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ABSTRACT This paper introduces a method for improving parameter estimation in statistical models.
Parameter estimation is a popular area of study in statistics, and recent years have seen the introduction
of new distributions with more parameters to enhance modelling success. While finding a suitable model
for a dataset is crucial, accurately estimating parameters is equally important. In some cases, classical
parameter estimation methods fail to provide a closed form of estimation for parameters. As a result,
researchers commonly resort to numerical methods and software programs for parameter estimation in
models. The success rates of models have gained significance with the rising popularity of novel techniques
like machine learning algorithms and artificial neural networks. Robust and reliable models are built on
the strong theoretical foundations of statistical distributions. Specific distributions are used in various
research fields to model datasets, and the assumptions associated with these distributions provide valuable
insights into observations. Additionally, parameter estimation results sometimes lead researchers to direct
conclusions. This paper presents an improvement method that relies on the estimation of parameters from
other statistical distributions. This novel approach aims to make parameter estimation easier and more
successful in certain situations. In the applications in this paper, the proposed methodology improves the
success rate by up to 10% which provides an additional 6% success in the models.

INDEX TERMS Parameter estimation, point estimation, statistics distribution, statistical theory.

I. INTRODUCTION
Parameter estimation is a crucial process in statistics,
particularly in modelling. The quest for improved modelling
capabilities has led to the development of numerous new
distributions with multiple parameters [1], [2], [3]. While
these distributions are capable of modelling datasets, their
complex structures with multiple parameters present chal-
lenges, especially when it comes to parameter estimation.
Researchers often rely on programs to address this issue.
However, researchers need to obtain a closed form of
parameter calculation to extract valuable insights from the
data [3].

The utilization of statistical distributions in various dis-
ciplines greatly aids the decision-making process. However,
there is a need for user-friendly structures. Researchers desire
a reliable statistical distribution that can be easily understood
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by anyone, enabling them to convey their studies more effec-
tively and enhancing clarity for users in any discipline [2].

Statistical distribution users find themselves at a cross-
roads. On one hand, complex distributions offer significant
modelling capabilities but require powerful statistical pro-
grams for parameter estimation. On the other hand, simpler
structures offer limited capabilities but are easier to use [3].

In experimental studies, researchers often encounter sit-
uations where a statistical probability density function is
appropriate [51]. Various standard statistical distributions
are commonly used in different disciplines for modelling
purposes. For example, rainfall data have been modelled
using numerous statistical models, such as the 2 or 3-
parameter Log-Normal distribution, the Asymptotic Extreme
Value Type I (also known as Gumbel) [4], [5], [6], [7],
[8], [9], [10], the 2-parameter Gamma [11], the Generalized
Extreme Value [12], [13], [14], [15], the Generalized Logistic
[16], [17], [18], and the Generalized Pareto [17], [18], [19]
distributions, to achieve successful models.
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Certain lifetime distributions are commonly used for
modelling specific datasets, including the Pareto and Weibull
distributions. The Pareto distribution is named after its
inventor Vilfredo Pareto and was proposed for modelling the
distribution of wages in society [20]. Weibull introduced a
new distribution named after himself in 1951, which proved
to be a valuable model for strength datasets [21]. Since then,
the Weibull distribution has been widely used for strength
data analysis and is considered the most appropriate and
capable distribution for such datasets [22], [23].

This study aims to provide an improved method for
parameter estimation in complex structures. Researchers
working with parametric models may use the proposed
method in this paper to gain a better modeling success rate
with better parameter estimation calculations. Especially the
researchers who have to work with a determined statistical
distribution or parametric statistical model with sufficient
statistics could directly improve their models’ success rates
with the new methodology in this paper.

The main theory this study was built on is the uniqueness
theorem. By using this theorem two different models are
matched and the proposed methodology in this paper tries
to improve the model which is wanted to be used in the
dataset modeling. In the matching procedure, the capability
of sufficient statistics helps researchers to use the other model
without any information loss.

