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ABSTRACT Wearables are used to recognize human activities in various applications. However, there is
limited evidence on the comfort feelings in using wearables, which is crucial for the adoption and long-term
engagement of users in those applications. In this paper, we propose the concept of comfort wearables in the
context of in-flight posture recognition. A comfort wearable and a tight-fit version, using identical hardware
and software architecture, were prototyped and tested by 35 participants in a Boeing 737 cabin. During
the usage of each wearable, participants were asked to perform seven frequently observed in-flight sitting
postures and report their overall comfort/discomfort afterwards. A multilayer perceptron neural network
was used to classify those activities. Experiment results indicated that participants appreciated the comfort
wearable, rating it with significantly higher comfort scores and lower discomfort scores. Cross-validation
results also revealed that using the comfort wearable achieved even better accuracy (74.8%) than using the
tight-fit wearable (65.8%) in posture recognition. Outcomes of the study demonstrate that ergonomic design
and technical accuracy are not competing factors in the wearable design and highlight the opportunities for
designing and using comfort wearables in broader contexts.

INDEX TERMS Losse-fit, tight-fit, ergonomics, accelerometer, IMU, wearability.

I. INTRODUCTION
Posture recognition, as part of human activity recognition
(HAR), holds a crucial role in decoding human behaviour. Its
significance lies in uncovering how individuals interact with
their environment during various task [1], [2]. For instance,
research has shown that human body posture is one of the
most important factors in determining seating comfort [3],
and frequently changing of postures often indicates the devel-
opment of discomfort in ergonomics studies [4], [5]. Another
example is that researchers demonstrated that mental fatigue
can be inferred based on body postures using the XSENS
motion tracking system [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

Human postures can be recognized based on sensors
deployed in the environment. For instance, Wu et al. [7]
used Intel®RealSense® to track the position of human
joints and inferred hand postures accordingly. Cao and
Liang [8] successfully recognized different postures of bad-
minton players with a 90% accuracy based on captured videos
and a self-developed Deep Convolutional Neural Network
(DCNN). Besides cameras, pressure sensors are also fre-
quently used in sitting posture recognition [9], [10]. In the
study conducted by Wan et al. [11], 32× 32 pressure sensors
were placed on the top surface of the office chair cushion
in a grid setup, and 12 sitting postures were recognized
with an accuracy of 89.6% using Support Vector Machine
(SVM). Liang et al. [12] also designed a smart cushion with
pressure sensors integrated and achieved an accuracy of 98%
in classifying 15 sitting postures.
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Though using information provided by sensors in the envi-
ronment for posture recognition is effective, it is always
context dependent. Using wearable sensors can mitigate this
constraint [13], [14], [15]. For instance, Tian et al. [16] used
data collected from a smart watch to recognize activities
including standing, walking, running, upstairs, and down-
stairs. Fujiwara et al. [17] recognized hand postures with a
mobile phone equipped on the forearm.

Many sensors can be embedded in wearables, which
are worn on the body to monitor and classify different
human activities in real time. For instance, Kim et al. [18]
used a capacitive belt sensor placed around the fourth
thoracic vertebrae to detect user daily activities with an
accuracy of 74%-85%. Among different types of sensors,
accelerometers and Inertia Measurement Units (IMUs, incl.
accelerometers, gyroscopes and sometimes compasses) are
often used inwearables for recognizing human body postures.
Forsman et al. [19] found that both accelerometers and IMUs
can be used to detect 4 postures and 24 types of movements
based on experiments with 38 warehouse workers. Commer-
cial products, such as XSENS [20], are often used in posture
recognition. Besides, researchers also developed new types
of wearables, e.g. Yan and Ou attached IMUs to the belt for
fall detection [21]. Fusing information from different types
of sensors might improve the accuracy, e.g. besides IMUs on
the belt, Tan et al. [22] achieved an accuracy of over 98% for
fall detection by integrating data from pressure sensors under
the feet.

Wearables can be affixed to various parts of the human
body. Depending on the level of attachment, we classify these
attachment methods as either comfort/loose-fit wearables or
tight-fit wearables. In tight-fit wearables, such as a smart
wristwatch, the connection between the sensor and the body
part remains fixed. However, in comfort wearables, such as a
mobile phone in the pocket of a jacket, the attachment may
not be fixed. Table 1 provides some recent studies on pos-
ture recognition utilizing different wearable designs, wherein
sensors are attached to the users’ torso.

