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ABSTRACT Congenital heart defects (CHDs) are a leading cause of death in infants under 1 year
of age. Prenatal intervention can reduce the risk of postnatal serious CHD patients, but current diag-
nosis is based on qualitative criteria, which can lead to variability in diagnosis between clinicians.
Objectives: To detect morphological and temporal changes in cardiac ultrasound (US) videos of fetuses
with hypoplastic left heart syndrome (HLHS) using deep learning models. A small cohort of 9 healthy
and 13 HLHS patients were enrolled, and ultrasound videos at three gestational time points were collected.
The videos were preprocessed and segmented to cardiac cycle videos, and five different deep learning
CNN-LSTM models were trained (MobileNetv2, ResNet18, ResNet50, DenseNet121, and GoogleNet).
The top-performing three models were used to develop a novel stacking CNN-LSTM model, which was
trained using five-fold cross-validation to classify HLHS and healthy patients. The stacking CNN-LSTM
model outperformed other pre-trained CNN-LSTM models with the accuracy, precision, sensitivity,
F1 score, and specificity of 90.5%, 92.5%, 92.5%, 92.5%, and 85%, respectively for video-wise classifica-
tion, and with the accuracy, precision, sensitivity, F1 score, and specificity of 90.5%, 92.5%, 92.5%, 92.5%,
and 85%, respectively for subject-wise classification using ultrasound videos. This study demonstrates the
potential of using deep learning models to classify CHD prenatal patients using ultrasound videos, which
can aid in the objective assessment of the disease in a clinical setting.

INDEX TERMS Congenital heart defects (CHDs), fetal echocardiogram, deep learning, CNN-LSTM,
stacking machine learning, hypoplastic left heart syndrome (HLHS).

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

I. INTRODUCTION
Congenital heart defects (CHDs) account for 1% of all
live births worldwide [1]. Generally, hyperplasia refers to
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a condition of delayed or stunted development in which an
organ or a part of it remains below its normal size or remains
immature [2]. Hypoplastic left heart syndrome (HLHS) is a
group of cardiac malformations characterized by underde-
velopment of both the aorta and the left heart, resulting in
significantly impaired blood flow into the systemic circuss-
lation and inadequate support for the circulation by the left
heart [3]. HLHS is a very severe form of CHD characterized
by an insufficient and non-viable left ventricle (LV) caused by
congenital abnormalities that compromise the LV’s ability to
perform its prefusion function [4]. The incidence of HLHS
is estimated to be between 0.016% and 0.036% of all live
births; the occurrence is estimated to be in approximately 2
out of every 10,000 pregnancie [5], [6]. HLHS accounts
for 1 to 3.8 % of congenital cardiac malformations, 8–12%
of heart defects of infants with critical heart disease, and
critically responsible for 25% to 40% of all neonatal cardiac
mortality [7], [8].

There is currently no definitive explanation for the etiol-
ogy of HLHS. Higher incidence within families with disease
history suggests genetic contribution. The higher incidence
of HLHS in families with a disease history suggests a genetic
contribution. In some children, isolated HLHS is known to
have a genetic basis. These cases may be due to mutations
in the GJA1 gene with autosomal recessive inheritance or the
NKX2-5 gene with autosomal dominant inheritance [9], [10].
However, in the majority of the cases, the disease is diag-
nosed without any genetic relevance. Clinically, disturbed
hemodynamics have been shown as a major contribution to
the fetal development of the disease [11], [12], [13]. The
growth of the left ventricle is hindered when there is a dis-
turbance of blood flow or when the foramen ovale is affected
during fetal development. Patients with HLHS have a diminu-
tion of the foramen ovale [14]. HLHS is also associated
with anatomical abnormalities of the atrial septum when the
superior edge of the septum and/or the primum, deviates
posteriorly and leftward, resulting in obstruction of the atrial
shunt [15]. The abnormal development in cardiac valves or
the left ventricle itself may be caused by HLHS [16], [17].
We have recently revealed evolving hemodynamics in nor-
mally and HLHS diagnosed human fetuses and demonstrated
severe hemodynamic abnormalities in fetal HLHS hearts
[18], [19]. Animal studies supported these observations,
in which surgical interventions causing blood flow abnor-
malities resulted in ventricular hypoplasia in the developing
embryo [20], [21], [22].
The main treatment for HLHS involves a series of surgi-

cal procedures aimed at establishing the right ventricle as
the main pumping chamber of the heart after birth. These
procedures, collectively known as surgical palliation for
HLHS neonates, involve three steps: the Norwood Proce-
dure, the Bi-directional Glenn Operation, and the Fontan
Operation [23]. These procedures establish a new functional
systemic circuit in patients with HLHS. [24]. During the
initial days of a newborn’s life, the Norwood Procedure is