In this article initially, related works are investigated in
the literature review section. After this section, the theory
of using statistical distributions is explained, with two
planned sections: probability theorems that provide important
principles for utilizing distributions, and statistical theorems
that elucidate the logic behind the statistical structure of
distributions. After theorems, the details of the proposed
methodology are explained and in the suggested method-
ology section advantages, disadvantages and limitations of
the proposed methodology are discussed. Following these
explanations, two illustrations are presented to demonstrate
the success of our improvement models. The application
section provides two different examples to showcase the
efficacy of our proposed method.

II. LITERATURE REVIEW
In literature, many different studies have proposed new
methodologies for parameter estimation to improve success
or improve speed in calculations, especially in difficult
modeling structures. The methodologies commonly focused
on some disciplines, especially in signal processes, electronic
component modeling or some devices working procedures in
these disciplines. In all these studies researchers proposed to
improve the efficiency of parameter estimations.

In one of these studies, authors proposed a new lower
bound in parameter estimation with which the efficiency of
the parameter estimation was tried to improve. Each problem
is constructed on the details of the research field and some
models are indispensable for researchers because according
to these details and some special assumptions the models are

created. Generally in these models, parameters are the results
of some measurements that directly show the efficiency of
some important metrics [24].

In another study, authors try to propose an algorithmic
approach to improve parameter estimation efficiency for a
specific model [25]. This is another indicator that some
statistical models are indispensable in some disciplines.
Especially high sensitive events and activities such as the
reconstruction of radar targets, parameter estimation has
vital importance. The quality of the parameter estimation
results in expensive outputs in both success and failure [25].
Another study in the same field is to improve the efficiency
of parameter estimation in different radar tasks [26]. The
methodology depends on maximum likelihood estimation
and Bayes estimation usage in the estimation of parameters
for targets of radar.

In a study, authors try to propose a parameter estimation
approach for process control systems. In that study, the
dynamic systems which are vital in control systems, are
evaluated and the requirements of these systems in modeling
are assessed. The authors showed the importance of the
parametric approach in their research field [27].

Jiang et al. proposed a special signal parameter estimation
algorithm that depends on a correlation [28]. The authors
proposed this model for highly sensitive signal processing
events such as military communications [28]. In another
study, authors compared methodologies to find the best
method to improve parameter estimations in lines [29].

Moreover, parameter estimations in highly sensitive cal-
culation fields in which systems composed of solar, atomic
or nuclear components, need more attention. The successes
of the models must be calculated sensitively and the model
success rates must be higher. In these situations, some
complex structures are proposed by researchers to improve
parameter estimations in the models [30], [31].

Last but not least, there are many applications and propos-
als to improve parameter estimations in the applications for
some specific research fields. Some studies are; improving
parameter estimations in network services, quality of services
and digital signal processing via machine learning classifica-
tion [32], improving parameter estimations in Photovoltaic
models via dynamic switch probability [33], improving
parameter estimation for lithium batteries models via neural
network [34], improving parameter estimation for lithium
batteries models with comparing methods to gain better
method [35], improving generalized and group-generalized
parameter estimations for multi-criteria decision-making via
Pythagorean fuzzy set [36], improving electrical power
system stability via power system stabilizer parameter
estimation [37], improving parameter estimation for the robot
manipulators via a separation technique [38], improving
parameter estimation for the 3D scanner models via plane
fitting [39], improving parameter estimation for inductive
power transfer system via load voltage estimation [40],
improving parameter estimation for power system param-
eters via a rapid estimation algorithm [41] and improving
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parameter estimation for epidemic models via likelihood
functions and Kalman filtering [42].

Besides these studies, researchers have tried to improve
the general quality of the parameter estimations for each
discipline. In these studies, the methodologies have been
handled to create a new method to improve parameter
estimation qualities in each parametric model in each
research field in each situation under some assumptions.
Some of these studies are; improving Bayes estimation via
sparse sum of squares relaxations [43], improving maximum
likelihood estimation via sparse sum of squares relaxations
[44], improving parameter estimation of change point models
via using Poisson distribution as discrete in the exponential
changes as continuous sampler [45] and improving parameter
estimation quality via an Experimental Design methodology
[46].

