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ABSTRACT A metaheuristic method is an optimization technique that is generally inspired by natural or
physical processes. The use of metaphors has created a tendency to reproduce existing algorithms with slight
modifications or variations rather than encouraging the development of novel algorithmic techniques and
principles. On the other hand, a complex network is a mathematical structure whose main characteristic is the
ability to capture and analyze the intricate patterns and properties that emerge from the interactions between
the elements that it connects. In this paper, a new metaphor-free metaheuristic algorithm based on complex
networks and Bezier curves is presented. In this approach, candidate solutions are represented as nodes in
a graph, whereas the connections between nodes or edges reflect the differences in their objective function
values. Therefore, the graph provides a higher-level representation that captures the essential relationships
and dependencies among the solutions. Once the graph is generated, the shortest path between each solution
and the best solution is obtained. Then, the nodes obtained from this process are used as control points in the
Bezier equation to generate the new agent position. Therefore, during the optimization process, the graph is
continuouslymodified based on the evaluation of new candidate solutions and their objective function values,
producing trajectories that allow the exploration and exploitation of the search space. The experimental
results demonstrated the effectiveness of our approach by achieving competitive results compared to other
well-known metaheuristic algorithms on various benchmark functions.

INDEX TERMS Complex networks, metaheuristics, Bezier curves, optimization, complex systems, graphs
theory.

I. INTRODUCTION
Optimization [1] is the process of determining the best solu-
tion for a problem within a given set of constraints. This
involves maximizing or minimizing an objective function
while satisfying specific conditions or limitations. Optimiza-
tion methods can be broadly classified into two categories:
classical and metaheuristic. Classical optimization methods
refer to a set of well-established mathematical techniques that
aim to find the optimal solution through systematic mathe-
matical analysis and calculations. Metaheuristic optimization
methods [2] are general-purpose algorithms inspired by nat-
ural or physical processes or social behavior. Metaheuristic
techniques offer several advantages [3] over classical opti-
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mization methods. They do not require explicit mathematical
models and can handle complex, large-scale, or nondifferen-
tiable problems.

Metaheuristic methods can be classified into several cat-
egories [2] based on their underlying principles, sources of
inspiration, or search strategies. Nevertheless, the most com-
mon classification divides these techniques into evolution-
based, swarm intelligence, and physics-based algorithms
[4], [6]. Evolution-based algorithms simulate biological evo-
lution by employing selection, crossover, mutation, and
reproduction operators to generate better candidate solu-
tions. The most popular algorithms in this category are
Genetic Algorithm (GA) [7], Genetic Programming [8],
Tabu Search (TS) [9], Differential Evolution (DE) [10],
Evolutionary Programming [11], and Evolutionary Strate-
gies [12]. Swarm intelligence algorithms are based on the
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collective social behavior of animals and insects. In this
case, candidate solutions are obtained through the interac-
tions between individuals and their environments. The most
important metaheuristic algorithms based on swarm intel-
ligence include Particle Swarm Optimization (PSO) [13],
Bat Algorithm (BA) [14], Cuckoo Search Algorithm (CS)
[15], crown search algorithm (CSA) [16], and Grey Wolf
Optimization (GWO) [17]. Finally, physics-based algorithms
use the universe’s physical rules to define the search operators
and find candidate solutions. Examples of such algorithms
include simulated annealing (SA) [18], Harmony Search (HS)
[19], Sine Cosine Algorithm (SCA) [20], and state-of-matter
search (SMS) [21].

Metaheuristic algorithms have demonstrated their superi-
ority in several real-world applications where classical tech-
niques cannot be used [22], [23], [24], [25], [26], [27], [28].
However, it is impossible that all metaheuristic techniques
can solve all problems competitively due to the inherent
complexity and diversity of optimization problems [4]. Each
problem has unique characteristics and requires specific
strategies to achieve optimal solutions. Therefore, a single
metaheuristic algorithm cannot be universally effective for
all problem types. Additionally, many metaheuristic algo-
rithms may have some limitations, such as slow convergence
rate, difficulty handling high-dimensionality, parameters and
noise sensibility, and convergence to local optima. Under
such conditions, introducing new methods is necessary to
expand the capabilities of metaheuristics and improve their
applicability to various problem domains [5]. By devel-
oping novel techniques, researchers attempt to address a
higher number of problems and enhance the effectiveness
and efficiency of optimization algorithms. New approaches
can provide novel ways to solve the limitations of existing
metaheuristic algorithms, improving the convergence rate,
solution quality, and robustness.

Traditionalmetaheuristic algorithms incorporatemetaphors
or analogies from various natural or physical systems to
guide the search process. Metaphors have played a sig-
nificant role in developing metaheuristic algorithms and
have provided valuable insights and inspiration. However,
potential drawbacks and limitations are associated with the
use of metaphors in this context [29]. The exclusive use
of metaphor-based principles may hinder innovation in the
design of algorithms. It can create a tendency to reproduce
existing algorithms with slight modifications or variations
rather than encouraging the exploration of novel algorithmic
techniques and principles [30]. This limits the potential for
algorithmic breakthroughs and advancements. In contrast,
a metaphor-free metaheuristic algorithm [31] is an optimiza-
tion algorithm that does not rely on any specific metaphor or
analogy to guide the search process. A metaphor-free meta-
heuristic algorithm is designed to avoid any direct reference
to particular metaphors or analogies. Instead, they focus on
developing algorithmic mechanisms based on the combina-
tion of mathematical and computational principles [32]. The

most important advantage of metaphor-free metaheuristic
algorithms over classical metaheuristics is their potential for
novel and creative problem-solving approaches. Metaphor-
free methods can explore unconventional search operators
based on mature mathematical computational principles that
have already been successful in various scientific areas.