conducted to establish the right ventricle as the primary pump
for pulmonary and systemic circulation throughout the body.
This is achieved through a connection made between the
left and right atria via atrial septectomy. Subsequently, the
narrowed outflow track is reconstructed by creating a con-
nection between the right ventricle and the aorta using tissue
grafts from the distal main pulmonary artery. The final step
in providing pulmonary blood flow is the aortopulmonary
shunt, which connects the aorta with the main pulmonary
artery [25]. After a six-month recovery period following
the Norwood surgery, the bidirectional Glenn procedure is
performed. [26]. During this procedure, the shunt placed
between the pulmonary arteries and the right pulmonary
artery during the Norwood procedure is disconnected, and the
right pulmonary artery is then connected to the superior vena
cava (SVC). [26]. This allows for blood from the upper part
of the body to enter the pulmonary artery directly, bypassing
the ventricles. The Fontan operation is the third and final
surgical procedure and is typically performed between 18 to
36 months after the Glenn procedure. During this procedure,
a channel is created through or outside the heart to connect
the vena cava to the pulmonary artery and direct blood flow
to the pulmonary artery [26].

Recently, alternative surgical approaches have been pro-
posed for treating HLHS in the fetus. One such approach
is fetal valvuloplasty (FV), which is aimed at improving
left heart hemodynamics, promoting growth, and maintaining
biventricular circulation at birth. [27]. FV may be performed
to prevent the progression of severe mid-gestation US [28].
The FV procedure involves balloon dilation inflation of
the aorta to reduce fetal aortic stenosis in utero [28], [29],
[30], [31], [32], [33], [34], [35]. In a pioneering study with
this approach on 100 HLHS-diagnosed fetuses and 43% of
live-born patients had biventricular circulation, demonstrat-
ing the feasibility of the approach [33].
The fetal diagnosis of HLHS is of utmost importance

for therapy planning, as well as for the advancement of
new approaches such as fetal surgeries, as mentioned ear-
lier. There are multiple tools available for the diagnosis
of HLHS, including Computed Tomography Angiography
(CTA), Cardiac Catheterization, Chest X-ray Radiography
(CXR), Electrocardiography (ECG), and Echocardiography.
However, all these techniques, except for Echocardiography,
are difficult to apply to the fetus due to several limitations,
such as invasiveness, radiation hazard, or acquisition of noise.
Echocardiography, on the other hand, poses no danger to the
fetus as it does not involve radiation and can provide accurate
images and real-time measurements. A B-mode scan can be
used to evaluate heart anatomy and ventricular position, while
anM-mode andDoppler scan can be used for assessing valvu-
lar and vascular functionality [36]. The diagnosis of fetal
HLHS through echocardiography relies heavily on qualitative
criteria, which may lead to variations in diagnosis among
clinicians. Despite this limitation, echocardiography remains
a valuable tool for diagnosing fetal HLHS, as it allows for
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visualization of shunt flow, evaluation of the atrial and ven-
tricular septum, assessment of vessel anatomy, and provision
of functional information regarding the atrioventricular and
outflow valves [37].

Recent studies by Masaaki et al. [38] introduced SONO,
an architecture that employs a CNN to identify cardiac
substructures and anomalies within fetal ultrasound videos.
The technique involves a timeline visualization for detec-
tion likelihood and the computation of anomaly scores. The
assessment focuses on cardiac structural anomalies (specifi-
cally Heart and Vessels), using area under the curve-receiver
operating characteristic (AUC-ROC) analysis, and demon-
strates competitive performance compared to established
methods. Gangadhar et al. [39] investigated the feasibility
of utilizing deep learning algorithms, specifically Artificial
Neural Networks, to predict coronary artery disease at an
early stage. The research aimed to enhance cardiac diag-
nosis and preventive measures through effective analysis of
data patterns. Gonsalves et al [40] explored the utilization
of medical data for CHD prediction through Naive Bayes,
Support Vector Machine, and Decision Tree ML methods,
highlighting the potential of Naive Bayes probabilistic mod-
els in enhancing CHD detection.

Several computational approaches have been introduced in
the medical field to advance diagnosis and therapy in severe
clinical conditions. Computer-Assisted Diagnosis (CAD), for
instance, has revolutionized medical image analysis, from
oncology to cardiology. CAD medical image analysis has
been attempted since 1965, when J.M. Prewitt and others
published papers on the use of computerized image analy-
sis of cell images [41], [42]. The introduction of Machine
Learning (ML) has revolutionized the image analysis field
in medicine. Deep neural networks such as Convolutional
Neural Networks (CNNs) [43] and Long Short-Term Mem-
ory (LSTM) [44] and their hybrid model CNN-LSTM have
shown outstanding performance in different Computer Vision
problems [45]. CNN has the advantage of automatically
extracting useful spatial features from the image [46], [47]
while LSTM is popular for extracting important temporal
features [48] from a sequence of images or frames or a video.
Therefore, the combination of CNN and LSTM can offer
spatial and temporal feature extraction on temporally varying
image or video data. Architecture combined with CNN and
LSTM has been successfully used in Natural Language Pro-
cessing (NLP) applications [49], Speech Recognition [50],
Video Description [51], Action Recognition [52], and so on.