III. MATERIAL AND METHODS
A. SOME NOTES FROM PROBABILITY THEORY
To construct an improvement method, at first, the theory
behind the methodology was examined. The main theory
behind the proposed method in this paper depends on the
uniqueness theory in probability measurement space. Some
important definitions that will be used in later theorems are
below.
Definition 1: � ̸= ∅, and τ is a class (for definition [47])

in �.

1) ∅ ∈ τ , � ∈ τ

2) For ∀A,B ∈ τ , A ∩ B ∈ τ

3) For every I index set (finite or infinite) under Ai ∈ τ ,
i ∈ I ,

⋃
i∈I Ai ∈ τ , τ class which provide all these

three conditions are called a topology in � and (�, τ)

binary is called as topological space.

The components of τ are called an open set, and
complements of components of τ are named a closed set.
Definition 2: � ̸= ∅, and τ is a topology (for definition

[def.1]) in �. In this situation with the definition of B (�) =

σ (τ), B (�) which is σ -algebra (for definition [47]) calls
Borel algebra in �. Components of B (�) are called Borel
sets.
Definition 3: Assume � = R,

U = {A : For ∀x ∈ A, there is at least one (a, b) ∈ R
which provides x ∈ (a, b) ⊂ A}

this class is a topology in R. This is named the usual topology
of R.
Definition 4: Assume � = R,
B (R) = σ ({A ⊂ R:A is open}), algebra of B (R) calls

Borel-algebra in R.
With the definitions 1-4, an equation in measurement field

can be written as follows.
Theorem 1: B (R) = σ ({(a, b) : a < b, a, b ∈ R}) .

proof: For simplicity, assume B1 = {(a, b) : a < b, a,
b ∈ R}. (a, b) ∈ B1. In this situation (a, b) ∈ {A : A is open},

which means that B1 ⊂ {A : A is open in R}. Thus σ (B1) ⊂

σ (R).
Now trying to show σ (R) ⊂ σ (B1).
Assume A is open in R then there is a sequence of separate

sets as (Bn) in class B1 which is A =
⋃

∞

n=1 Bn.
Thus Bn ∈ σ (B1) and A =

⋃
∞

n=1 Bn ∈ σ (B1), meaning
that {A : A is open in R} ⊂ σ (B1)
and, B (R) ⊂ σ (B1). Then B (R) = σ (B1).
For next theorems, additional definitions are given below.
Definition 5: Assume� ̸= ∅, andU is a class in�. In this

situation a function µ which goes from U to R = R ∪

{−∞, ∞} extended reel numbers set named as set function.
Definition 6: Assume µ is a set function defined in class

U .
1) For A ∈ U , B ∈ U , A and B are separate, A ∪ B ∈ U ,

If µ (A ∪ B) = µ (A) + µ (B), µ is defined as a finite
additive.

2) Assume (An) is a sequence of separate sets in U ,
Under

⋃
∞

n=1 An ∈ U , If µ
(⋃

∞

n=1 An
)
=
∑

∞

n=1 µ (An), µ is
defined as countable additive.
Definition 7: � ̸= ∅, and U is an algebra in �. For set

function µ : U → R,
1) For ∀A ∈ U , µ (A) ∈ [0, ∞]
2) µ (∅) = 0
3) Assume (An) is a sequence of disjoint sets in U ,
Under

⋃
∞

n=1 An ∈ U , If µ
(⋃

∞

n=1 An
)

=
∑

∞

n=1 µ (An), µ

is defined as a measure.
Definition 8: Assume µ is a measure. Under µ (�) < ∞,

µ is defined as finite measure, otherwise if µ (�) = ∞, µ

is defined as an infinite measure. The measure of µ (�) =

1 defined as a probability measure.
When µ is a measure on a σ -algebraU , if� can be written

as an additive of sets whose measures are finite in U , µ is
defined as σ -finite, and τ is a topology (for definition [def.1])
in �. In this situation with the definition of B (�) = σ (τ),
B (�) which (for definition refer to [47]) is called Borel
algebra in �. The components of B (�) are called Borel sets.
Example 1 (Discrete Probability Measures): Under � =

{w1,w2, . . . } and Pi ∈ [0, 1] condition,
∞∑
i=1

Pi = 1.

