cell-based therapies. Some of
these operations require precise and stable delivery of therapeutics into the sub-retinal domain and therefore,
automatic procedures with micron precision at the tooltip are essential. One of the most critical parameters
to precisely maintain the tooltip in automated robotic retinal surgery is the appropriate configuration and
control of the Remote Center of Motion (RCM). The RCM precision might be affected by any physical
uncertainties, such as instrument assembling, or minor kinematic changes. Therefore, an accurate RCM
identification requires an extensive calibration plan before each operation. This paper presents a novel
preoperative evaluation-calibration method for kinematic-adjustable software-based RCM robots. Our key
concept is decomposing the 3D workspace into two orthogonal working planes in order to reduce the
complexity while adding robustness to RCM evaluation and software calibration. First, we propose an
ablation-based RCM-related analysis method of the kinematics of the robot. Using a Convolutional Neural
Network (CNN), we analyze image-based RCM along the instrument during a predefined RCM motion
maneuver. Utilizing software calibration protocol by prior-analyzed RCM-related kinematic parameters, the
software calibration is done automatically. The process is repeated until the RCM accuracy is set within
a clinically acceptable range. Evaluation of the method on a highly accurate 5-DOF-Software-RCM robot
demonstrated significant optimization in RCM error within an average of 4 minutes for each plane and
0.300 ± 0.20 mm accuracy.

INDEX TERMS Medical robots and systems, computer vision for medical robotics, surgical robotics,
planning, remote center of motion (RCM).

The associate editor coordinating the review of this manuscript and

approving it for publication was Santosh Kumar .

I. INTRODUCTION
The advent of robot-assisted ophthalmic surgical systems
has generated substantial clinical interest in recent years,
owing to their potential advantages in enhancing the
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efficacy and safety of ophthalmic procedures. The integra-
tion of sophisticated robotic platforms has facilitated the
development of innovative therapeutic strategies, enabling
ophthalmic surgeons to perform complex surgical procedures
with greater precision and accuracy [1], [2], [3], [4],
[5]. The deployment of robot-assisted ophthalmic surgical
systems has enabled the precise autonomous navigation of
surgical instruments through precisely placed trocars on the
sclera, typically positioned a minimum of 3.5 mm from
the limbus [6]. Constraining the robotic control around
the Remote Center of Motion (RCM) during intraocular
surgery is imperative to ensure optimal autonomous navi-
gation. There are two main types of RCM mechanisms in
robot-assisted ophthalmic surgery systems. Hardware-based-
RCM (HRCM) [7] robots with direct physical control over the
RCM and straightforward mechanical design of a fixed RCM
point along the instrument, ensuring the RCM movement.
This mechanism can be reliable, as it is not dependent
on the performance of the robotic’s kinematic software.
On the other hand, its dependency on the mechanical
structure provides less flexibility for performing delicate
procedures such as orbital manipulation [8], which the
surgeon often uses to rotate the eyeball without moving the
head.

Software-based-RCM (SRCM) [3] robots rely on computer
algorithms and the robot’s software to control the position and
movement of the RCM with a flexible kinematic inference.
SRCM systems can offer this flexibility by updating the
RCM through the software. However, physical uncertainties,
especially in assembling disposable instruments with diverse
geometries lead to misalignment of software parameter from
the original values, resulting in RCM and tooltip errors,
and adverse outcomes. RCM positioning requirements are
reported between 2.5mm and 3.0mm. Gijbels et al. defined
a tool tip accuracy of 0.023deg in the XZ and YZ planes
and 10um in the Z-Axis (in depth axis) because in the vein
cannulation surgeries, the diameter of the vessels is 80um [9].
Moreover, Sakai et al. calculated the tooltip accuracy to be
around 15um [10]. Therefore, optimizing the robot’s software
parameters in the robot’s preparation phase and after assem-
bling instruments is critical to ensuring that RCM and tooltip
accuracy remain within acceptable ranges and that the proper
configuration is maintained.We present a novel pre-operative
calibration framework tailored for the use case of SRCM-
robot-assisted ophthalmic surgery. The contributions of this
work are as follows: 1)We introduce a robot’s kinematic
correction protocol based on an ablation scheme applied
to the robot software. To discover RCM position-related
parameters (RPP) and RCM deviation-related parameters
(RDP) in the software, firstly, we decompose the kinematic
into two working planes (XZ and YZ), and secondly,
we accurately analyze each parameter’s impact on the
final RCM movement along the needle (Fig. 2 Step: 0).
2) Using convolutional neural networks (CNNs), we present
a robust image-based RCM deviation analysis method during