The importance of echocardiography in the diagnosis of
CVDs is evident as it is the only imaging method that enables
real-time imaging of the heart, thereby allowing for the
immediate detection of various abnormalities [53]. Combin-
ing clinician interpretation and machine learning (ML) has
the potential to improve the accuracy of echocardiography
by reducing inter- and intra-operator variability. In addition,
ML can provide predictive information that may be too subtle
for humans to detect [54]. Some limitations of using echocar-
diography include the heavy reliance on the operator’s

experience and the qualitative interpretation of the heart’s
anatomical features [55]. This limitation can be addressed
by integrating ML into echocardiography, which can intro-
duce more automated and quantitative parameters [56], [57],
[58], [59]. The datasets generated from echocardiography,
particularly with the advancements in techniques such as 3D
echocardiography, are often underutilized, and vast amounts
of data remain uninterpreted. To bridge the gap between
clinical and echocardiographic data, the introduction of ML
and deep learning algorithms can be of great assistance [60],
[61], [62], [63], [64], [65], [66].

Accurate fetal diagnosis of CHDs is particularly an impor-
tant area that will benefit from adopting ML approaches to
advance echocardiography-based diagnosis. As in the case of
HLHS, it is challenging to obtain an accurate diagnosis with
conventional echocardiography approaches. Here, the struc-
ture and function of the fetal heart can be assessed through
a variety of Ultrasound (US) techniques, including conven-
tional 2-D imaging, M-mode imaging, and tissue Doppler
imaging among others. However, it remains difficult to assess
the fetal heart due to the involuntary movements of the fetus
and its small size, in addition to some sonographers’ lack of
expertise in fetal echocardiography [67]. Despite the great
potential, to date, there is no study on the application of
ML for the advancement of fetal diagnosis of CHDs. In this
study, we are aiming to develop a deep learning technique
for the automatic diagnosis of HLHS from fetal B-mode
echocardiography. The main contributions of the paper are:

1. Several CNN-LSTM deep learning architectures with
different state-of-the-art pre-trained encoders (such as
MobileNetv2, ResNet18, ResNet50, DenseNet121, and
GoogleNet) were investigated.

2. A novel CNN-LSTM architecture is used to extract
spatial and temporal features from the B-mode Ultra-
sound during a cardiac cycle to identify the spatial
and temporal abnormalities among healthy and HLHS
patients.

3. Comparing the performance of CNN-LSTM architec-
tures, a novel stacking CNN-LSTMmodel is developed
to diagnose the HLHS early and precisely. Finally,
classification results are reported for video-wise and
subject-wise decisions.

II. METHODOLOGY
A. STUDY POPULATION
Qatar’s Women’s Wellness and Research Center at Hamad
Medical Corporation (HMC) is the largest fetal-maternal unit
in the country, treating almost all congenital birth defects. The
HMC and Qatar University Ethics Committees approved the
study (HMC IRB MRC-03-17-0015). Pregnant women who
were referred for an early fetal ultrasound and met the study’s
eligibility criteria were invited to participate. Participants in
the control group provided written consent and were given
an initial evaluation and two follow-up appointments during
the study. The initial evaluation was conducted during the
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FIGURE 1. Patient Selection Diagram.

beginning of the second trimester, between 16-19 weeks
of gestation, and the follow-up evaluations were conducted
between 23-26 weeks and 31-34 weeks of gestation. Dur-
ing the same study period, women with fetuses diagnosed
with congenital heart disease of the single ventricle (either
hypoplastic left or right ventricle) were included in the study
after obtaining verbal consent, as the initial and follow-up
evaluations were part of their routine follow-up. Almost all
cases of congenital heart disease in the study were referred
and diagnosed during the last weeks of the second trimester.
The study included 13 subjects with HLHS and 9 healthy
control subjects.

B. PATIENT SELECTION CRITERIA
Women in the control group were deemed eligible if they
had a scheduled routine fetal ultrasound examination between
weeks 16 and 18 of pregnancy.

Women referred for determining gestational age or growth
discrepancy, experiencing preceding miscarriage, unable to
detect a fetal heartbeat, or other miscellaneous reasons were
also eligible to be part of the control group, provided the fetus

was determined to be normal. Patient selection diagram is
presented in Figure 1. In Figure 1(A) number of CHD subjects
illustrated, trimester refers to one of the three distinct periods
into which a pregnancy is divided. In Figure 1(A) number of
healthy subjects illustrated.

C. ACQUISITION OF ECHOCARDIOGRAPHY VIDEOS
All examinations were conducted by a specific and expe-
rienced fetal cardiologist with ample background in fetal
echocardiogram examination, using the Voluson E10 (Gen-
eral Electric) Ultrasound System. The Ultrasound exami-
nations were performed with the GE RAB6-D 4D convex
probe and following the guidelines issued by the American
Society of Echocardiography and standards for the perfor-
mance of fetal echocardiography. A detailed evaluation of all
essential components of the fetal echocardiogram, including
the four-chamber view, diameters of the mitral and tricuspid
valve annuli, and the lengths of the left and right ventri-
cle, were obtained. Flow patterns across the atrioventricular
and semilunar valves were evaluated using color Doppler.
Doppler indices were obtained by placing the sample volume
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FIGURE 2. Overview of the methodology.

distal to the respective valves and angled within 15-20◦ of the
direction of blood flow. Doppler waveforms were obtained
multiple times during fetal apnea, and color Doppler was
used to direct the placement of the sample volume. Doppler
images were used for the diagnosis of patients. However, only
B-mode Ultrasound images extracted from mp4 videos were
used for the ML model development in this study.