Set function Pwith the definition of P (A) =
∑

∞

i=1 PiIA (wi),
A ∈ P (�) is a probability measure on power set of �. Here,

IA (wi) =

{
1, wi ∈ A
0, wi /∈ A

IA∪B (w) = IA (w) + IB (w) − IA∩B (w)

IA∩B (w) = IA (w) IB (w)

I∅ (w) = 0, I� (w) = 1

If A1,A2, . . . are separate, I⋃∞

n=1 An
(w) =

∑
∞

n=1 IAn (w).
Example 2 (Lebesque-Stieltjes Measures in R): A large

class ofmeasures onB (R)Borel-algebra is Lebesque-Stieltjes
measures which are continuous, non-decreasing and emerged
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from F :R → R. µF measures corresponding to each F with
these features provides for each −∞ < a < b < ∞,
µF ((a, b]) = F (b) − F (a).

R =

∞⋃
n=1

(−n, n], µF ((−n, n]) = F (n) − F (−n)

µF Lebesque-Stieltjes measure is σ -finite every time.
Definition 9, gives a finite measure specialty which is

needed to use in theorem 2, to reach uniqueness theorem.
Definition 9: A measure which is finite in a limited

interval on B (R) is a Radon measure. Each Radon measure is
σ -finite. Thus, if a Lebesque-Stieltjes measure returns a finite
value in a limited interval it is a Radon measure.
Theorem 2: Assume U is a σ -algebra on � and µ1 and

µ2 are two defined measure on U . 3 ⊂ U , σ (3) = U is a
π -system (for definition [47]) and for each ∀A ∈ 3,µ1 (A) =

µ2 (A).

1) Under µ1 and µ2 are finite condition, on U µ1 (�) =

µ2 (�) ⇒ µ1 = µ2.
2) Assume that An ↑ � and there are A1,A2, . . . on

3 which provides µ1 (An) = µ2 (An) < ∞, n =

1, 2, . . . In this situation µ1 = µ2 on U .■

Now assuming that (R,B (R,P)) is a probability space,
examine the function below;

F (x) = P ((−∞, x]) , x ∈ R

In that;

1) F is non-decreasing,
2) F is right continuous,
3) limx→∞ F (x) = 1 , limx→−∞ F (x) = 0
4) F has maximum jump point which is countable.

When F :R → R provides (i), (ii), (iii) it names as a
distribution function on R.
After this, trying to answer whether F distribution function

with the definition ofF (x) = P ((−∞, x]) , x ∈ R, defines P
probability measure uniquely.
When (R,B (R) ,P1) and (R,B (R) ,P2) are two probabil-

ity measure with the same F distribution function, if P1 =

P2 on R, F distribution function defines P probability
measure uniquely.

F (x) = P1 ((−∞, x]) = P2 ((−∞, x]) , x ∈ R

Now consider class 3 = {(−∞, x] : x ∈ R } on R. 3

is a π -system on R. P1,P2 are both measures and on 3

P1 ((−∞, x]) = P2 ((−∞, x]) , ∀x ∈ R and because
P1 (R) = P2 (R) = 1 for each A ∈ σ (3) =

B (R) , P1 (3) = P2 (3). That meansF definesP probability
measure uniquely.
Another conclusion for the last statement is, the results of

these two different probability functions are the same in each
point in the probability space. The backbone of the theory in
this paper depends on this inference.