FIGURE 1. Simulated comparison of RCM movement with and without
unbalanced robot’s software. a- shows the RCM position impact on the
tooltip movement. A misaligned RCM position increases undesired
pressure on the sclera and reduces the working volume inside the
eyeball. b-shows the RCM radial deviation impact on targeting a point.
Any movement with unbalanced RDPs can lead the tooltip to an
undesired end, making automatic navigation and prediction impossible.

predefined symmetric robot RCMmaneuvers in the analyzing
planes, as shown in Fig. 2:Step 1-3). We leverage the
kinematic analysis to establish a mapping from the kinematic
configuration to RCM movements as the reference for
parameter adjustment (Fig. 2:Step 4,5). 3) One of the
significant bottlenecks in the utilization of robotic retinal
platforms, is the time-consuming preparation process [11],
[12]. We introduce a robust RCM calibration method as one
of the preparatory steps, which has the potential to reduce the
overall time required to prepare these systems significantly.
adjust-test optimization(Fig. 2:Step 1-5), the RCM-related
parameters calibration loop is repeated until the movement
converges within an acceptable predefined range of RCM
error. Our experiments validate the calibration method on
different sub-retinal cannulas controlled by a 5-DoF micro-
surgical robot.
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FIGURE 2. The workflow of our method. Initially, the one-time kinematic
analysis is done. Then, the ‘‘adjust-test’’ program consisting of RCM
movement, RCM evaluation, and Software calibration is executed
iteratively. The level of accuracy is defined before the surgery by the
surgeon depending on the surgery.

II. RELATED STUDIES
To date, only a few published works share the idea of
an autonomous pre-operative SRCM evaluation calibration
with previously analyzed RCM-related parameters. Multiple
works have focused on RCM position evaluation during
surgery using a geometric approach [13], [14], [15]. Some
other works involve new modalities to solve the RCM
evaluation problem, such as tool-tissue force sensing, static
laser tracking, and image-based analysis. Force sensing
methods evaluate the performance of RCM movement by
integrating force sensors into the shaft of the surgical
instruments [14], [16]. Force sensors are commonly used for
sensitive measurement of intraoperative extrusion to detect
hazardous interactions during tool-tissue interaction. How-
ever, combining force feedback with kinematic optimization
remains a challenging task. Integrating force sensors into a
surgical instrument will introduce a new set of certification
and clinical requirements. Laser tracking methods have
sufficient precision for capturing a fixed marker in the line
of sight [17], [18], whereas these methods require additional
mechanical modifications to cover the RCM movement in
certain planes. Moreover, these methods require complex
and expensive laser devices and extra equipment to be
deployed on the surgical platform, which conflicts the pre-
operative standard in the operation room. As an alternative,

image-based RCM estimation has already been used as
a practical solution to evaluate surgical instruments and
assessing RCM response [7], [19], [20]. The camera as a
standalone module can be easily integrated into the robot
system and surgical workflow without affecting the surgical
platform. Therefore, numerous research initiatives have been
proposed in this area. Conversely, most of the researches are
focusing on only RCM position evaluation without kinematic
calibration because of dealing with HRCM mechanism.

Rosa et al. [21] implemented a method to estimate the
optimal pivoting point (OPP) for mechanical-based RCM
laparoscopic surgical robots using a camera system. They
extract straight lines from camera images and after removing
all outliers by utilizing the RANSAC method, followed a
least-squared problem to estimate the optimal incision point
of the detected lines. Wilson et al. [22] explore the usage
of stereo cameras in the estimation of RCM position during
laparoscopic surgeries. These two studies are addressing the
RCM position evaluation introspectively on Hardware-based
RCM (HRCM) robotic systems. Other proposed methods
by [9] and [13] mainly focus on aligning the RCM on the
trocar in HRCM robotic platforms. This alignment procedure
involves utilizing a calibration tool in order to estimate of
optimal pivot position and leveraging the Fulcrum Point in
robotic minimally invasive surgeries. Haoran and et al. utilize
a method using a stereo cameras and a special distinct marker
to detect the instrument and calibrate the robot accordingly
for OCT guided retinal surgery, but assembling these markers
into a sub-millimeter instruments makes these marker-based
methods challenging for preoperative calibration [23].

By contrast, our proposed marker-free method aims not
only to detect the RCM position but also to evaluate RCM
error and any deviation from the radial movement caused
by RCM, eventually leading to the calibration of the robot’s
software. Secondly, an adjust-test pre-operative iterative pro-
gram is done to calibrate the SRCM robotics software online
using the driven protocol from prior-analyzed kinematics to
ensure an accurate RCM motion intraoperatively. Integrating
an image-based evaluation method into an existing surgical
setup with minor modifications seems promising.