The wearability [23], personalization, functionality and
integration are four key factors in establishing customers’
initial trust in wearables [15], [24]. The comfort of wear-
ables, which is closely associated with wearability and
personalization, can be a decisive factor in users’ long-
term adoption, e.g., monitoring postures of users during
the day to prevent musculoskeletal disorders and improve
overall health. However, as shown in Table 1, most wear-
ables for posture recognition are tight-fit wearables and
only a few are comfort wearables, e.g. Farnan et al. [25]
attached 9 magnets to a comfort/loose-fit t-shirt for
sitting posture recognition when working from home.
Mattmann et al. [26] tried a comfort/loose-fit design
with 6 ECG sensors for recognizing postures of drivers.
Both studies confirmed the possibilities of using comfort
wearables for posture recognition, but the accuracy was not
given. The question ‘‘Is it possible to recognize postures with
comfort wearables?’’ and ‘‘How to evaluate the comfortable

feeling of wearables for posture recognition?’’ remain to be
answered.

In this paper, we present the design and validation of a
wearables, named Jacket, for posture recognition during air
travel. Our scientific contributions are:

1. We developed two types of wearables, one optimized
for comfort and the other for a tight-fit, utilizing identical
hardware and software for inflight posture recognition.

2. Alongside accuracy, we incorporated subjective com-
fort ratings as a measure to evaluate the performance of the
wearables.

3. We validated that properly sized comfort wearables
received significantly higher comfort ratings and achieved
comparable, if not slightly higher, accuracy for posture recog-
nition compared to tight-fit wearables.

II. DESIGN OF COMFORT AND TIGHT-FIT WEARABLES
A. FRAMEWORK OF THE APPROACH
Figure 1 presents the overall approach of the study. Partici-
pants were asked to perform a set of identified postures during
the flight in an aircraft seat. The tight-fit and the comfort
wearables are used to collect data. The sensor configurations
of the two wearables are the same: two accelerometers on
the shoulders and two IMUs on the waist. The procedure
of the proposed posture recognition method contains two
major steps. Initially, data captured by different sensors were
aligned to guarantee the inner relationship between the sen-
sor data and the corresponding posture. Then the Multilayer
Perceptron (MLP) classifier was used to predict the posture
category based on the aligned sensor information.

FIGURE 1. Framework of the approach.

B. HARDWARE
Figure 2 presents the block diagram of the hardware setup
of the Jacket. It comprises two accelerometers (ADXL355),
each capable of recording acceleration in the x, y, and z direc-
tions; two IMUs (FXOS8700 + FXAS21002), each capable
of recording acceleration in the x, y, and z directions along
with rotations in the yaw, roll, and pitch; a Raspberry Pi
3A+ controller; and a 3000mAH Li-polymer Battery HAT,

FIGURE 2. Block diagram of the hardware setup.
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TABLE 1. Literature on recognizing trunk movements using wearables.

which can power the system for approximately 4 hours.
A self-developed Python script was created to capture these

18 features from the four sensors at a frequency of approxi-
mately 15∼30 HZ.
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Using the proposed hardware, we designed comfort wear-
ables based on a vest made of cotton denim (Fig. 3a). Two
accelerometers were sewn onto the inner side of the left
and right shoulders, respectively. Two IMUs were positioned
around the waist, just above the two pockets. The battery
was stacked on the Raspberry Pi 3A+ and positioned in the
right pocket of the cotton denim. To minimize the impact of
the vest on perceived comfort, soft fabric was used to cover
all the wires and sensors, ensuring that users would not feel
them, as shown in Fig. 3b. Twenty vests with four different
sizes were created for users with varying anthropometric
measures, as depicted in Fig. 3c. Sizes of the vest can be found
in Table 2.

FIGURE 3. Comfort wearables.

TABLE 2. Dimensions of different sizes of comfort wearables.