Complex networks [33] are mathematical and computa-
tional models used to represent and analyze relationships or
interactions between entities or components in a system. They
present a structure consisting of nodes (also called vertices)
and edges. Nodes represent individual entities or elements,
and edges represent the connections or relationships between
them. Themain characteristic of complex networks compared
to other modeling techniques, is their ability to capture and
analyze the intricate patterns and properties that emerge from
the relationships and interactions between components in a
system. In complex networks, one notable characteristic is
that the number of nodes and edges can dynamically change
over time [34]. This dynamic nature of complex networks
enables the representation of systems that undergo adapta-
tion or reconfiguration. Complex networks, as a modeling
technique, have found notable applications in various fields.
Some examples include social networks [35], [36], [37] and
economic analysis [38], [39] and telecommunications and
energy networks [40], [41], [42], [43], [44].

Bezier curves are polynomial curves used for geometry
approximation [45]. The Bezier curves are defined by a set of
control points that influence their shapes. The control points
act as handles that guide the curve, allowing precise control
over the curvature and direction. In the trajectory, each point
is computed considering Bernstein polynomials, which calcu-
late the position of the point according to any given number
of control points. By varying the positions and number of
control points, different Bezier curves can be created, ranging
from straight lines to complex curves. Bezier curves have
been combined with metaheuristic methods to create interest-
ing applications [46], [47], [48], [49], [50], [51], [52]. In these
approaches, metaheuristic techniques have been employed
to manipulate the control points of Bezier curves, resulting
in meaningful shapes within a specific domain. The curves
can be tailored to satisfy certain criteria or constraints by
optimizing the positions of the control points. However, the
proposed method uses a different approach. Instead of using
metaheuristic techniques to modify the control points of the
Bezier curves for shape manipulation, we utilize the trajecto-
ries generated by the Bezier curves to create new candidate
solutions that explore and exploit the search space. In this
method, each control point in the Bezier curve corresponds
to a candidate solution, and the curve defines a trajectory that
guides the movement of each agent in the search space.

In this paper, a new metaphor-free metaheuristic approach
based on complex networks and Bezier curves is presented.
This method generates graphs that represent the fitness rela-
tionships between the possible solutions. The shortest path
between each solution and the best solution is then obtained.
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The nodes obtained from this process are used as control
points in the Bezier equation to generate feasible agent
trajectories. During the optimization process, the graph is
continuously modified based on the evaluation of new candi-
date solutions and their objective function values, producing
trajectories that allow the exploration and exploitation of the
search space. This methodology reduces the complexity of
high-dimensional functions by modeling only the relation-
ships between search agents using graphs. A set of benchmark
functions, including multimodal, unimodal, and hybrid func-
tions, was used to compare the performance of the proposed
approach numerically and statistically with that of several
state-of-the-art metaheuristic algorithms. The experimental
results indicated that the proposed approach produces com-
petitive results in terms of accuracy and robustness.

The remainder of this paper is organized as follows: In
Section II, the preliminary concepts of complex networks,
shortest path problem, and Bezier curves are presented. The
proposed method is explained in Section III. The exper-
imental results and comparative analysis are presented in
Section IV. Finally, in Section V, conclusions are offered.

II. PRELIMINARY CONCEPTS
The main objective of this section is to provide an overview
and discussion of the most important concepts that form the
foundation of the proposed approach. By addressing these
concepts, we aim to establish a common understanding of
the fundamental elements and principles that underlie the
proposed method.

A. COMPLEX NETWORKS
Complex networks refer to the study and analysis of systems
composed of interconnected elements, represented as nodes
or vertices, and the relationships between them, expressed
as edges or links. In a complex network, the nodes can rep-
resent various elements, such as individuals, organizations,
or candidate solutions, while the edges capture the connec-
tions, interactions, or dependencies between these elements.
Complex networks, as a modeling technique, possess notable
characteristics that enable the analysis of interconnected sys-
tems. They capture the intricate patterns of connectivity and
topology, revealing features such as distributions and clus-
ters. With unique structural properties, complex networks
facilitate efficient information flow and exhibit power-law
degree distributions. They offer various network analysis
techniques, including metrics, centrality measures, and com-
munity detection algorithms. Moreover, the dynamic nature
of complex networks [53] allows for modeling growth, adap-
tation, and reconfiguration, enabling the study of evolving
systems and dynamical phenomena. Complex networks also
represent important mechanisms to simplify the complex-
ity of high-dimensional problems by representing them as
configurations of nodes and edges. In high-dimensional prob-
lems, the number of variables or dimensions involved can
be overwhelming, making analysis and understanding chal-
lenging. However, by employing complex networks, these

problems can be transformed into a network representation
where nodes represent the variables or components, and
edges denote the relationships or interactions between them.

A simple network (or graph) consists of a set of nodes
(or vertices) and a set of edges (or links) that connect
nodes. The mathematical definition of a network is shown
in equation (1). Where V is a finite set of nodes, E⊆V ⊗
V = {e1, e2, . . . ,em} is a set of links, and f is a mapping
which associates some elements of E to a pair of elements
of V , such as that if vi∈V and vj∈V , then f :ep→

[
vi, vj

]
and

f :eq→
[
vj, vi

]
[33].

G = (V ,E, f ) (1)

Graphs can maintain weights in the links. They are known
as weighted graphs [34]. In a weighted graph, each edge
or link between nodes is assigned a numerical value called
a weight. These weights represent some measure of impor-
tance, distance, cost, or any other relevant quantity associated
with the node connection.