III. METHOD
In this section, we describe our pre-operative RCM
evaluation-calibration workflow (Fig. 2) step by step.

A. KINEMATIC ANALYSIS
1) FORWARD AND INVERSE KINEMATICS OF RCM CONTROL
Since software-RCM robots have various mechanical
designs, it is essential to analyze their kinematic structures
and distinguish critical joints that may cause RCM precision
errors. At first, the standard method calculates the forward
and inverse kinematics. The forward kinematics of the robot
T ij is calculated by Denavit–Hartenberg (DH) parameters.

T ij = Ai+1Ai+2 . . .Aj−1Aj(if i < j)

Ai = Rz,θiTransz,diTransx,aiRx,αi (1)
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where θi, ai, di, αi are parameters associated with link i
and joint i. The inverse kinematics is calculated by using
the numerical approach (e.g. Jacobian inverse technique) or
geometric approach [24], [25]. Second, the RCM control
method is calculated. Since the needle needs to pass through
the RCM point, the RCM point (P⃗in) can be denoted as
follows [26].

P⃗in = P⃗5 + λ(P⃗tip − P⃗5) (2)

where P⃗tip defines the tip of the instrument and P⃗5 defines the
endpoint of the robot which can be also defined as the initial
point of the instrument as shown in Fig. 1(a-rcm-diagram).
From these calculations, SRCM control can be developed.

2) KINEMATIC DECOMPOSITION
The robot software (kinematic) is analyzed separately in two
working planes (XZ and YZ plane) to reduce the software
analysis complexity. This decomposition enables reducing
the number of the related kinematic parameters in each
analyzing plane and easier evaluation-calibration using the
actual setup, shown in Fig. 3. The kinematic parameters are
changed individually to check their impact on the tooltip
movement. In the analysis, the RCM point is assumed to be X
mm from the tooltip, and RCM rotates the instrument within
± θ degrees. Two critical RCM parameters are analyzed,
RCM position parameters (RPP) and RCM radial parameters
(RDP), which cause RCM positioning error and RCM radial
deviation, respectively. RCM positioning error means the
position of the RCM point is moved away from the intended
position (Fig. 1-a), and the RCM radial deviation means the
trajectory of the tooltip deviates from the ideal trajectory,
which is a circular arc( Fig. 1-b).

From this analysis, the effect of each parameter for
RCM movement in each plane is figured out. Knowing this
information enables generating an RCM calibration policy.

B. IMAGE CAPTURING/ANALYSIS
Locating two necessary components in each captured frame:
the metal cylinder needle and the plastic shoulder, as shown
in Fig.4-a. By leveraging the needle pose in each frame,
the needle’s center line denoting its position and rotation
status in the image plane (III-B2) enables RCM-Position
extraction along the instrument. Analyzing the radial devi-
ation, we assume the ideal RCM movement has a circular
arc trajectory at the tooltip. To achieve a more consistent
and reliable trajectory and make the detection method
independent from various cannulas geometries at the tooltip,
the trajectory of the interconnection point between the needle
and shoulder is considered (Trajecshoulder ) to represent the
tooltip trajectory(Trajectip). Having shoulder point trajectory
after a symmetric RCM maneuver, the radial deviation is
analyzed ( III-C2).

1) INSTRUMENT SEGMENTATION
A U-Net-style network [28] is trained on a custom dataset
with Binary Cross Entropy Loss to obtain the shoulder and

FIGURE 3. (a) - shows the setup containing two cameras mounted on a
90-degree removable handler(a-1) in order to observe all movement in
two working planes (XY and XZ) of the robot (5-DOF-SRCM ophthalmic
robot). (b) the calibration method of cameras for two planes using a
designed 3-printer marker to enable 63-point calibration using Zhang’s
method [27].

the needle pose in the camera frames (Fig. 4:Step 1). To train
the network, we generate a custom dataset containing random
positions and orientations of 4 different surgical needles
(23G) in two orthogonal planes, manually labeled for surgical
needle and its shoulder segmentation. The dataset consists
of a training set of 3500 images and a validation set of
350 images.

2) CENTER LINE DETECTION
After extraction of the needle segmentation mask, we fit
a 2D line to the segmented needle pixels using Huber
Regressor [29]. The line provides the axis line that passes
through the center of the needle which is represented as the
needle center-line lc.

3) SHOULDER TRAJECTORY
Having the needle shoulder mask segmented (Fig.4-a) in
each frame(III-B1), we utilize the contour detection [30],
to contour the shoulder part. To track the connection point
of the needle and the plastic shoulder, Fig. 4:Step 3, the
intersection of the point on the lower contour’s edge and
the needle center line (lc) in each frame is considered as
the shoulder point (Psh) reference. The collection of these
shoulder points during the RCM movement represents the
shoulder trajectory (Trajecshoulder ).