As a comparison, we also created a tight-fit version of
the wearable with the same sensors, as shown in Fig. 4.
To ensure the tight fit, we designed the wearables based on an
elastic undershirt, as seen in Fig. 4a. The dimensions of the
undershirt were selected in such a way that it is able to fit the
P5 to P95 populations due to its elasticity. Sensors are fixed
onto the undershirt, as illustrated in Fig. 4b, and in Fig. 4c,
a user (around P50) is shown wearing it.

C. POSTURE CLASSIFICATION
Data {Dn|n = 1 . . .N } captured from 2 accelerometers
and 2 IMUs were synchronized first. In this paper, N = 18,
representing 18 features mentioned in previous section. Tak-

ing Dn = {D
t1n
n ,D

t2n
n , . . . ,D

t in
n , . . . ,D

tTn
n } as the data of the

FIGURE 4. Tight-fit wearables.

nth feature whereD
t in
n means the data captured at timestamp t in,

we firstly down sampled all captured data to a synchronized
initial timestamp Tinitand a constant resampling frequency
Fc. Tinit was specified as:

Tinit = argmax1...N
{
t1n |n = 1, 2, . . . , 18

}
(1)

and

Fc < argmin1...N (Fn|n = 1, 2, . . . , 18) (2)

where Fn is the frequency of Dn.
The resampled data for different features can be denoted as

{DS1, . . . ,DSn, . . . ,DSN }. Each resampled the time series
data of a certain is denoted as

{
DSn |DSn =

(
DS1n, · · · ,

DS tn, · · · ,DSTn
)}

, where

DS tn =

∑N t
n

j=1D
j
n

N t
n

(3)

here n is the index of the feature, T is the number samples
and the time interval between consecutive records 1tc =

1/
Fc. Besides, Djn = {D

t in
n |Tinit + (t − 1) · 1tc≤ t in ≤

(Tinit + t · 1tc),}N t
n is the number of recordsDjn, as shown in

Fig.5. In practice, we used 30 seconds time span for posture
recognition, therefore T = 30/1tc.

FIGURE 5. Time alignment of different sensors.
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To reduce the noise in the original data, we employed
the rolling window method to pre-process each DSn as
shown at the left of Fig.6. Given the aligned resampled data
{DS1, . . . ,DSn, . . . ,DSN }, at each timestamp t , a multi-
dimension vector

{
st |st =

[
DS t1,DS

t
2, · · · ,DS tn, · · · ,DS tN

]}
that represents all sensor features was acquired. Using
the rolling window method, the output

{
Mt |Mt =(

At1,A
t
2, · · · ,Atn, · · · ,AtN

)}
for posture recognition was cal-

culated as themean value of the data inside the window length
L:

Atn =

∑NG
g=1 sg

NG
(4)

where NG represents the number of features of st between t
and (t + L).
MLP classifier [37] was adopted for posture recognition

as shown in the right side of Fig.6. Mt was used as the
input of the MLP classifier, followed by two hidden layers,
each with 100 neurons. The output layer had only one node
that represents the corresponding posture category. The one-
vs-rest (OvR) strategy was adopted to improve prediction
accuracy. For each posture, a specific MLP was trained for
this category against all the other postures. Therefore, the
number of MLPs for posture prediction would be the same
as the number of postures to be predicted.

FIGURE 6. Data processing and classifier.

III. EXPERIMENT SETUP
A. POSTURE SELECTION
According to work of Liu et al. [38], the most frequently
observed posture (29.7%) among passengers is sitting with
the back against the backrest, both feet uncrossed on the
floor and hands on the lap. Three other similar postures
with different arm and head positions account for 29.1% in
total. Another sitting posture mentioned as one of the most
common postures is sitting straight with both feet uncrossed
on the ground and hands on the lap. Slumped postures with
feet/legs crossed constitute 8.8% of the observed postures.
The remaining most common postures are all with the back
against the backrest and feet/legs crossed. However, it was
not clear which leg was on the top and which arm was
performing tasks. Tan et al. [39] mentioned the body side
of performing different postures in their study of sleeping
postures in the economy class of an aircraft. They found that
people recline to one side and use the armrest to support their

body, sometimes also with rotation of their torsos so they also
get support from the backrest. Using this knowledge, seven
postures as Fig.7 were chosen for this study as the task for
the participants.

FIGURE 7. Inflight sitting postures used in this study.