Graphs can be arranged in a matrix known as an adjacency
matrix. It should be mentioned that a vertex is adjacent to
another node if there is an edge to it from that vertex. The
adjacency matrix A is defined as the |V | × |V | matrix, where
V is the number of nodes, and each element Aij contains the
mapping relation between nodes i and j (usually represented
by their weights). If the network has no self-loops, then the
diagonal elements of A are zero.

B. SHORTEST PATH PROBLEMKS
The shortest-path problem (SPP) is a well-studied topic in
computer science. In graph theory, communication between
two non-adjacent nodes depends on the path connection.
A path is defined as a sequence of nodes in which each
successive node is adjacent to its predecessor [53]. In other
words, given a set of vertices V , a source vertex u, a destina-
tion vertex v, where u, v∈V , and a set of weighted edges E
over set V , the shortest path is the minimum length criterion
sum S (u, v) from source to destination (see Equation 2).
where d (u, v) denotes the edge weights of the nodes [54].

S (u, v) =
∑

u,v∈V (G)

d (u, v) (2)

Dijkstra’s algorithm [55], [56], [57] is a popular method for
finding the shortest path between two nodes in a weighted
graph. The Dijkstra’s algorithm is specifically designed to
find the path with the minimal cost in terms of the weights
of the edges in a graph. This algorithm employs a greedy
approach to iteratively determine the shortest paths from a
source node to all other nodes in the graph. It considers
two types of vertices: solved and unsolved vertices. First,
a source vertex is defined and marked as the solution. Then,
all other edges (through unsolved nodes) connected to the
source vertex are checked. Once the algorithm identified the
shortest link, it added the corresponding vertex to the solved
node list. The algorithm iterates until all vertices are solved
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FIGURE 1. Examples of BC using four different control points.

or the destination node is reached. However, it does not need
to analyze all links.

C. BEZIER CURVES
Bezier curves (BC) are a well-known standard tool in com-
puter graphic modeling [45]. They are polynomial approx-
imations based on a set of points known as control points.
Figure 1 shows some examples of BC using different control
points. As illustrated in the image, the curve is constructed by
mapping the polynomial straight lines. Where P0 and P3 are
the initial and final points on the curve, respectively. In addi-
tion, the curve does not pass through P1 or P2, because these
points are used to provide directional information. Depending
on the number of control points, various curve shapes can be
obtained.

BC uses a linear combination of Bernstein polynomials
(see equation (3)). Where Bni (x) are elements of a bino-
mial distribution and ci are the approximate function values
generated based on the range [a, b]. This is mathematically
described by equations (4) and (5): Thus, a BC of degree n
can be defined as shown in equation (6). Where Pi represents
the control points. BC present the following characteristics:1)
convex hull, which is bounded by the convex hull of the
control points; 2) symmetry, the opposite order of the control
points produces the same curve with reverse parameteriza-
tion; 3) affine invariant, any move operation (translate, scale,
rotate, or skew) affects the entire curve; 4) any subdivision of
a BC retains its properties; and 5) easy programming, which
can be subdivided into simple recursive steps to compute
high-order BC [58].

P (x) =
n∑
i=0

ciBni (x) (3)

Bni (x) =
(
n
i

)
x i (1− t)n−i (4)

ci = f
(
i
b− a
n
+ a

)
(5)

B (t) =
n∑
i=0

(
n
i

)
Pi (1− t)n−i t i (6)

III. COMPLEX NETWORKS AND BEZIER CURVES AS A
METAHEURISTIC METHOD
In this paper, a new metaphor-free metaheuristic algorithm
that combines complex networks and Bezier curves is pre-

sented. For this reason, this approach is called through the
manuscript CNBC. The objective of the algorithm is to find
the global solution for a nonlinear problem based on the
formulation of an optimization problem described as follows:

Maximize/ minimize

Subject to J (x)

x = (x1, x2, . . . , xd ) ∈ Rd

x ∈ X (7)

where J :Rd
→ R is a d-dimentional nonlinear function and

X represent the search space
(
x ∈Rd

| li ≤ xi≤ui, i= 1, . . . ,d
)

defined by lower (li) and upper (ui) bounds. Regardless of
whether a metaheuristic method is classical or metaphor-
free, they typically maintain a similar structure consisting of
three main elements: initialization, movement operators, and
a selection mechanism. In this section, we will explain each
of these elements for the proposed approach.

A. INITIALIZATION
Initialization is the first operation of the algorithm, and its
objective is to generate an initial population of N agents,
Ag = {a1, . . . ,aN }where each agent ai represents the combi-
nation of decision variables ai =

{
ai,1, . . . ,ai,d

}
. They can be

initialized based on the specifications of a defined problem;
however, their initial positions are typically set randomly.
Tomake this possible, the positions for each decision variable
ai,j, where (i ∈ 1, . . . ,N ;j∈ 1, . . . ,d), are established with a
numerical value uniformly distributed between the lower (li)
and upper (ui) bounds, as shown in Equation 8.

ai,j = li + rand (0, 1) · (ui − li) (8)

B. MOVEMENT OPERATORS
Once the population is initialized, an iterative process is
executed to produce a new agent position in each itera-
tion. In metaheuristics, exploration and exploitation are two
important behaviors. The first focuses on an examination of
the search space, looking for new candidate solutions. The
second refines the search process to obtain a more accurate
solution. For CNBC, both effects are produced by considering
two main processes: the creation of a complex network and
the generation of trajectory.