B. SOME NOTES FROM STATISTICAL THEORY
For an unknown parameter θ , sufficient statistics are statistics
which summarize the information of parameter in dataset.
While sufficient statistics summarize the information for the
parameter, it gives every information for the parameter with-
out subtracting. Thus, researchers may use these statistics to
gain every information from the dataset.
To identify sufficient statistics in theorem 3, additional

definitions which are given in definition 10-12, are needed.
Definition 10: A set of probability measures Pθ on

(�,F) indexed by a parameter θ ∈ 2 is said to be a
parametric family if and only if 2⊂Rd for some fixed
positive integer d each Pθ is a known probability measure
when θ is known. The set 2 is called the parameter space
and d is called its dimension [48].■
Definition 11 (Exponential Families): A parametric fam-

ily {Pθ : θ ∈ 2} dominated by a σ -finite measure v on (�,F)

is called an exponential family if and only if

dPθ

dv
(w) = exp

{
[η (θ)]τT (w) − ξ (θ)

}
h (w) , w ∈ �,

where T is a random p-vector with a fixed positive integer p, η
is a function from 2 to Rp, h is a nonnegative Borel function
on (�,F), and

ξ (θ) = log
{∫

exp
{
[η (θ)]τT (w)

}
h (w)dv (w)

}
.

[48].■
On def.11 η is called natural parameter.
Definition 12: Assume X1,X2, . . . ,Xn is a sample

with probability density function f (., θ) ∈ F and
T (X1,X2, . . . ,Xm) is a statistics, when T = t ∈ Rm is
known. If the conditional distribution of X1,X2, . . . ,Xn is not
depend on θ for t then the statistic T is named as a sufficient
statistic for F family or θ parameter. ■
Assume X1,X2, . . . ,Xn is a sample with probability

density function f (., θ) ∈ F and T (X1,X2, . . . ,Xm) is a
statistics. When T (X1,X2, . . . ,Xm) is sufficient, for ∀B ∈

B (Rn), the probability of, P ((X1,X2, . . . ,Xn) ∈ B | T = t)
is independent from θ . If there is a sufficient statistic, every
function of this statistic is sufficient either.
Theorem 3: Assume that X is a sample from P ∈ P and

P is a family of probability measures on (Rn,Bn) dominated
by σ -finite measure v. Then T (X) is sufficient for P ∈ P if
and only if there are nonnegative Borel function hwhich does
not depend on P on (Rn,Bn) and gP which depends on P on
the range of T such that

dPθ

dv
(x) = gP (T (X)) h (X) .

(for proof please refer to [Chapter 2 in [48]])
After these definitions first conclusion is; if a parameter

estimation depends on a sufficient statistic, every information
for this parameter is taken from data and estimation
includes this information completely. The second conclusion
is that every probability distribution function, measures
probability value uniquely and this specialty is very strong
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in probability theory. In addition to second conclusion, when
two probability measure returns the same value on the same
probability space, these functions are same on that space.

In the proposed method in this paper, a distribution
increases its modeling capability on a data set in another
distributions’ capable probability distribution zone. Thus the
modelling ability for datasets is improved.

While operating this process, for each probability point an
equation is created and the equation number will be equal
to observation number. In this process mean of these point
estimations will be taken to reach new estimation value.

Let F1
(
x, µ, ϕ

)
be a candidate distribution for a defined

data set and parameter vector ϕ contains sufficient statistics,
and F2

(
x, σ , ω

)
is another candidate with sufficient statistics

for parameter vector ω. Then for each observation;

F1
(
xi, µ, ϕ

)
= F2

(
xi, σ , ω

)
(1)

Thus, the conclusion in this process with the mean of
estimations may be gained as below.

ϕ̂ =
1
n

n∑
i=1

ϕ̂i (2)

ω̂ =
1
n

n∑
i=1

ω̂i (3)

Themain principle for this improvement method is increasing
the modelling capability of candidate statistical distribution
which has a lower modelling ability. As mentioned earlier,
researchers may decide to use distribution with lower
modelling ability. After using the improvement method, mod-
elling capability converges to another candidate distribution
which has the higher ability.

IV. SUGGESTED METHODOLOGY
A. DETAILS OF THE PROPOSED METHODOLOGY
With the proposed methodology in this article, users may
increase their proposed model success rates by using another
candidate model proposal under the theory of probability and
statistics. With the capability of the uniqueness theorem and
the power of sufficiency, the probability measurements in the
same probability space can be equalized and new equations
for parameters may be gained.

The steps in the proposed methodology are;
1) Create amodel with the statistical distribution youwant

to use which has sufficient statistics.
2) Check if the model is appropriate according to a

goodness of fit test.
3) Check if the plausibility rate of your model is high

enough and if not find a different model proposal
with another distribution which has sufficient statistics
again.