B. PARTICIPANTS
To explore the use of comfort wearables for inflight sit-
ting posture recognition, an experiment was conducted in
a Boeing 737 aircraft cabin. In total 35 subjects from
the Netherlands, Germany, China, India, Thailand, Italy and
Brazil participated in this study. Their ages varied between
22 to 40 years old. In the experiment, participants were
allowed to select the most suitable size of the comfort wear-
ables. Detailed information about participants can be found
in Table 3.

The mean height of males is 171.3 cm and for females, it is
162.7cm. As a comparison, the mean heights of the European
population are 175.8 cm and 163.5 cm for men and women,
respectively [40]. Regarding the sample size, G∗Power cal-
culation indicated that for medium to large effects (0.6),
the sample size is able to achieve a power of 0.95. For
the representativeness of the subjects in the population, the
specificity [37] of the subjects in this study regarding the
European population [41] is 0.002.

C. PROTOCOLS
After a short explanation and collection of consent forms,
participants put on the wearables. They had about 10 minutes
to get used to the wearable before the data collection started,
during which they were asked to perform the postures as
shown in Fig.7. Each posture took approximately 1 minute.
Regarding the sequence of two types of wearables, 18 sub-
jects started with the tight-fit wearable and the remaining
participants startedwith the comfort wearable. After perform-
ing all the postures in a wearable, they evaluated the overall
comfort and discomfort from 0 (no comfort/discomfort)
to 10 (extreme comfort/discomfort) using the comfort/
discomfort questionnaire [42].

IV. EXPERIMENT RESULTS
18 features on the torso movements were captured using
sensors embedded in the wearable for posture prediction. The
four sensors are symmetrically distributed from left to right
with the zipper as the centre as Fig.8. On the left side, the
features captured by the ADXL355_left were 3D accelera-
tions. Another three acceleration features were captured by
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TABLE 3. Participant data and the size of the jacket.

the FXOS8700_left sensor. The features measured by the
integrated FXAS2100_left sensor were 3D angular velocities.
Same features were captured by the sensor on the right.
Information captured by the compass was not used in this
study due to: 1) the plane might turn slightly while users are
sitting still; 2) there is a potential presence of products made
of ferrite materials.

A. POSTURE RECOGNITION ACCURACY
Figure 9 presents the posture recognition accuracies of the
comfort/loose-fit and tight-fit wearables under different slid-
ing window widths, which were adjusted from 0.5s to 5s
with a 0.5s interval. For each experiment, the network was
trained and tested using the 10-fold cross-validation method,
and the average prediction accuracy was taken as the result.
As illustrated in Fig.9, the posture recognition accuracy based
on the data captured with the comfort/loose-fit wearable was
always higher than the accuracy of the tight-fit wearable.
For different sliding window widths, all accuracies of using

FIGURE 8. The features captured by each sensor and the assembling
position of each sensor on the comfort wearable. The same features are
captured on the tight-fit wearable, and the sensors are assembled on
similar positions.

FIGURE 9. The posture recognition accuracy of the comfort/loose-fit and
tight-fit wearables with the increment of the sliding window width.

the loose-fit wearable were higher than 72%. On the con-
trary, the highest accuracy of using the tight-fit wearable
was about 65.8%. Overall, with the increment of the sliding
window width, the accuracy of the loose-fit wearable pre-
sented an upward trend with a few fluctuations around 74%
when the width was larger than 2.5s. The highest accuracy of
recognition using the loose-fit wearable was 74.8% when the
width of the sliding window was 3.5s.

The confusion matrix of the network with the best predic-
tion accuracy for posture recognition with the comfort/loose-
fit (74.8% accuracy when the sliding windowwidth was 3.5s)
and tight-fit wearables (65.8% accuracy when the sliding
windowwidthwas 2.0s) are given in Fig.10(a) and Fig. 10 (b),
respectively. The seven postures explained above are denoted
as Pos1, Pos2, . . . , and Pos7. For posture recognition with the
loose-fit wearable, the accuracies of recognizing Pos1, Pos2,
Pos4 and Pos6 reach over 80%. The lower accuracies were
observed for Pos3, Pos5 and Pos7. For the tight-fit wearable,
Pos1 was successively recognized with an accuracy of around
100%. Pos2, Pos3, Pos4, Pos5 can also be identified with
over 70% accuracies. Low accuracy appeared in classifying
Pos6 and Pos7. Nearly 56% of posture data of Pos6 was
misidentified.