1) CREATION OF A COMPLEX NETWORK
In the proposed approach, the complex network is structured
in a way that each node in the network represents an agent or a
candidate solution from the population. These nodes capture
the individual solutions that are being explored and evaluated.
On the other hand, the edges in the network represent the
relationships between pairs of agents in terms of their fitness
values. Specifically, if we consider the node ni, it corresponds
to the candidate solution ai ( i∈ 1, . . . ,N ). The edge or link
fitDif i,j (see equation (9)) connecting the node ni to node nj
(j∈ 1, . . . ,N ) in the network represent the absolute difference
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FIGURE 2. Example where the agents or particles in the search space are
associated with the construction of a complex network.

between the fitness or objective values of the solutions asso-
ciated with agents ai and aj. Therefore, the value of fitDif i,j
is computed as follows:

fitDif i,j = abs
(
zi − zj

)
(9)

where zi = J (ai) and zj = J (aj) symbolize the values in
terms of the objective function J (·) produced by agents ai
and aj, respectively. In Figure 2, we can observe an example
where the agents or particles in the search space are associ-
ated with the construction of a complex network. The figure
displays four agents {a1, a2, a3, a4} distributed in different
positions within the search space. The graph visualizes how
each agent is represented as a node {n1, n2, n3, n4} in the
complex network. In this representation, the nodes of the
graph correspond to the individual agents, and the edges
connecting the nodes capture the relationships between them.
The weights assigned to these edges reflect the differences
observed among the particles regarding their fitness values.
In Algorithm 1, the creation of the complex network is pre-
sented in lines 6 and 7.

Once the complex network has been constructed, the next
step in the proposed approach is to identify the node (agent)
with the best value in terms of the objective function. This
node nB represents the solution aB that currently has the high-
est fitness or optimality within the population. By identifying
the best node nB, the algorithm determines the reference point
or benchmark for evaluating the other candidate solutions.
It serves as a guide for exploring and exploiting the search
space.

After identifying the best node nB, the proposed algorithm
calculates the new position for each particle or agent in the
population. Therefore, for each node ni or agent ai (exclud-
ing the node nB that represents the solution with the best
value), it is applied the Dijkstra’s algorithm to find the set
of nodes SN i,B that form the shortest path connecting node
ni with the best node nB in the network (see Algorithm 1
line 9). In Figure 3, we can observe an example that demon-
strates the application of Dijkstra’s algorithm in a specific
configuration of a complex network. The complex network

FIGURE 3. Application of Dijkstra’s algorithm in a specific configuration
of a complex network.

comprises eight nodes, and the values of the edges represent
the relationships between the differences in fitness values for
pairs of nodes. Each edge indicates the absolute difference
in fitness between the corresponding nodes. To determine
the new position of agent a2 (or node n2), the algorithm
utilizes Dijkstra’s algorithm. This algorithm is applied to find
the set of nodes S2,B that form the shortest path between
n2 and the best node nB in the network. By identifying this
shortest path, we can determine the trajectory that agent
a2 should follow to approach the optimal solution. Upon
applying Dijkstra’s algorithm, the resulting set of nodes that
form the shortest path between n2 and nB consists of five
nodes SN 2,B = {n2, n1, n6, n7, nB}. In Figure 3, these five
nodes are highlighted in red. As observed in Figure 3, the
Dijkstra’s algorithm effectively determines the path with the
minimum cost or weight in terms of the fitness differences
among the candidate solutions. By following the principle of
selecting the path with the minimal cost, Dijkstra’s algorithm
ensures that the trajectory chosen for a specific agent opti-
mally balances the exploration and exploitation of the search
space. The algorithm prioritizes the edgeswith lowerweights,
indicating smaller differences in fitness values, as it seeks to
find the most efficient route towards the best solution.

2) GENERATION OF TRAJECTORY
For the generation of trajectories, for each agent ai from the
population Ag, the set SN i,B of nodes obtained Dijkstra’s
algorithm are used in Eq. (6) as control points. In this step,
it is generated a series of points that lie along the curve. The
number of the points Npts generated along the Bezier curve
will determine the granularity of the trajectory. A higher
density of points will result in a smoother trajectory but may
also increase the computational complexity. In this paper, the
value of Npts has been set to 100.
In the proposed method, updating the position of agent ai

involves dividing the trajectory into four segments, namely
A, B, C, and D. Each segment corresponds to a quarter
of the complete trajectory, containing 25 points. The pur-
pose of dividing the trajectory into segments is to introduce
variability in the agent’s movement and exploration. When
updating the position of agent ai, two different positions
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p1 and p2 from the trajectory are considered. These posi-
tions are selected based on the results of the search strategy.
The specific segments from which the positions are chosen
depending on the algorithm’s performance. To keep track of
the algorithm’s performance, a counter called Cont is imple-
mented. Cont is incremented each time the algorithm fails
to find a better solution than the current best solution. This
counter serves as a measure of stagnation or lack of progress
in the search. By monitoring the value of Cont , the algorithm
can adapt its behavior and explore different segments of the
trajectory to potentially discover new and better solutions.
In Algorithm 1, the generation of the trajectory is represented
by GetBezierCurve function (line 10).