4) Check if the last model is appropriate according to a
goodness of fit test and evaluate the plausibility.

5) If the plausibility is high enough, match the model
you want and the model with higher plausibility by

using sufficient statistics and calculate your parameter
estimation in the model you want to use.

The flow diagram of the proposed is in Figure 1.
In Figure 1, it is clear that the aim is to increase the

plausibility rate of the proposed model with better parameter
estimation quality. In each step, the methodology searches
for better options to calculate parameter estimation and with
this methodology, the plausibility rate of the proposed model
which is detected at the beginning of the researcher’s study is
expected to converge the plausibility rate of the model which
has a bigger success rate.

One of the most important issues which researchers have
to pay attention to is using sufficient statistics. While using
this methodology, to be successful and reliable, researchers
have to be sure that there is not any information loss during
the parameter estimation process. Because of this reason,
sufficient statistics usage has to be validated.

B. ADVANTAGES OF THE PROPOSED METHODOLOGY
To evaluate the proposed methodology clearly, itemising
advantages, disadvantages and limitations may be helpful.
The advantages of this proposed methodology are;

1) Using robust probability theory and statistics theory
behind the methodology, provides reliability.

2) Using sufficient statistics protects methodology from
information loss.

3) Improve success rate in the same parametric model,
therefore researchers do not have to change the
proposed model structure.

4) The calculation of parameter estimation is easy after
matching models. The closed form of parameter
estimation equations can be gained easily.

5) A wide range of using areas. If your model includes
sufficient statistics, you can use this method to improve
parameter estimation.

6) Many new studies may be constructed on this method-
ology such as creating software, overcoming other
obstacles by using theory, etc.

C. DISADVANTAGES OF THE PROPOSED METHODOLOGY
The disadvantages of this proposed methodology are;

1) To use this proposed methodology, the researcher has
to find a better model which has sufficient statistics.

2) The proposed methodology converges the success rate
to the other candidate model which means with using
this methodology, the success rate is expected to
be close to the other candidate, not more than the
candidate’s success rate.

D. LIMITATIONS OF THE PROPOSED METHODOLOGY
The limitations of this proposed methodology are;

1) The parametric model has to have sufficient statistics.
2) The researcher has to find a better model which has

sufficient statistics and the model has to be successful
enough.
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FIGURE 1. Flow diagram of the proposed method.

By examining the advantages, disadvantages and lim-
itations of the proposed methodology, we can conclude
that although there are some limitations and disadvantages,
this methodology can support researchers in their studies
efficiently. Nearly eachmethod proposals have disadvantages
and limitations, but the limitations of the proposed method-

ology in this article come from the statistics and probability
theories which is the emerging point of measurement of all
statistical science.

Moreover, in some studies, even a 1% improvement is very
valuable for researchers. Especially in highly sensitive studies
like space events, and military activities, some health science
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study areas researchers do not want to lose any opportunity
to improve their model success rate. This study may help
researchers to gain better parameter estimation performance.

V. APPLICATION
By using Theorem 3 the sufficient statistic for exponential
distribution may be found. The structure of the probability
density function of the exponential distribution is as follows.

f (x) =
1
θ
e−

x
θ

The vector form of exponential distributions’ probability
density function with n sample is as follows.

f
(
x, θ

)
=

1
θn
e−

1
θ

∑n
i=1 xi

In this vector form g
(
T
(
x
)
, θ
)

=
1
θn
e−

1
θ

∑n
i=1 xi , and h

(
x
)

=

1.
Thus

∑n
i=1 xi is a sufficient statistic for the exponential

distribution parameter θ .
According to definition 12, every function of this statistic

is sufficient, like
∑n

i=1 xi
n = x, where x is the sample mean.

Now the target is to gain maximum likelihood estimation
for the parameter of the exponential distribution. For this,
at first a likelihood function definition is given.

L
(
x
∣∣ θ
)

=
1
θn
e−

1
θ

∑n
i=1 xi

By using derivation, extreme points may be obtained.