D. MACHINE LEARNING MODEL DEVELOPMENT
In this study, CNN-LSTM deep learning architectures with
five different encoders (such as MobileNetv2, ResNet18,
ResNet50, DenseNet121, and GoogleNet) were investi-
gated to extract useful temporal and spatial features. These
features were used to train a fully connected network
(FCN)/multilayer perceptron (MLP) classifier. Out of the five
encoders, the three best encoder-based CNN-LSTM models’
predictions were used to train a meta-classifier, a novel stack-
ingmodel for the early and precise detection of CHD patients.
The classification results are reported both video-wise and
subject-wise. Figure 2 illustrates the schematic overview of
the methodology.

E. DATASET DESCRIPTION
There was a total of 13 HLHS and 9 control subjects included
in the study, and multiple B-mode Ultrasound videos were
available for each subject in the dataset. Echocardiogra-
phy was conducted at three time points: 1) 16-19 weeks
gestation, 2) first follow-up at 23-26 weeks gestation, and
3) second follow-up at 31-34weeks gestation. Each videowas

segmented into short videos based on the cardiac cycle.
Table 1 presents the number of available videos with corre-
sponding time points and the number of segmented videos for
each patient.

F. DATASET PREPROCESSING
Four steps were used to process echocardiogram videos of
healthy and CHD patients: 1) cleaning and cropping the
videos, 2) improving the video quality, 3) segmenting the
videos, and 4) training test subject-wise splitting for five-
fold cross-validation for CNN-LSTM model development,
validation, and testing.

1) VIDEO CLEANING & CROPPING
All static information, such as text or color, was removed
from the US videos. To remove text and color from videos,
firstly, we have detected fixed text and color marking regions
in each frame using canny edge detection approach. Then,
we replaced the identified regions with corresponding back-
ground content from the same frame or neighboring frames
to achieve the removal effect. The videos were cropped by
10% from each side to eradicate unnecessary segments. Crop-
ping eliminates unimportant elements, such as black areas,
enhancing visual focus while preserving aspect ratios for
uniformity. The cleaned videos were then cropped by 10%
from each side to reduce unnecessary parts (black areas) of
the ultrasound videos. Then, all frames of each RGB video
were resized to 224 × 224, which is applied as input to the
model. Figure 2 shows a sample of raw ultrasound frames,
static information cleaned frames, and cropped frames.
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TABLE 1. Summary of the echocardiogram videos for (A) CHD subjects and (B) Healthy subjects.

FIGURE 3. Sample raw, cleaned, and cropped frames of the
echocardiogram videos.

2) VIDEO ENHANCEMENT
For each frame of the videos, gamma correction was applied
to enhance the video quality. Typically, linear operations
are performed on individual pixels in image normalization,
such as scalar multiplication, addition, and subtraction [1].
In gamma correction, pixels in the source image are subjected
to a non-linear operation. Gamma correction alternates the

pixel value to improve the image using the projection rela-
tionship between the value of the pixel and the value of the
gamma according to the internal map. IfP represents the pixel
value inside the [0,255] range, � represents the angle value,
0 is the symbol of the gamma value set, x is the grayscale
value of the pixel (xϵ P) in equation (1)-(4). Let xm be range
midpoint [0, 255]. The linear map ϕ from group P to group�

is defined as:

ϕ V P→�,�={ω | ω=ϕ (x)} ,ϕ (x) =
πx
2xm

(1)

The mapping h from � to 0 is defined as:

h V �→0, 0 = {γ | γ=h (x)} (2){
h (x) = 1+f 1 (x) (3)

f 1 (x) = acos (ϕ (x)) (4)

where a ϵ [1, 0] denotes a weighted factor.
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FIGURE 4. Pre-processing of the Ultrasound video to up-sample to 20 frames by adding the last frame.

TABLE 2. Details of the dataset used for training, validation, and testing.

Based on this map h, group P can be related to 0 group
pixel values. The arbitrary pixel value is calculated in relation
to a given Gamma number. Let γ (x) = h(x) and the Gamma
correction function is shown in Equation 5.

g (x) = 255
( x
255

)1/γ (x)
(5)

where g(x) represents the output pixel correction value in the
grayscale.