In the proposed method, the selection of points p1 and p2
from the trajectory is determined based on the performance
of the algorithm, as indicated by the value of the counter
Cont . Four different cases are considered, each corresponding
to a different scenario or behavior of the algorithm dur-
ing the search. The cases are determined by the value of
the counter Cont and dictate which of trajectory segments,
namely A, B, C, or D, are used to select the points p1 and
p2. The selection of the segments is important as it influ-
ences the exploration-exploitation balance of the algorithm.
If the algorithm frequently finds better solutions (case I),
indicating a successful search strategy, the points p1 and p2
are randomly selected from the segment A. This case rep-
resents a scenario where the algorithm is actively exploring
and discovering new, improved solutions. If the counter cont
indicates that the algorithm takes a bit longer to find good
solutions (case II), the points p1 and p2 are selected from both
segments A and B. This case reflects a slightly slower search
strategy, where the algorithm explores more within the initial
segments of the trajectory. Similarly, if the algorithm takes
even longer to find good solutions (case III), the points p1 and
p2 are randomly selected from segments A, B, and C. This
case represents a scenario where the algorithm explores more
extensively throughout the trajectory, including the earlier
segments. Finally, if the algorithm struggles significantly in
finding good solutions (case IV), the points p1 and p2 are
randomly selected from all four segments, A, B, C, and
D. This case reflects a more exploratory behavior, where
the algorithm extensively explores different parts of the to
overcome stagnation and find better solutions.

The selection of the appropriate case and segments for
choosing points p1 and p2 is determined by the value of
the counter cont . This adaptive approach allows the method
to adjust its behavior dynamically based on the success or
difficulty encountered in the search process. Equation (10)
specifies the different cases and the corresponding segments
used for selecting points p1 and p2.

Case =


I 0 ≤ Cont < 30
II 30 ≤ Cont < 70
III 70 ≤ Cont < 120
IV Cont ≥ 120

(10)

FIGURE 4. Trajectory example generated by using the proposed approach.

Once the points p1 and p2 have been determined based on the
corresponding case, the new position of the agent ai(k+1) is
computed using equation (11). This equation defines the cal-
culation of the new position considering the actual agent ai(k)
and themiddle point obtained by the selected points p1 and p2
computed by a scaling factor rand (0, 1). The computational
implementation of this step is shown in Algorithm 1, line 11.

uai(k + 1) = ai(k)+ rand (0, 1) ·
[(
p1 + p2

)
/2

]
(11)

A bound checking is also implemented inside the
UpdatePosition function (see Algorith1, line 11) to ensure
that the updated point uai(k + 1) is within the dimensional
search space. equation 12 shows the bound-checking method.

ai,j = li + rand (0, 1) · (ui − li) ,

ai,j < li ∨ ai,j > ui (12)

Figure 4 illustrates an example trajectory generated using
the proposed approach. The trajectory aims to connect agent
a2 with the best element aB identified in the complex network.
By applying Dijkstra’s algorithm, the set of nodes SN 2,B
comprising the agents a2, a1, a6, a7 and aB is determined
as the shortest path. Using the Bezier curve, the trajectory is
calculated and depicted in the figure. The trajectory is divided
into four distinct parts: A, B, C, and D, each representing
a quarter of the complete trajectory. These segments are
indicated in the figure. Additionally, the figure shows the
different cases that arise during the selection of points p1 and
p2 for determining the new position of agent a2. The cases
depend on the performance of the algorithm and are reflected
in the selection of the corresponding segments of the curve.
If the algorithm consistently finds better solutions, the points
p1 and p2 are selected randomly from segment A. If the
algorithm takes slightly longer to find improved solutions, the
two points are selected from segments A and B. This pattern
continues for the other cases involving different combina-
tions of segments. The figure also illustrates the hypothetical
positions of points p1 and p2 for each case, provides a
visual representation and understanding of the selection
process.
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3) SELECTION MECHANISM
In the proposed approach, the position of each agent is
updated based on two conditions. The first condition evalu-
ates the fitness of the new agent after its position is changed.
If the new fitness value is better than the previous value,
indicating an improvement, then the position is updated.

However, the second condition allows the possibility of
updating the agent’s position even if it does not result in a bet-
ter fitness value. This condition is determined by an updating
probability Up. If the updating probability is met, the agent’s
position is changed regardless of the fitness improvement
(see Algorithm 1 lines 14-20). This introduces an element
of exploration in the search process, allowing the agent to
potentially explore new areas of the search space that may
lead to better solutions. In this work, the value ofUp has been
set to 0.3.

By incorporating these two conditions, the algorithm bal-
ances exploitation (improving current solutions) and explo-
ration (searching for potentially better solutions) during the
optimization process. Agents whose fitness improves will
update their positions. In contrast, agents with lower fitness
values may still have a chance to explore new regions of the
search space based on the moving probability.

4) COMPUTATIONAL PROCEDURE
Algorithm 1 summarizes the operations of the proposed
method as pseudo-code. This approach considers as input
values: the number of agents N , the maximum number of
access functions af , and the updating probability Up.

First, the proposed method generates a set of N evenly
distributed agents (line 2). These represent the initial pop-
ulation {a1, . . . ,aN }. Subsequently, the best agent aB from
{a1, . . . ,aN } is selected, and the iterative process begins
based on the maximum number of access functions af .
At each iteration, the fitness differences between all ele-
ments of {a1, . . . ,aN } are calculated (line 6), producing a
preprocessing adjacent matrix fitDif that satisfies Dijkstra’s
algorithm requirements (see Section II-B). Subsequently,
a graphwas generated (line 7). This network captures the rela-
tionships among all the agents through their fitness values.
Subsequently, Dijkstra’s algorithm is applied (line 9) to find
the shortest path through each agent and the best path (aB).
The path nodes obtained from this process are used as control
points for the Bezier curve equation to generate feasible
agent trajectories (line 10). To increase the randomness and
diversity of solutions and to generate a non-deterministic new
agent position, two points p1 and p2 from each trajectory
are operated based on the Cont value (which changes based
on the necessity of the method to explore or exploit the
search space) (line 11). Finally, all new agent positions are
evaluated and updated based on two cases:1) direct updating
for all solutions that improve the previous solution and 2)
probability-based updating for the rest of the solutions (lines
14-20).