∂

∂θ
L
(
x
∣∣ θ
)

= e−
1
θ

∑n
i=1 xi

1
θn

(
1
θ2

n∑
i=1

xi −
n
θ

)
= 0

Because e−
1
θ

∑n
i=1 xi and 1

θn
can not be 0, other components in

multiplication must be 0.

1
θ2

n∑
i=1

xi =
n
θ

θ̂ = x (4)

Therefore a conclusion that x is maximum likelihood
estimator for exponential distribution and this estimator is
sufficient.

Once any researcher wants to look for sufficient statistics
for Weibull parameters, it is not as easy as exponential
distribution case. In a resource, by using Lehmann-Scheffe
Theorem, x is sufficient statistics for shape parameter
of Weibull [49]. When any researcher wants to look for
sufficient statistics for Pareto parameters, there is a plain
sufficient statistic for one parameter under a condition that
the other parameter is known [50].

With the conclusion in section two, there is a question;
whether any estimator like x in exponential distribution can
improve parameter estimation success on alternative model
for the same data set. Trying to find the answer to this
question with examples 3 and 4.

Example 3: In section II it was shown that if a probability
function is appropriate for a data set in a probability space,
then this measure is unique. Many times in statistics, data
sets can be modelled by different statistical distributions
simultaneously. To illustrate this, the exponential andWeibull
distributions are used in this example. Assume both dis-
tributions are capable of modelling a defined data set and
assume both models have more than 0.5 in p-value in
Kolmogorov-Smirnov test statistics (where p-value indicates
explanation rate of offered model). Now try to match
these two models with defined parameter estimation values.
Survival functions of these distributionswill be used as below.

Sexponential (x) = e−
x
θ (5)

Sweibull (x) = e−( x
λ )

k
(6)

Let X1,X2, . . . ,Xn be random variables. Under theorem 2
each probability measure defines each probability value in
every point uniquely. When these two probability values are
matched in each observation, the result is below.

e−
xi
θ = e−

( xi
λ

)k
(7)

New estimation for shape parameter of Weibull is below.

k̂ =
1
n

n∑
i=1

logxi − logθ
logxi − logλ

(8)

Example 4: For another illustration Pareto distribution type 2
will be evaluated. Parameter equations of Pareto distribution
and exponential distribution by the proposed method can be
gained as below.

Sexponential (x) = e−
x
θ (9)

Spareto (x) =

(
β

x + β

)α

(10)

Let X1,X2, . . . ,Xn be random variables. Under theorem 2
each probability measure defines each probability value in
every point uniquely. When these two probability values are
matched with condition of defined distributions’ maximum
likelihood estimation in each observation, the equation which
is below is gained.

e−
xi
θ =

(
β

xi + β

)α

(11)

New estimations for parameters are below.

θ̂ =
1
n

n∑
i=1

−xi
α (logβ − log (xi + β) )

(12)

α̂ =
1
n

n∑
i=1

−xi
θ (logβ − log (xi + β) )

(13)

For parameter β numeric methods may be better to gain
equation. To gain pure success with the new improvement
method only α and θ improvements in Pareto and exponential
distribution will be used.
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TABLE 1. Vinyl chloride data.

TABLE 2. Vinyl chloride data test results.

TABLE 3. Vinyl chloride data test results after improvement (Improve Weibull by using Exponential.)

TABLE 4. Strength of Kevlar epoxy material.

TABLE 5. Strength of Kevlar epoxy material test results.

With the applications made in Dataset 1 and Dataset 2,
the use of the information given in examples 3 and 4 will be
demonstrated. For illustration, two different data sets will be
used. In these applications maximum likelihood estimations
will be used and each distribution will have more than 0.5
p-value in Kolmogorov-Smirnov test statistics in modelling.
Dataset 1: This data set was used by [51], and later it was

used in a study for indicating the efficiency of decreasing
failure rate in lifetime distributions [52]. The data set carries
the vinyl chloride level which was obtained from cleaned-up
gradient monitoring wells in mg/l:

In Table 2 it is clear that the exponential distribution is
a better modelling opportunity. As a lifetime distribution,
Weibull is used commonly in data sets which are observed
in nature. When a scientist decides on using Weibull in
this kind of data sets, he/she does not want any decrease
in modelling success. Moreover, he/she wants to improve
modelling capability of their distribution with better point
estimation.