3) VIDEO SEGMENTATION
The US videos were segmented into individual heart cycle
video segments using expert medical annotation. To feed
these segments into the deep learning model, a fixed number
of frames per video was required. The average frame-per-
second (fps) of the videos are made to 33. However, some
videos has much less than 20 fps while some videos have
much higher than 20 frames. Therefore, each video data was
pre-processed to have a maximum length of 20 frames. The
choice of using 20 frames per video segment was likely deter-
mined based on a combination of factors such as the expected
duration of a heart cycle, computational efficiency, andmodel
requirements. Videos with less than 20 frames were adjusted
to 20 frames by replicating the last frame, ensuring a uniform
length of 20 frames across all videos. The process of video
upsampling using padded frames is illustrated in Figure 4
and videos with more than 20 frames were downsampled
to 20 fps.

4) TRAIN-TEST FOLD CREATION AND AUGMENTATION n
Five different CNN-LSTM models were investigated along
with a novel stacking model.

Five-fold subject-wise cross-validation was used in
this study, where 80% of the videos used for training
(10% of which were used for validation) and 20% for

testing. To avoid overfitting, the training data classes were
made balanced since the HLHS, and healthy classes are
not equal [2]. We used three popular image augmentation
techniques (rotation, scaling, and translation) to make the
training set balanced. Each image in the video was rotated
by an angle of 5 to 10 degrees clockwise and counterclock-
wise for image augmentation. Each frame of the videos was
scaled (magnified or reduced) by 2.5% to 10%. The images
were translated horizontally and vertically by 5% to 10%.
The weighted average of the five-folds is reported for each
performance metric. Table 2 shows the details of the number
of training, validation, and test data sets used in this study.

G. DEVELOPMENT OF CLASSIFICATION MODEL
US videos are composed of spatial and temporal features.
The spatial feature of an US video is the shape of the heart
chamber, while the changes in the chamber shape during
systolic and diastolic events constitute the temporal feature.
In this study, CNN and LSTM layers were utilized for the
extraction of spatial and temporal features, respectively. Deep
CNNs have been widely employed for image classification
due to their superior performance in comparison to other
machine learning methods. These networks are capable of
automatically extracting spatial features of an image. The
approach of transfer learning has been successfully incorpo-
rated in many applications [3], [4], [5], [6], [7], especially
where a large dataset can be hard to find. Thus, it opens
the opportunity of utilizing a smaller dataset and reduces
the time required to develop a deep learning algorithm from
scratch [8], [9]. In this study, we used five deep learning
pre-trained CNN models such as ResNet18, ResNet50 [10],
DenseNet201 [11], MobileNetV2 [12], and GoogleNet [11],
which were predominantly used in the literature. The feature
vector after flattening the layer of CNN was fed to the LSTM
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FIGURE 5. Architecture of LSTM block.

FIGURE 6. Stacking model architecture.

layers and then it is fed to the fully connected network (FCN)
or MLP for classification.

In Ultrasound videos, there is a degree of temporal con-
nection between consecutive frames which contains the
information about systolic and diastolic events. Neural net-
works such as vanilla recurrent the temporal connections
in video data. LSTM [13] layers are widely used in dif-
ferent Ultrasound video classification [14], [15]. LSTM
performs better than va- nilla RNN in this task where pre-
vious frames can preserve information in understanding the
present frame [16]. LSTM layer has cell states and hidden
states which enables LSTM to add or remove information by
regulating gates using cell states. Moreover, LSTM resolves
the vanishing gradient problem of vanilla RNN by possessing
the additive gradient mechanism [16]. Two layers of LSTM
with 256 hidden states with a 20% dropout rate were used in

this study for temporal feature extraction. Figure 5 represents
the architecture of the LSTM module in the CNN-LSTM.

In this study, the stacking approach was deployed with
the top-performing three CNN-LSTM models (with three
different pre-trained encoders) as base learners and a logistic
regression classifier was used as meta learners to identify
the CHD patients. If a single dataset A, which consists of
input vectors (xi) and their classification score (yi). At first,
a set of base-level CNN-LSTM classifiers M1, . . . . . . ,Mp
is trained and the prediction of these base learners is used to
train the logistic regression-based meta-level classifierM f as
illustrated in Figure 6.

We used five-fold cross-validation to generate a training
set for the meta-level classifier. Among these folds, base-
level classifiers were trained on four-folds, leaving one-fold
for testing. Each base-level classifier produces a probability
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TABLE 3. Details of training parameters of CNN-LSTM models.

value for the possible classes. Thus, using input x, a prob-
ability distribution is created using the predictions of the
base-level classifier set,M :

PM (x) =

(
PM (c1 | x) ,PM (c2 | x) , . . . . . . .,PM (cn | x)

)
(6)

where (c1,c2, . . . . . . ,cn) is the set of possible class values
n, m denotes the number of subjects and PM (ci | x) denotes
the probability that example, x belongs to a class cj as esti-
mated (and predicted) by the classifier, M in Equation (7).
The class ci with the highest-class probability PM j (ci | x) is
predicted by a classifier,M . The metalevel classifierM f , and
attributes are thus the probabilities predicted for each possible
class by each of the base-level classifiers, i.e., PM j (ci | x) for
I = 1,. . . ., n and j = 1,. . . ., p where n, p denotes the number
of classes and the number of base learners. The pseudo-code
for the stacking approach is shown in Algorithm 1.