B. SENSOR CONTRIBUTION
18 features were used for posture recognition, and the con-
tribution of each feature regarding the posture recognition
accuracy was evaluated using the Shapley (SHAP) val-
ues [43]. Figure 11 illustrates the sorted mean SHAP value of
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FIGURE 10. Confusion matrix of posture recognition for loose-fit (a) and
tight-fit(b).

FIGURE 11. The mean SHAP value of each feature for comfort/loose-fit
and tight-fit wearables.

each feature, which represents the average influence of each
feature on the output of the model, for the loose-fit wearable,
and the associated SHAP value for the tight-fit wearable is
given as well. The accelerometer data contributed most for
both the comfort/loose-fit and tight-fit wearables. It can be
noticed that accelerometers on the waist (FXOS8700) con-
tribute more than the sensors on the shoulders (ADXL355).
The contribution of accelerometers on thewaist and shoulders
of the tight-fit wearable were nearly the same regarding the
comfort/loose-fit wearable.

C. COMFORT
The comfort data from one participant was excluded due to
incompleteness. The normality of both comfort and discom-
fort ratings was checked. Since the data were not normally
distributed, Wilcoxon Rank tests were used to compare per-
ceived comfort and discomfort regarding different versions
of wearables. To understand how body shapes could influ-
ence perceived (dis) comfort wearing different versions of
wearables, Pearson correlations between body measurements
and (dis)comfort scores wearing different wearables were
calculated. The test population was divided into two groups
based on the mean value of each body measurement.

The results of the comfort and discomfort scores of
the two types of wearables are presented in Table 4. The
loose-fit wearable was found to be significantly more com-
fortable and less uncomfortable compared to the tight-fit
wearable. Table 5 presents the statistically significant cor-
relations (p<=0.05) between different body measurements

TABLE 4. Comfort and discomfort scores(0-10) of the Loose-fit wearable
and the tight-fit wearable.

TABLE 5. Correlations(p<=0.05) between different body measurements
and perceived (dis)comfort of participants wearing both comfort/loose-fit
and tight-fit wearables.

and perceived (dis)comfort in both wearables. In the tight-fit
wearable, the body weight had the largest correlation with
perceived comfort, which was 0.47. The tight-fit wearable
had more significant correlations between body measure-
ments and (dis)comfort than the loose-fit wearable. Regard-
ing different anthropometric measures, the bodyweight could
influence both comfort and discomfort of wearing the tight-
fit wearable, while height and sitting depth only affected the
comfort of wearing the tight-fit wearable.

V. DISCUSSION
According to the findings, comfort/loose-fit wearables can
achieve in-flight posture recognition with a better average
accuracy than tight-fit wearables equipped with the same
sensors. One possible reason for this is that the loose-fit
wearable filters out noise during the data acquisition process
by maintaining a small distance between the device and the
human body. This distance enhancement increases recogni-
tion accuracy in certain postures, such as Pos 1 and Pos 4.

Another contributing factor is that the tight-fit wear-
able only achieved 44% and 50% accuracies in recognizing
Pos 6 and 7, respectively, which adversely impacted its
overall performance. However, both types of wearables
encountered difficulties in recognizing Pos 7, the slumped
position. This could be attributed to the specific cabin context
of the aircraft, where subjects, especially those with a taller
stature, often pressed their knees against the back of the front
seats.

Moreover, postures involving rotation of the lower back
posed challenges. The comfort/loose-fit wearable exhibited
poor performance in detecting whether the participant’s torso
was rotated to the left. This could be due to the majority of
participants being right-handed, resulting in greater flexibil-
ity on the right side. Consequently, the accelerometers on the
shoulders, which were most effective for posture recognition
during right-side rotation, significantly contributed to the
performance of the comfort/loose-fit wearable.
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Conversely, the tight-fit wearable exhibited less contribu-
tion to right-side torso movement, likely because the most
effective sensors were located on the waist. Movement on the
opposite side of the waist during body rotation might explain
this observation. These distinctions highlight potential rea-
sons for discomfort introduced by the tight-fit wearable,
which constrained the movement of the subjects.