Once the improvement method suggested in the current
study is used, the last modelling results may be obtained as
values in Table 3.

Table 3 shows that this method adds 6% success to the
capability of the Weibull distribution in modelling dataset 1.

As stated in the previous section, the models that
can be evaluated in the methodology must have suf-
ficient statistics and be successful enough. Thus, only
two known statistical distributions are used for this
dataset.
Dataset 2: The strength of Kevlar epoxy material which

was used in the NASA space shuttles was measured. The
breaking strength was tested at the 90% pressure level. This
data set represents time to failure (in hours) from 50 epoxy
observations. [53].

In Table 5 it is clear that the modelling capabilities of
Weibull and Exponential distributions are nearly equal. As a
lifetime distribution, Weibull is commonly used in strength
data sets [54], [55], [56]. When a scientist decides to use
Weibull distribution in this kind of data set, the proposed
method may be helpful.

From Table 6 it is concluded that this method adds
6% success to the capability of the Weibull distribution in
modelling dataset 2.

After this improvement method, it was concluded that
Weibull distribution offers a better modelling capability.
In addition, the question of whether this increase is valid
in the opposite case has been tried to be examined. When
improvement method on exponential distribution under
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TABLE 6. Strength of Kevlar epoxy material test results after improvement (Improve Weibull by using Pareto.)

TABLE 7. Strength of Kevlar epoxy material test results after second improvement (Improve Exponential by using Weibull.)

TABLE 8. Strength of Kevlar epoxy material test results after third improvement (Improve Exponential by using Pareto.)

TABLE 9. Outputs of the proposed methodology.

Weibull values is carried out, the results shown in Table 7
are gained.

In Table 7 it is concluded that this method adds 5% success
to the capability of the exponential distribution in modelling
dataset 2.

When the Pareto distribution for increasing the capability
of exponential distribution in this data set is used, the results
shown in Table 8 are gained.

From the results presented in Table 8, it can be concluded
that this improvement method increases a candidate distribu-
tion’s capability with another candidate distribution. While
doing this, the parameters of both distributions have to satisfy
sufficiency.

VI. CONCLUSION
To improve the success of parameter estimation, a novel
method is introduced in this study. Initially, the study
defines the theoretical foundations of accurate parameter
estimation. Subsequently, emphasis is placed on sufficiency
and the specific theories behind point estimation methods.
By leveraging these robust theories, a new method for
enhancing parameter estimation is proposed.

The findings indicate that the newly developed improve-
ment method enhances the modelling capability by achieving
better point estimation for parameters. It is concluded that
when two models possess sufficient statistics for parameter
estimation, this method can lead to higher levels of success.

The application section presents two different examples
showcasing the efficacy of this new method, particularly
in statistical distributions with sufficient statistics. While

implementing this methodology, we used exponential distri-
bution, Weibull distribution which has a widespread usage
area in strength datasets and Pareto distribution which has
a widespread usage area in economy and finance related
datasets. In the usage processes, we only used sufficient
statistics in the estimations for parameters and only the closed
form of equations were used. For instance, we used only
one parameter of Weibull because the other parameter did
not provide the assumptions. By using the proposed method,
the model success rates increased by 6%, 6% and 5% in
the three experiments in the application section. The outputs
of the proposed methodology in the application section are
summarized in Table 9.

From the summarized information presented in Table 9,
it can be concluded that this improvement method provides
important increase rates, especially in the fields in which
researchers have to use determined parametric models. For
instance, if any researcher has to use a parametric model
which is declared in a project proposal and this usage is a
must, the proposed methodology in this article may help the
researcher to increase modeling capability.

These results demonstrate that the method can be valuable
for researchers who rely on specific statistical distributions
dictated by their theories and assumptions. By employing
this innovative method, researchers in various disciplines can
achieve higher levels of success in the modelling process.
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