Algorithm 1 Stacking Technique

Input: training data A = {xi,yi}
m
i=1

Output: a stacking classifierM f
1: Step 1: learn base-level classifiers
2: for t=1 to T do
3: learn ht based on A
4: end for
5: Step 2: construct new data set of predictions
6: for i =1 to m do
7: Ah=

{
x
′
i ,yi

}
, where x

′
i= {h1 (xi) , . . . ..,hT (xi)

8: end for
9: Step 3: learn a meta-classifier
10: learnM f based on Ah
11: returnM f

H. DECISION FUNCTION
A decision function was used in this study to take the decision
on the final classification. The decision was taken using
two different approaches: Ultrasound video-wise and subject-
wise. For video-wise decisions, the average of the prediction
probability scores was calculated for the segmented short
videos of 20 frames individually and made one final decision
for full video from all the short videos. Similarly, for subject-
wise decisions, the average of the prediction probability
scores of different Ultrasound videos of the subject was used
to produce the final decision. Equation 7 shows the final

decision function:

σ =
1
n

∑n

i=1
Pi(x) (7)

where σ is the decision function of n number of segmented or
full videos. Pi(x) is the probability scores for each segmented
or full video.

The mean probability scores of all segmented videos were
used to take the decision for the full Ultrasound video. Simi-
larly, this study also produced the final decision of the subject
by taking the mean of the probability scores of all videos of
the subject

I. EXPERIMENTAL SETUP
This study was carried out with the Pytorch package and
Python 3.7. Google ColabPro was used to train all the models
and the specification was 16GB Tesla T4 GPU and 120GB
High RAM. Table 3 shows the training settings that were
employed in this experiment.

J. EVALUATION METRICS
Precision, Sensitivity, Specificity, Accuracy, F1-Score, and
receiver operating characteristic (ROC) with the area under
the curve (AUC), were used to evaluate the performance of
different classifiers. Weighted metrics per class and overall
accuracy were used as both classes had different numbers of
instances. The area under the curve (AUC) was also analyzed
as a metric for evaluation. Equations (8-12) show the math-
ematical expression of five evaluation measures (weighted
sensitivity or recall, specificity, precision, overall accuracy,
and F1 score):

Accuracy =
TP + TN

TP+ TN + FP+ FN
(8)

Precision =
TP

TP + FP
(9)

Recall/Sensitivity =
TP

TP + FN
(10)

F1_score = 2
Precision × Sensitivity
Precision + Sensitivity

(11)

Specificity =
TN

TN + FP
(12)

Here, true positive (TP), true negative (TN), false positive
(FP), and false-negative (FN) were used to denote the num-
ber of HLHS videos or subjects were identified as HLHS,
the number of healthy videos or subjects were identified as
healthy, the number of healthy videos or subjects incorrectly
identified as HLHS and the number of HLHS videos or sub-
jects incorrectly identified as healthy, respectively. We report
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the weighted performance metric, with a 95 % confidence
interval, for Sensitivity, Specificity, Precision, and F1-Score,
and the overall accuracy with a 95 % confidence interval for
the accuracy.

III. RESULTS AND DISCUSSION
The heart is the first functional organ of the fetus. There-
fore, the heart continues to function and develop at the
same time. Since blood flows constantly through a devel-
oping heart, it has been suggested that hemodynamic forces
(i.e. forces on cardiac tissue by flowing blood) are an impor-
tant epigenetic factor governing cardiogenesis. Congenital
heart disease (CHDs) form during the very complex events of
heart development. These defects affect about 1% of newborn
children and are the leading cause of death in infants under
1 year of age. CHDs can be detected prenatally via medical
imaging whereas echocardiography is the most widely used
technique for this purpose. Real-time imaging via echocar-
diography enables the assessment of heart morphology (i.e.,
the size of the heart chambers and valves etc.) whereas
Doppler echocardiography enables the measurement of blood
flow velocities through the heart (i.e., inflow through heart
chambers and flow through heart valves etc.), hence evalua-
tion of heart function. For example, prenatal echo can detect
one of themost serious types of CHDs, ventricular hypoplasia
(under development), as early as the 18th week of gestation,
with high accuracy. Echocardiography revealed the presence
of disturbed hemodynamics in hypoplastic fetal hearts, and
associated abnormal forces are thought to contribute to the
development of this condition. However, this evaluation is
highly subjective while computer-aided-diagnosis can help
here significantly. This work used echocardiography videos
of a small healthy and CHD (mainly HLHS) patients cohort
to develop deep learning-based detection system to automat-
ically classify the HLHS and healthy subjects automatically
and reliably. Figure 7 shows the sample of healthy and HLHS
patients’ 4-chamber view of the heart to show the difference
in the morphology of the heart chamber in unhealthy groups
during the different gestational weeks.