C. RCM EVALUATION
1) EXTRACT RCM POSITION
We assume that the RCM position is the point with the least
displacement along the needle during the RCM movement.
This location is assumed to be the nearest point to all center
lines, consistent with the original definition. As shown in
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FIGURE 4. Presents the image-based RCM error analysis steps. (a) shows
the needle center-line and shoulder-point segmentation using a
U-net-style neural network. (b) shows analyzing each frame during the
2-times symmetric RCM movement and visualizes the trajectory.
(c) presents the calculation of RCM position and deviation misalignment
by utilizing tangent-line passing the shoulder trajectory.

Fig. 4:Step 1, obtaining the center line in each frame during
the predefined maneuver enables the calculation of this point.
Consequently, the problem of finding the actual RCM point
is converted into a least square approximation (Eq. 3) to
find the nearest point P̂in for all k 2-dimensional needle
center-lines extracted from the previous section. Each center
line is characterized by a point a and a direction n⃗ [31].

P̂in = argmin
p

Dist (p;A,N )

= argmin
p

K∑
j=1

Dist
(
p; aj, n⃗j

)
= argmin

p

K∑
j=1

(
aj − p

)T
−

(
I − n⃗jn⃗Tj

) (
aj − p

)
(3)

At this stage, we need to calculate the length between
the RCM position and needle tip (Distrcm2tip). Having the

calculated Euclidean distance between RCM position (Pin)
and Shoulder point (Psh) with a known needle length
(Lenneedle), the number of pixels showing RCM position from
the tooltip is calculated as shown in Fig. 4-(c). By having
the pixel size (Pxlsize), the RCM position in mm is extracted.
We calculate the RCM position with respect to the tooltip,
as shown in Eq. 4.

Dist = |Pin − Psh| × Pxlsize
Distrcm2tip = |Lenneedle−Dist| (4)

2) EXTRACT RCM RADIAL DEVIATION
The tangent line to a circle at a point on the circle is
perpendicular to the radius to that point [32]. Then as
mentioned in III-B1, based on RCM definition, the trajectory
of the tooltip and shoulder in a symmetric ideal RCM
movement from [−θ, θ] should result in an arc, with the
RCM point being its center. Therefore the tangent line that
passes a point on this trajectory (Psh(θ = 0)) is perpendicular
to the line that connects this point and analyzed RCM
(Pin), described in III-C1. Having this theory, any deviation
from perpendicularity is considered as the RCM radial
deviation(Fig. 4:Step 3). To calculate this deviation, after
collecting the shoulder trajectory points in the symmetric
predefined RCM maneuver (III-B3, we construct the best
curve fit (fitted curve) to the extracted points by using
polynomial regression method [33]. Thereafter, the tangent
line lc passes from Psh(θ = 0) is calculated, shown as Step:3
of Fig. 4.

lc = mlc × x + y0

degmlc = arctan(mlc )
dy
dx

(Dist(sh2rcm)) =
yPsh − yPin
xPsh − xPin

degDist(sh2rcm) = arctan(
dy
dx

(Distsh2rcm)) (5)

As presented in Equation (5), the next step is the
calculation of slopes and angles of two lines, mlc , degmlc ,
dy
dx (Dist(sh2rcm)), and degDist(sh2rcm) and compare the differ-
ence in angles with the ideal RCM movement angle which is
90 degree.

deviation =| (degDist(sh2rcm) − degmlc ) − 90 |ideal=90 (6)

Analyzing the driven slope (m) of the fitted line w.r.t
the perpendicular line connecting the shoulder point and
the RCM point in analyzing frame indicates the deviation
factor. Figure 5 shows how the RCM position and radial
deviation are calculated with different software parameters
in comparison with kinematic theoretical analysis.

IV. EXPERIMENTS
In this section, we focus on the 5-DoF ophthalmic surgical
robot, shown in Fig. 3. Furthermore, to generalize the method
for utilizing it in other SRCM robots, we conducted the
kinematic analysis on an industrial 6-DOF arm robot (VS060,
DENSO Corporation), described in IV-A2.
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FIGURE 5. RCM evaluation with different software parameters in
5-DoF-SRCM ophthalmic robot described in IV-A1 in XZ plane.
A comparison between the theoretical analysis of the software as a
ground truth and our proposed method is presented. The calibrated
parameters for d5 and link2 are 65.9 and 47 mm respectively.