Algorithm 1 Pseudo-Code for the CNBC Model
1 Inputs: N ,Up, af
2 {a1, . . . , aN } ← Inicialize (N ) ;

3 aB ← SelectBestAgent (a1, . . . , aN ) ;

4 k = 1;
5 While k ≤ af do
6 fitDif ← CalculateFitnessDifferences (a1, . . . , aN );
7 G← GenerateGraph (fitDif );
8 For each agent ai where i = 1, . . . ,N
9 SN i,B ← GetShortestPath (G, ai, aB);
10 [case,p1,p2]← GetBezierCurve(SN i,B);
11 uai(k + 1)← UpdatePosition (ai(k),p1,p2);
12 End for
13 aB(k+ 1)← SelectBestAgent (ua1(k + 1), . . . ,uaN (k + 1));
14 If J (ua(k + 1)) < J(a(k)))
15 a(k + 1) = ua(k + 1);
16 else
17 If (rand (0, 1) > Up)
18 a(k + 1) = a(k);
19 End if
20 End else
21 k = k + 1;
22 End while
23 Output: aB

An example is implemented to illustrate the CNBC
approach. The objective is to detect the minimum value of
the two-dimensional objective function defined in equation
(13), as illustrated in figure 5(a).

f (x1, x2)

= 3(1− x1)2e−(x
2
1−x

2
2 )

− 10
(x1
5
− x31 − x

5
2

)
e
(
−x21−x

2
2

)
− 1/3e(−(x1+1)2−x22 )

(13)

Figure 5(b) shows the first step of CNBC initialization. Fig-
ures 5(c) and 5(d) illustrate the creation of a complex network
process. The generation of trajectories is presented in figures
5(e) and 5(f), where the square elements represent the points
p1 and p2 used in the trajectories. Next, the new position of
each agent was calculated using Eq. 11. Finally, the selected
mechanism was applied to update the agent’s position. These
operations are applied sequentially until the number of access
functions af is reached.

5) COMPUTATIONAL COST
This subsection considers the computational cost associ-
ated with our proposed approach. Metaheuristic algorithms,
by nature, encompass intricate structures entailing stochas-
tic components. Consequently, undertaking a conventional
complexity analysis for such systems becomes unviable. The
execution duration of an algorithm is susceptible to the impact
of various factors, rendering a traditional assessment of com-
plexity impracticable. In light of these considerations, the
standard methodology is to employ Big-O notation [59]. This
notation provides an essencial structure for evaluating the
algorithmic cost quantifying the count of operations needed
for successful execution.
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FIGURE 5. Graphical example of CNBC approach.

The evaluation of the computational cost of our method has
been conducted utilizing the foundational principles of the
Big-O notation introduced in [60]. Table 1 provides the partial
computational costs attributed to our approach. Within the
table, we adopt the assumption that N denotes the number of
candidate solutions subject to algorithmic operations, while
MAXITER represents the upper limit of iterations within the
methodology. For the sake of clarity, the table also offers a
breakdown of the Algorithm 1 operations, aligning them with
respective partial computational costs.

Since the steps 2-7 of Table 1 are executed MAXITER
iterations, the total cost O (N ) is formulated as follows:

O (N ) = MAXITER · [N 2
+ 2 · N + (N · log(N ))(N + 1)

+ SN i,B · 100] (14)

Under such conditions, the Big-O notation of the proposed
method is polynomial (quadratic complexity N 2), which
means that the algorithm’s time complexity grows at a poly-
nomial rate as the input size of N increases.
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TABLE 1. Partial computational cost in terms of the Big-O notation
attributed to our approach.

TABLE 2. Parameter configuration for each evolutionary method.

IV. EXPERIMENTAL RESULTS
To assess the performance of the proposed method, a com-
prehensive set of 23 benchmark functions has been chosen.
These benchmark functions represent various types of opti-
mization problems, including unimodal, multimodal, and

hybrid functions. By applying the proposed method to these
benchmark functions, we can quantitativelymeasure its effec-
tiveness in finding high-quality solutions, handling different
types of objective landscapes, and adapting to various prob-
lem complexities. The mathematical description of the test
functions is shown in Table 17, available in Appendix A.
Where n corresponds to the n -dimensional vector at which
the test functions are evaluated, f (x∗) represents the opti-
mal value of a given function evaluated at position x∗, and
S corresponds to the lower and upper limits of the search
space.

The results obtained from the proposed approach have
been compared to a set of algorithms, including classical
and state-of-the-art metaheuristic methods. These algorithms
have been chosen to represent a diverse range of optimiza-
tion techniques. The comparison provides a comprehensive
evaluation of the proposed approach’s performance against
well-established and widely used methods. The set of algo-
rithms used for comparison includes the Bat Algorithm (BA)
[14], Cuckoo Search Algorithm (CS) [15], Crow Search
Algorithm (CSA) [16], Differential Evolution (DE) [10],
Grey Wolf Optimization (GWO) [17], Harmony Search (HS)
[19], Particle Swarm Optimization (PSO) [13], Simulated
Annealing (SA) [18], Sine Cosine Algorithm (SCA) [20], and
State of Matter Search (SMS) [21]. Each of these algorithms
presents interesting characteristics in their search strategies.
To ensure a comprehensive evaluation, the comparison has
been conducted on each of the benchmark functions selected
for the study. The evaluation considers the performance of
the algorithms across various dimensions, specifically 30,
100, and 200 dimensions. Additionally, a high-dimension
comparison analysis has been made between the proposed
method and Dynamic Stochastic Search (DSS) [61] to evalu-
ate the CNBC performance at 300 and 3000 dimensions. All
experiments were carried out utilizing a computer equipped
with an AMDRyzen 3 processor with Radeon Vega Graphics
3.50Ghz and 8 GB of memory. Additionally, the proposed
method has been programmed using MATLAB’s language
(M language) in the integrated development environment
MATLAB R2022b.