This study investigated and compared five different
deep learning CNN-LSTM architectures using 5 pre-
trained models, such as MobileNetv2, ResNet18, ResNet50,
DenseNet121, and GoogleNet, for the purpose of developing
a novel stacking model to predict the HLHS patients from
Ultrasound videos. The results are reported using video-wise
and subject-wise evaluations.

A. VIDEO-WISE CLASSIFICATION
As discussed above, this study analyzed different deep
learning LSTM models and stacking models to classify
HLHS or healthy patients using echocardiogram videos.
This study yielded the best performance with MobileNetv2-
LSTM architecture which produced the accuracy, precision,
sensitivity, F1 score, and specificity of 88.9%, 92.4%, 90.3%,
91.6%, and 86%, respectively. The stacking model was
developed using the probability scores of Top-3 performing

FIGURE 7. Sample snapshot for (A) healthy, and (B) HLHS patient’s
echocardiogram videos for two timepoints of each subject. LA is left atria,
LV is left ventricle, RA is right atria, RV is right ventricle. Snapshots are for
ventricle diastole in the cardiac cycle.

models (MobileNetv2-LSTM, ResNet18-LSTM, and
GoggleNet-LSTM) which improve the result by ∼2% with
the accuracy, precision, sensitivity, F1 score, and specificity
of 89.5%, 92.5%, 91.8%, 92.5%, and 86.2%, respectively.
Table 4 shows the comparisons of different CNN-LSTM
models and the stacking model for video-wise HLHS and
healthy patient classification.

Figure 8 shows the area under the curve (AUC)/receiver-
operating characteristics (ROC) curve (also known as
AUROC (area under the receiver operating characteristics))
for video-wise HLHS classification using Ultrasound videos,
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TABLE 4. Comparison of different CNN-LSTM performances for video-wise classification.

FIGURE 8. ROC curve for video-wise binary classification using different
CNN-LSTM and stacking CNN-LSTM models.

which is one of the most important evaluation metrics for
checking any classification model’s performance. This is
apparent from the ROC curves that the stacking CNN-LSTM
model outperformed other networks for classification with
93.7% AUC whereas the AUC of the best performing CNN-
LSTM (MobileNetv2-LSTM) model is 92.2%.

Figure 9 shows the confusion matrix for the best per-
forming CNN-LSTM (MobileNetv2-LSTM) model and the
stacking model for video-wise classification using echocar-
diogram videos. Figure 9(A) shows the confusion matrix
of the best performing CNN- LSTM (MobileNetv2-LSTM)
model and Figure 9(B) shows the confusion matrix of the
best performing stacking CNN-LSTM model. The best per-
forming MobileNetv2-LSTM network detects 109 videos
out of 120 Ultrasound videos correctly for CHD patients
while 51 videos out of 60 Ultrasound videos are cor-
rectly detected for healthy patients. On the other hand,
stacking the CNN-LSTM model slightly improves the per-
formance, where 112 videos out of 120 Ultrasound videos
are detected correctly for CHD patients and 51 videos
out of 60 Ultrasound videos are correctly classified as
healthy.

FIGURE 9. Confusion matrix for video-wise classification using (A) the
best performing CNN-LSTM model, (B) and the best performing stacking
CNN-LSTM model.

B. SUBJECT-WISE CLASSIFICATION
This study also investigated different deep learning
CNN-LSTM models and stacking models for subject-wise
CHD or healthy patient classification using echocardio-
gram videos. In subject-wise classification, this study made
the decision for each subject which is the average of the
predicted scores of all videos of this subject. This study
produced the best performance with MobileNetv2-LSTM
architecture which produced the accuracy, precision, sensi-
tivity, F1 score, and specificity of 86.4%, 85.7%, 90.9%,
88.9%, and 80.1%, respectively. The stacking model was
developed using the probability scores of Top-3 perform-
ing models (MobileNetv2-LSTM, ResNet18-LSTM, and
GoogleNet-LSTM), which improved the result by ∼2% with
the accuracy, precision, sensitivity, F1 score, and specificity
of 91%, 86.7%, 97.9%, 92.9%, and 81.4%, respectively.
Table 5 shows the comparisons of different CNN-LSTM
models and the stacking model for subject-wise classifica-
tion.

Figure 9 shows the AUC/ROC/AUROC for subject-wise
classification of HLHS and healthy subjects using Ultra-
sound videos. This is evident from the ROC curves that the
stacking CNN-LSTM model outperformed other networks
for classification with 94.5% AUC whereas the AUC of the
best performing CNN-LSTM (MobileNetv2-LSTM) model
is 88.4%. A significant margin of improvement in AUC
(∼6%) was observed in using the novel stacking technique
in the final subject-wise classification.

Figure 11 shows the confusion matrix for the best per-
forming CNN-LSTM (MobileNetv2-LSTM) model and the
stacking model for subject-wise classification of HLHS and
healthy subjects using echocardiogram videos.
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TABLE 5. Comparison of different CNN-LSTM performances for subject-wise classification.

FIGURE 10. ROC curve for subject-wise classification using different
CNN-LSTM networks and stacking CNN-LSTM model.