A. KINEMATIC ANALYSIS
1) 5-DOF SURGICAL ROBOT
Our 5-DoF surgical robot is presented in Fig. 6, which is an
updated version of the model proposed by Nasseri et al. [3],
prototyped by NSK.Ltd. The robot consists of two parallel
coupled joint mechanisms (PCJM) for translation and
rotation in the Z and Y axis, and a decoupled prismatic
joint for the movement along the X axis. All five linear
actuators are driven by corresponding ball-screw step motors
with improved holding force and stability. The coordinated
movement of the parallel actuator couple defines the length
of the corresponding transnational joint. Meanwhile, the
length difference of two parallel actuators is converted into
a virtual revolute joint. Referring to the kinematic structure
in Fig. 6, we obtain the needle-tip position Ptip = [px py pz]T

(Eq. 7), by forward kinematics where oj, lj, ċj and ṡj are the
abbreviations of offsetj, linkj, cos(θj) and sin(θj) respectively.

px = (−d5ċ4 − l2ṡ2 − o1)ċ2 + (l1 − o2)ṡ2
py = d3 − d5ṡ4 + l2ċ4
pz = d1 + (d5ċ4 + l2ṡ4 + o1)ṡ2 + (l1 − o2)ċ2 (7)

Since the position of the RCM point varies in vitreoretinal
surgery, in this paper we set this point (Prcm) at 20 mm from
the tip along the needle, and control our robot to move around
this point by utilizing Eq. 2.
The parallel actuators are responsible for both translational

and rotational movements, and each actuator is measured
by its accurate linear encoder and controlled in a closed
loop. We assume that the two virtual revolute joints θ2 and

FIGURE 6. The kinematic structure of the 5-DoF ophthalmic surgical
robot.

θ4 are precise enough to avoid a calibration deadlock.
Knowing the relationship between the tip position and each
joint, we first analyze how the RCM precision error can
be ideally generated from the error of certain joints. From
Eq. 7, d1 and d3 are transnational parameters and never
interfere with the RCM movement. Besides that, offset2 and
link1 can be considered as one parameter, being always
utilized jointly. In summary, offset1, (offset2, link1), link2,
and d5 are the only parameters responsible for the RCM
movement. Furthermore, considering the calibration before
the surgery, d5, link2, and offset2, these three parameters can
be misaligned by assembling a new cannula and must be
calibrated(see Fig. 6). In the next step, let’s consider that
each parameter has an initial +5 mm offset, and calculate the
theoretical needle-tip trajectory. This calculation simulates
the behavior when the actual parameters have errors relative
to the design values. We calculated the trajectory of the
instrument as shown in Fig. 7. The graphs show the effect
of the three parameters(d5, link2, and offset2) related to the
instrument’s replacement.

In addition to the three parameters, the effect of all
kinematic parameters is summarised in Table. 1. The RCM
position in XZ and XY is directly affected by d5 and offset1.
We call this error as RCM-position error and the set of
d5 and offset1 as position-related parameters. The RCM
radial movement is directly affected by parameters offset2 and
link2. In this case, the RCM position is not shifted, but the
radial movement of the tip has completely deviated. We call
this RCM error,RCM radial deviation and set of offset2 and
link2 parameters as deviation-related parameters.
According to the analysis result in this table, we separate

the evaluation of RCMmovement in two orthogonal planes as
XZ and XY , since RCM movement in XZ and XY is entirely
independent of the kinematic parameters, respectively.

2) 6-DOF ROBOT ARM
The kinematic structure of the 6-DOF arm robot(VS060,
DENSO Corporation) is shown in Fig. 8, and the instrument
is attached to the end of the robot arm. The first step is the
decomposition of the kinematics into two orthogonal planes
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FIGURE 7. RCM analysis of 5-DoF surgical robot in XZ and XY by changing
the kinematic parameters. The RCM movement in both planes is analyzed
when each parameter is 5mm more than the set value separately. The
blue and red areas indicate the area through which the instrument
passes, and the black line presents the ideal movement of the tooltip.

TABLE 1. Dependency of RCM Movement of 5-DoF robot. dev and pos
represent RDD and RDP respectively. important* shows considered
parameters that may be affected by new instrument assembling.

( XZ and YZ ). The RCM movement in these two planes is
analyzed as described in III-A1. As shown in Fig. 8, seven
parameters need to be considered (d1-d7) in this step. In order
to examine their impact on the tip movement, each parameter
is moved+5mm from the designed value, one by one, and the
impact is analyzed as shown in Table. 2.