This section is divided into four sub-sections, each address-
ing a specific aspect of the evaluation and analysis of
the proposed approach. The first subsection (A) provides
details about the setup and configuration of the test envi-
ronment. In the second subsection (B), the performance of
the proposed approach is evaluated and compared with other
popular metaheuristic algorithms. The evaluation involves
running the algorithms on the benchmark functions and col-
lecting relevant performance metrics. Statistical techniques
are employed to compare the results obtained by the pro-
posed approach with those of the other algorithms, allowing
for a quantitative assessment of its performance. The third
subsection (C) validates the proposed approach’s ability
to converge towards an accurate solution. This analysis
examines the algorithm’s behavior over iterations or gener-
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TABLE 3. Minimization results with n = 30. Benchmark functions (available on Appendix A).
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TABLE 3. (Continued.) Minimization results with n = 30. Benchmark functions (available on Appendix A).

ations, tracking the convergence of the objective function
values. By analyzing the convergence patterns, the effec-

tiveness of the proposed approach in reaching optimal or
near-optimal solutions is assessed. In the final subsection (D),
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TABLE 4. Minimization results with n = 100. Benchmark functions (available on Appendix A).
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TABLE 4. (Continued.) Minimization results with n = 100. Benchmark functions (available on Appendix A).

a comparative analysis was carried out over three engineering
design problems to evaluate the performance of the proposed
method over real-world applications.

A. CONFIGURATION OF THE TEST ENVIRONMENT
In this study, a set of 23 benchmark functions has been
employed to evaluate and compare the performance of the

104050 VOLUME 11, 2023



K. Avila et al.: New Metaphor-Free Metaheuristic Approach Based on Complex Networks and Bezier Curves

TABLE 5. Minimization results with n = 200. Benchmark functions (available on Appendix A).
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TABLE 5. (Continued.) Minimization results with n = 200. Benchmark functions (available on Appendix A).

CNBC approach with other metaheuristic methods. The
evaluation focuses on the fitness values achieved by the
algorithms. The optimization process aims to minimize these

fitness values. To control the optimization process, a max-
imum number of function evaluations, denoted as af , has
been set as a stop criterion. In this case, the value of af is
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TABLE 6. Wilcoxon p-values obtained over 30-dimentional results.

fixed at 5000. This ensures that the algorithms are given a
limited number of function evaluations to find the optimal or
near-optimal solutions. To account for the stochastic nature
of the algorithms, each benchmark function is executed inde-
pendently 30 times. By conducting multiple runs, the effects
of randomness and variability in the algorithms’ performance
can be better understood and statistically analyzed. For the
experimental test, a population size of 50 individuals has
been set for each metaheuristic approach. The population
size determines the number of candidate solutions that are
generated and evaluated in each iteration of the algorithm.
Furthermore, the evaluation is conducted on three different
dimensional search spaces: 30, 100, and 200 dimensions. This
allows for the assessment of the scalability of the algorithms,
examining their performance across different levels of prob-
lem complexity. Table 2 summarizes the parameter values
used for each metaheuristic algorithm in the comparative
test.

It should be noted that these parameter values correspond
to the settings recommended by the original authors of each
approach. The authors have selected these parameter values
to obtain the best possible performance from their respec-
tive algorithms. By utilizing this consistent experimental
setup with predefined parameter values, population size, and
dimensional search spaces, a fair and controlled compari-

son of the algorithms can be conducted. This facilitates a
meaningful assessment of their performance, highlighting the
strengths and weaknesses of each approach.

B. PERFORMANCE COMPARISON
The performance results of each method are presented in
Tables 3-5. These tables contain numerical indexes that are
used to evaluate the performance of the algorithms. The
indexes used are the Best Fitness Value, the Average Fitness,
the Standard Deviation and theWorst Value. The Best Fitness
Value (fBest ) represents the lowest fitness value achieved by
eachmethod. It indicates the quality of the solutions obtained,
with lower values indicating better performance. TheAverage

Fitness (
_
f
) indicates the average fitness value across all

runs of each method. It provides an overall measure of the
algorithm’s performance and stability. The Standard Devia-
tion (σf ) quantifies the variability or dispersion of the fitness
values obtained by each method. A lower standard devia-
tion indicates more consistent performance. The Worst Value
(fWorst ) represents the highest fitness value achieved by each
method. It indicates the poorest quality solutions obtained,
with higher values indicating poorer performance. The best
performance entries in the tables are highlighted in boldface,
making it easier to identify the methods that achieved the
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TABLE 7. Wilcoxon p-values obtained over 100-dimentional results.

lowest fitness values. The tables present the minimization
results obtained for three different dimensional search spaces:
30, 100, and 200 dimensions. Each table provides a com-
prehensive overview of the performance of the algorithms
across these dimensions, allowing for a comparison of their
effectiveness in solving optimization problems of varying
complexity.