FIGURE 11. Confusion matrix for subject-wise classification using (A) the
best performing CNN-LSTM model, and (B) the best performing stacking
CNN-LSTM model.

Figure 11(A) shows the confusion matrix of the best
performing CNN-LSTM (MobileNetv2-LSTM) model and
Figure 11(B) shows the confusion matrix of the best per-
forming stacking CNN-LSTM model. The best performing
MobileNetv2-LSTM network detects 12 out of 13 subjects
correctly as CHD patients while 7 out of 9 subjects are
detected correctly as healthy patients. On the other hand,
the stacking CNN-LSTM model improves the performance
where all subjects are detected correctly as CHD patients, and
7 out of 9 subjects are correctly classified as healthy patients.

The Ultrasound videos in three time-points of the two healthy
subjects which were miss-classified by the model are shared
as supplementary materials.

It is evident from this study that the presented novel frame-
work that was developed using the stacking CNN-LSTM
model is capable of detecting CHD patients reliably. The per-
formance of this model can be further enhanced by increasing
the sample size in the training process. For this study, there
were only 9 healthy and 13 CHD patients’ data available
where some of the Ultrasound videos were significantly cor-
rupted by the motion artifacts and could not be included in
the analysis. Moreover, the number of videos (e.g., 60) at
different time points for healthy patients was half of the CHD
patients’ videos (e.g, 120). Due to the limitations of healthy
subjects’ data, the model was not learning enough about
the healthy cardiac cycle in Ultrasound videos, this might
be the reason for the misclassification of the two healthy
patients by the algorithm. Otherwise, the model performed
outstanding in case of HLHS patient detection using Ultra-
sound videos. To the best of the authors’ knowledge, this is
the first study using Ultrasound videos to reliably classify the
HLHS patients using the deep learning technique. This study
can be extended with a larger patient cohort with the more
longitudinal time point of Ultrasound videos to identify at
which time point (i.e., gestational week) typically the deep
learning model can detect the HLHS patients reliably. This
will allow us to identify the more useful temporally distinc-
tive feature(s) in the cardiac cycle of the Ultrasound videos
in the different gestational week time points.

Even though, patient cohort size was low for the study,
number of video samples that were used to train and test
the algorithm was quite high (as shown in Table 2). For
each patient, echocardiography was performed at up to
three different timepoints (different gestation weeks). For a
specific patient and a specific timepoint, several different
echocardiography b-mode videos were collected from dif-
ferent orientations. This way, total number of full videos
reached up to 180. These videos were then segmented to
involve different cardiac cycles. Segmented videos were not
just repetition since in most cases, fetus was moving during
imaging and also operator was moving the probe for better
signal. Therefore, segmented videos were treated as more
sample videos in this study. The number of video samples
reached to 2834 for CHD class and 1114 for healthy class
which we believe, sufficient to train a deep learning model.
Future work will involve testing the algorithm in larger
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cohorts involving different types of CHDs that are more
prevalent.

IV. CONCLUSION
Congenital heart disease (CHDs) affect 0.6-0.8 % of the
population and are the leading cause of death in infants
under 1 year of age. Current treatment of serious CHDs
involves a serious of high-risk operations shortly after birth.
Recently, prenatal intervention to treat these conditions has
emerged as a potential therapy alternative emphasizing the
importance of diagnosis of the condition in utero. Echocar-
diography is the gold standard for CHD diagnosis in utero.
A severe CHD type is hypoplastic left heart syndrome respon-
sible for 25% all prenatal deaths. Recently, some pioneering
works showed the potential of applying ML into fetal CHD
diagnosis. The objective of this study was to detect the mor-
phological and temporal changes in the cardiac Ultrasound
videos of the fetus due to HLHS using ML approaches.
For this purpose, we collected echocardiography videos
at different stages of gestation from fetal HLHS patients.
These videos were preprocessed and used to train 5 differ-
ent deep learning CNN-LSTM models and a novel stacking
CNN-LSTM model. Our results suggest that the stacking
CNN-LSTMmodel, which is developed using MobileNetv2-
LSTM, ResNet18-LSTM, GoogleNet-LSTM models with
different pre-trained encoders is very effective for differen-
tiating the HLHS patients from the healthy patients using
Ultrasound videos. The model could distinguish the healthy
and HLHS human fetal heart differences during the gesta-
tional development stages in terms of cross-sectional heart
chamber dimensions, and flow hemodynamics. This pioneer-
ing study has demonstrated that the deep learning framework
is capable of distinguishing the unhealthy heart in the early
gestational week using Ultrasound videos which can help
in applying potential prenatal therapy rather than postnatal
therapy to increase the chance of the patient survival.

SUPPLEMENTARY MATERIALS
Sample de-identifiedUltrasound videos of healthy andHLHS
patients are available for three acquisition time points at Sup-
plementaryMaterial 1 (S1). Two healthy subjects which were
miss-classified by the model are shared as supplementary
materials at Supplementary Material 2 (S2).
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