Same as analyzed 5-DoF robot, these 3 parameters
(d4,d6,d7) can be affected by needl’s assembly(see Fig. 8).
The impact of these 3 parameters is shown in Fig. 9. From
this analysis, our analysis method is capable of generating
the calibration protocol for other SRCM robots.

B. SOFTWARE CALIBRATION
As the kinematic analysis explains, RCM motion in each
plane is determined by corresponding parameters. The next
step is generating a software calibration protocol using this
result.

TABLE 2. Dependency of RCM Movement of the 6-DoF robotic arm. dev
and pos represent RDD and RDPs respectively and important* shows
considered parameters that may be affected by new instrument
assembling.

FIGURE 8. The kinematic structure of 6-DoF robot arm.

FIGURE 9. RCM analysis of 6-DoF robotic arm in XZ and YZ by changing
the kinematic parameters. The trajectory of the instrument is analyzed in
both planes when the actual parameters are 5mm more than the set
value separately. The blue and red areas indicate the area through which
the instrument passes, and the black line presents the ideal movement of
the tooltip.

1) 5-DOF SURGICAL ROBOT
We use the analysis system in Fig. 3 by moving the robot in
RCM mode symmetrically by ± 6 degrees two times in two

103622 VOLUME 11, 2023
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planes (XY and XZ ) separately and follow the rules below to
calibrate each RCM plane.

1) If the position of the RCM(Pxz) is not at 20 mm(Ptarget )
from the tip, adjust d5+ = Ptarget − Pxz.

2) Check the RCM radial deviation in the XZ and XY plane.
If the RCM point has variation, adjust offset2 and link2.

3) Calibration loop will be terminated when RCM position
error is within 0.5 mm, and the slope error is within
1 degree. (Due to our robot’s technical requirements
and surgical setup, we choose these numbers as the
RCM requirements to terminate the calibration. The RCM
requirement can be set as an input of this method.)

2) 6-DOF ROBOT ARM
The 6-DoF robot arm can also be calibrated by observing two
separate planes (XZ and YZ ) and following the rules below.

1) If the position of the RCM(Pxz) is not at 20 mm(Ptarget )
from the tip, adjust d6+ = Ptarget − Pxz.

2) Check the RCM radial deviation in the XZ and YZ plane.
If the RCM point has variation, adjust d4 and d7.

3) Calibration loop will be terminated when RCM position
error is within 0.5 mm, and the slope error is within
1 degree.

C. IMAGE ACQUISITION AND CAMERA CALIBRATION
For our vision-based calibration approach, we employ two
Basler RGB cameras (acA4024-29u), acquiring images at
15 fps with a resolution of 4024 × 3036 pixels. By using
a method of Zahng [27], and utilizing a 9 × 7 checker-
board pattern with squares of 1 × 1 mm2 attached on a
3D-printed calibration part on X-Axis which is shown
in Fig.3-b. Cameras are calibrated for both robot planes, and
the average calculated pixel size is 0.016 mm, and 0.018 mm
in the XZ and XY planes respectively to be later used in Eq. 4.
As the camera is positioned stationaryw.r.t to both planes, this
calibration is required only once.

D. ANALYSIS OF RCM POSITION DETECTION
In this step, we experimented 15 times misaligned kinematic
parameters represented by disassembling and re-assembling
a cannula (Geuder G-34285 23G), evaluate the RCM position
by our method, and compare the results with the theoretical
analysis as a ground truth. As explained in Sec. IV-A1 and
shown in Table. 4, three kinematic parameters ( d5, offset2,
and link2) can cause RCM errors and are dependent on the
needle’s assembly. We analyzed the impact of each parameter
by on RCM position by our method and compare the results
with the theoretical analysis and experiments as depicted
in Fig. 10. Each parameter is changed ±2 mm in 1 mm
increments from the designed value, and the detected RCM
position is investigated. Fig. 10 shows similar behavior in
both experimental and theoretical results in the XZ (a), and in
the XY (b) planes. The experimental results also confirm that
the RCM position is linearly dependent on d5. The theoretical

FIGURE 10. The RCM position variation depends on updated kinematic
parameters in XZ and XY planes, respectively. The dashed and solid lines
mark the results of the theoretical analysis (ans) and experiments (ex),
respectively.

FIGURE 11. The variation in slope of lc with updated kinematic
parameters is shown in the XZ and XY planes, respectively. The dashed
and solid lines correspond to the results of the theoretical analysis (ans)
and experiments (ex), respectively.

analysis proves that the RCM position detection is unaffected
by changes in the RDPs (link2 and offest2).