A. CLASSIFICATION METHOD
The purpose of the proposed wearables is to identify static
postures, and a few large fluctuations were observed in the
data. The MLP method is selected due to its simplicity rather
than the long short-term memory (LSTM) method. Neverthe-
less, it is inevitable to encounter sensor noises and human
fidgeting while seated. To address this issue, the rolling win-
dow method was employed to mitigate the noise and improve
the data quality. The MLP method was also adopted by
Jang et al. [44] for pose recognition based on features cap-
tured from the wearable sensors. Compared to their posture
recognition accuracy of 70.1%, which was achieved based
only on accelerometers, our best result was slightly better
with an accuracy of 74.8% based on the comfort/loose-fit
wearable.

B. POSITION OF SENSORS VS ACCURACY
Sensors were placed on the shoulders and near the waist for
both the comfort/loose-fit wearable and its tight-fit version
in sitting posture recognition. All the postures are common
postures during flights and the variations between some
postures can be very small. The required postures mainly
involved thoracic and lumbar rotation, especially for Pos3,
4, 5, 6. Each vertebra is only able to rotate in a very limited
range [45], e.g. Neumann indicated that the thoracic vertebra
and lumbar vertebra can rotate only 3 degrees and 2 degrees
respectively [46]. Besides, the contribution of accelerometers
at different body parts varied between the two types of wear-
ables. The comfort wearable relied mostly on accelerometers
at the waist, while the tight-fit wearable utilized all available
data in a more balanced manner. This might be caused by sev-
eral reasons, e.g., in the use of comfort wearables, the friction
force between the backrest and the jacket might influence the
positions of the accelerometers on the shoulder, resulting in
less accurate data collected at the shoulder. Meanwhile, the
slightly higher accuracy of using the comfort wearables can
be interpreted as that in most cases, the loose fit acts as a low
pass filter regarding the movements of the human body, thus
enhancing the quality of the signals.

C. WEARABLE PERFORMANCE AND COMFORT
The comfort/loose-fit wearable proved to be significantly
more comfortable than the tight-fit wearable. Wearing cloth-
ing that restricts movement can be uncomfortable [47], and
the comfort/loose-fit wearable allowed for more freedom
of movement compared to the tight-fit wearable. Addition-
ally, the normal appearance of the comfort/loose-fit wearable

contributes to a better experience in wearing, as social pres-
sure and others’ opinions can also influence how people feel
and behave when wearing different types of wearables [48].

In the experiment, participants selected the size of comfort
wearables at their wish. While all users appreciate the com-
fort of the comfort wearables, we did not find a significant
difference between size and accuracy. This addresses the
importance of wearability and personalization, as personal-
ized fit introduces a better inclusiveness for different body
shapes, enabling the wider adoption of wearables in daily
activities [49].

D. LIMITATION
The ages of participants in this study were limited to the
range of 22 to 40, therefore the effectiveness of the pro-
posed method on other populations, e.g., the children and
the elderly, needs to be verified. Furthermore, it is important
to note that although the experiment was conducted in a
Boeing 737 cabin, the aircraft itself was stationary and the
vibrations caused by the operating engine were not taken
into consideration during the study. Additionally, the study
only examined wearables with motion sensors located on the
shoulders and waist, and wearables with sensors located on
other parts of the body require further investigation.

VI. CONCLUSION
The study investigated the feasibility of utilizing comfort/
loose-fit and tight-fit wearables for in-flight sitting posture
recognition, employing an MLP-based classifier. Experiment
results indicated that the comfort wearable achieved a recog-
nition accuracy of 74.8%, surpassing the accuracy reached
by the tight-fit wearable (65.8%). Furthermore, the comfort
wearable was found to provide significantly higher levels of
comfort and lower levels of discomfort compared to the tight-
fit wearable. These findings suggest that comfort wearables
can be considered as an option for posture recognition, as it
reduced impact on comfort for subjects without scarifying
the accuracy. Further research is needed to determine the
appropriate level of looseness for different body parts in
order to enhance recognition accuracy without compromising
comfort.
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