E. ANALYSIS OF RCM RADIAL DEVIATION
In the following, we evaluate the influence of the kinematic
parameters on the RCM radial deviation. Fig. 11 (a) and (b)
show the experimental result compared to the expected
theoretical values on theXZ andXY plane, respectively. It can
be observed that the experiment and theoretical result share
the same trend, in which errors from offset2 in the XZ plane
and link2 in the XY plane generate RCM radial deviation. The
consistency of the results verifies our calibration strategy for
offset2 and link2 which is described in IV-B1.

Based on the theoretical analysis driven from Eq.7 and
Eq.2 in IV-A1, each degree of radial deviation generates at
most ±0.025 mm undesired in-depth movement at the two
edges of needle tip during the RCM movement (in our RCM
maneuver at ±6 degrees).

F. OVERALL CALIBRATION PERFORMANCE
In the next step, we compared the measured RCM values
before and after software calibration with the 5-DoF robot.
The average values are shown in Table. 3. In these
experiments, we set the RCM point at 20 mm from the tip
and used a cannula with a 35 mm length. Therefore, the RCM
position distance is expected to be 15 mm from the shoulder
point. We also selected an accurate range to terminate the
loop (Fig.2) to be±0.50mm for RCMposition and±1degree
for RCM deviation. Before calibration, the average of RCM
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TABLE 3. RCM position/deviation before and after calibration.

TABLE 4. Designed and the average of calibrated software parameters.

positions was at 14.21 mm and 14.35 mm on the XZ and
XY plane, respectively. After running the calibration method,
the RCM position moved into our defined safe range and
was detected at 14.77 mm and 15.12 mm in the XZ and
XY planes. The RCM radial deviation also improved from -
6.7 degrees (XZ ) and 8.77 degrees (XY ) to 0.42 degrees (XZ )
and 0.75 degrees (XY ).
The set of average kinematic parameters corresponding to

the improved RCMmovement is listed in Table and compared
with the designed set of parameters. 4.

In order to have an overview on a tool-tip error during
a surgery with/without calibrated RCM, we simulated the
behaviour of RCM error and radial deviation, described
in IV-A1. Based on these simulations, we calculated the
maximum tooltip error in each plane before and after the
RCM calibration. The maximum tooltip error (at 6 deg
rotation) before calibration is 0.16 mm and 0.241 mm in the
XZ and XY planes respectively. The error is improved by
0.085 and 0.018 mm. The proposed method consists of two
main parts: RCM evaluation (Fig.2: Step 2-3) and Software
Calibration (Fig.2: Step 4). The calibration parts only use
driven software calibration protocol and update parameters
in real time. We assume that the calibration step does not
need to be validated by its definition. On the other hand, the
RCM position error and the RCM radial deviation estimation,
described in III-B and III-C, can be a potential source of error.
Therefore, we design a validation setup, shown in Fig. 12(a),
to explicitly validate the RCM evaluation part.

In this validation setup, we utilize a precise stepper motor
with a resolution of 0.036 degrees per step, and a 3D-
printed circle-shaped stage is attached to the stepper motor.
This rotational stage has a groove to hold the needle at the
center, and the designed slit perpendicular to the groove
helps to detect the stage’s center point. The setup rotates
±14 degrees three times to imitate an RCM rotation. In this
movement, assuming that the actuator and the 3D-printed
stage are precise enough, the RCM point is the center
point, and the shoulder trajectory is a perfect ±14 degree
circular arc with the stage’s center point. Hence, in order to
validate, the Euclidean distance between the detected RCM
point (Pin) and the stage’s center point is measured as an
RCM-position detection error, and the difference in tangent

FIGURE 12. The validation setup. (a) presents the structure of the
validation setup by using a calibrated camera, a 1-DoF platform with a
groove (g), and slits (s) to indicate the center point (Pc ). (b) shows the
real result of RCM position detection validation. Red center lines mark the
needle orientation during the rotation, and two blue lines represent the
center point of the platform. (d) shows the distance between the center
point (Pc ) and the detected point (Pd ). (c) shows the setup for calculating
the distance between all detected shoulder trajectory points distances
(ln) from the detected center point to evaluate the radial deviation
detection method.

TABLE 5. Average time measurements over 10 calibrations at every step
of the pipeline in seconds. The movement refers to the overall time for
2-times symmetric RCM movement (± 6 degrees, and Calibration and
re-initialize refer to the time for calculation/updating the parameters
and putting the robot in the initialized mode respectively.

line slope (degDist(sh2rcm)) and 90 degrees is considered as
RCM-deviation detection error. A 23 gauge needle (G-34285/
Geuder AG), with a diameter of 0.64 mm, is used. In this
experiment, the RCM position and RCM radial detection
accuracy are analyzed 0.144 mm and 0.29 degree separately
(Fig. 12(b), (c)).

1) INFERENCE RATE
Performance measurements also give valuable insight into
the usefulness of every method. In the mentioned 10-times
calibration experiment (IV-F), the calibration process is split
into several steps at run-time (Fig.2).

Each 2-times symmetric RCM movement in our robot
takes 32 seconds, and on average, we need 2.6 times iteration
to make the calibration done for each plane with criteria
mentioned in IV-B1: Step3. Therefore, the RCM movement
takes 224 seconds; meanwhile, all frames are extracted and
processed in real time. With an interface of an Nvidia
GeForce RTXA4000, Table. 5 shows the timemeasurements’
results for each computation step (Fig.2). The results show
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that the pipeline can tune the robot software in an average of
210 seconds.

V. DISCUSSION
It is worth noting that human surgeons naturally have
an advantageous way of maintaining the RCM movement
compared to robotic systems, and surgeons are able to
flexibly adjust the force of the instrument manipulation
by the haptic-visual feedback and the freedom to slightly
mobilize the eye by exerting extrusion to the trocar.Moreover,
RCM constraint in manual robotic surgery has more relaxed
criteria because the robot is controlled by the surgeon
based on haptic-visual feedback. For example for human
surgeons, it is a clinical standard to keep the error of
RCM position within 3 mm [10] when the instrument is
introduced through the trocar. In contrast, surgical robots,
at this stage, without human-level adaptability are naturally
constrained by their mechanical design and hence have
less freedom of movement. Considering this fact, with
higher RCM positional error, robots may be limited in their
effective working volume, even to the extent that surgical
maneuvers can no longer be performed, and a robot with
RCM redial deviation can not even move towards the target
with needed micron precision. As a result, there is only little
room for surgical robots to tolerate RCM errors, especially
when they are amplified by the forward kinematics. Due
to this fact, the imperative arises for pre-operative RCM
kinematic calibration as an indispensable step. This crucial
calibration process becomes necessary to ascertain that the
RCM accuracy remains within a margin that is both safe and
meets the specific requirements of the surgical application.
This also explains why we manually set the positional RCM
error tolerance in Section IV-B to 0.5 mm for our robotic
system, instead of the less precise standard of 3 mm for
human surgeons. Meanwhile, this high-precision constraint
demands more iterations during parameter optimization and
consequentially leads to a longer duration of the preoperative
calibration. This also has implications for the eventual
integration of surgical robots into operating rooms, as a
balance between the precision and duration of preoperative
calibration needs to be investigated.

VI. CONCLUSION
This paper proposes a preoperative vision-based RCM
calibration method to compensate for the position error
and radial deviation in the RCM mode through fine-tuning
kinematic parameters. We validated our approach using a 5-
DoF ophthalmic software-RCM robot. We showed that our
strategy for kinematic decomposition and image-basedRCM-
related parameters evaluation in two decoupled working
planes is consistent with the theoretical RCM analysis and
succeeded in constraining the error of RCM position within
the defined 0.50 mm. Furthermore, the tooltip accuracy is
improved from 0.16 mm and 0.241mm to 0.085mm and
0.018mm in the XZ and XY planes, respectively. Addition-
ally, we demonstrated the generalizability of our analysis

method by applying it to analyze another conventional 6-DoF
SRCM robot.

It should be pointed out that the accuracy of calibration
hinges on various factors. Firstly, the quality of joint
manufacturing and assembly plays a critical role. Since
calibration involves intricate kinematic calculations, all joints
are assumed to be meticulously manufactured and precisely
assembled, particularly in delicate surgical procedures.
Secondly, in vitreoretinal surgeries, the instruments are
extremely small, often within the sub-millimeter range.
Thus, the calibration’s accuracy is influenced by the quality
of instrument segmentation. The resolution of the optical
camera and the accuracy of the U-Net-like neural network
are crucial aspects that determine how well the system can
identify and segment these small instruments. The method’s
core concept involves decomposing the robot’s kinematics
into two perpendicular planes. This approach enhances the
reliability and robustness of the calibration process. However,
this technique is most suitable for robots with kinematics that
can be decomposed in thismanner. Certain robots with unique
designs might only partially support this decomposition.
It is also important to acknowledge that while the proposed
method excels at addressing geometric errors through the
kinematic breakdown, it does not rectify non-geometric
errors like backlash (play in joints) or misalignment during
assembly. Relying on a segmentation model to identify and
extract relevant information in each frame necessitates the
utilization of a graphical processing unit (GPU) for efficiently
processing each frame.

The promising results of our calibration method demon-
strate a strong potential for its future integration into robotic
surgical systems for ophthalmic surgical automation.
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