The CNBC approach presented in Table 3 shows better
performance than its competitors for most of the benchmark
functions (f1− f5, f7, f10, f11, f15− f19, and f23). These results
indicate that CNBC can find optimal solutions even in the
presence of multiple optima. It also shows that the proposed
approach produces similar results to GWO in functions f6, f9,
f12, f13, f20, f21, and f22. In addition, CNBC obtains the same
fitness value as PSO and SA for functions f8 and f6. In addi-
tion, SCA and CNBC share similar results for f6, f13, f20,
and f22. Based on these numerical results, it can be seen that
the proposed method shares the same results with GWO and
SCA in the unimodal function f6, hybrid functions f20 and f22,
and multimodal function f13. This condition can be produced
because both methods consider the influence of several solu-
tions in guiding the search process. In the proposed method,
the trajectories produced by Bezier curves are influenced by
a set of particles that represent the shortest path to the best
solution. In GWO, the positions of the wolves are updated

based on the position of several kinds of wolves, which
represent different types of solutions. The similarities in some
results between the proposed method and SCA can also be
explained by their coding mechanisms. The proposed method
represents candidate solutions using a graph, where nodes
represent the solutions and edges capture the differences in
fitness values between solutions. Similarly, SCA utilizes a
vector representation known as sine-cosine vectors to encode
each solution. Then, there are five other functions (f8, f9, f12,
f14, f21) in which only one method (GWO, PSO, or SA) yields
similar results to CNBC. Of these three algorithms, GWO
appears most frequently. This reinforces the claim that GWO
has a similar performance (owing to its search mechanism)
for some of the benchmark functions, as in the proposed
method. However, in the remaining 14 functions (f1 − f5, f7,
f10, f11, f15 − f19, and f23), the CNBC approach outperforms
all other algorithms. This demonstrates the effectiveness of
the proposed method in terms of accuracy and stability.

To evaluate the scalability of the proposed Complex
Network-based method (CNBC), additional tests were con-
ducted in higher-dimensional search spaces. Specifically,
tests were performed in 100 and 200 dimensions. Table 4
presents the results obtained for the 100-dimensional test. The
table clearly demonstrates that the CNBC approach outper-
forms its competitors on most of the benchmark functions.
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TABLE 8. Wilcoxon p-values obtained over 200-dimentional results.

TABLE 9. Results obtained over 300-dimentional results.

Unlike the other algorithms, there are no instances in this
test where two or more algorithms exhibit better performance
than CNBC. This highlights the scalability of the proposed
method, as its effectiveness is maintained even as the dimen-
sionality increases. The results indicate that CNBC is capable
of handling high-dimensional problems and offers superior
performance compared to its counterparts. Furthermore, the
GWO generates the same fitness value as the CNBC for f6,
f10, f12, f13, f20, and f22. When analyzing the statistical values,
it can be seen that CNBC is more robust than its principal

TABLE 10. Results obtained over 3000-dimentional results.

competitor (GWO) because CNBC’s mean values for f6, f10,
f12, and f20 are equal to the best fitness obtained, and their
standard deviation values are smaller than those obtained by
GWO. In addition, PSO exhibits similar performance to that
of CNBC for functions f8, and SA has the same fitness value
as CNBC in function f14. However, the proposed approach is
more consistent with SA because CNBC’s standard deviation
of CNBC is smaller than that of SA.

It should be mentioned that the results obtained by CNBC
for the 30 and 100-dimension tests are interesting because
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they are very similar even when the dimensionality increases.
This demonstrates the scalability of the proposed method.
In addition, to include higher dimensionality in the optimiza-
tion procedure and validate its effectiveness, the performance
results based on a 200-dimensional search space are pre-
sented in Table 5.

This experiment illustrates the scalability and robustness
of mixing Bezier curves and complex networks to obtain
optimal solutions, even in high-dimensional search spaces.
For most benchmark functions (f1 − f7, f9 − f12, f15 − f19,
and f23), the proposed CNBC approach outperforms the other
metaheuristic methodologies considered in the numerical
experiment presented in Table 5. The performance of GWO
is similar to that of CNBC in f13, f14, f20, f21, and f22. As can
be observed, since the 30-dimensional experiment (Table 3),
GWO presents a performance similar to that of CNBC for
some of the benchmark functions. However, the number of
functions in which this occurs is reduced when the search
space dimensions are increased. This result supports the scal-
ability of the proposed approach. In addition, even when the
GWO shows the same fitness and mean value, the CNBC has
a smaller standard deviation, ensuring the method’s effective-
ness. In addition, CS and SA generate the same fitness value
as CNBC in function f14; however, as mentioned previously,
the standard deviation of CNBC is smaller. Finally, the PSO
and proposed methods showed similar performances in f8.

Consequently, it is evident that the proposed approach
generates exceptional performance in higher-dimensional
search spaces. The Bezier curves used for generating feasi-
ble motion trajectories allow us to explore and explode the
search space satisfactorily, particularly in higher-dimensional
spaces. The numerical results obtained in higher-dimensional
search spaces indicate that the representation of fitness rela-
tionships based on complex networks in the optimization
process produces a higher level of scalability because it out-
performs the rest of the tested methods for most benchmark
functions.

The Wilcoxon signed-rank test [62] is commonly used to
evaluate metaheuristic algorithms to assess their statistical
significance and compare their performance against each
other or against a baseline method. Metaheuristic algorithms
are stochastic optimization methods that rely on randomness
to explore and search for optimal solutions in complex prob-
lem spaces. Due to their stochastic nature, the performance
of these algorithms can vary across different runs or datasets.
The Wilcoxon test helps determine whether the observed
differences in performance between two algorithms are statis-
tically significant or simply due to chance. TheWilcoxon test
is a non-parametric test that does not make any assumptions
about the underlying distribution of the data. It compares
the ranks of paired observations, typically the performance
results obtained by two algorithms on the same set of bench-
mark functions. By comparing the ranks, the Wilcoxon test
provides a p-value that indicates the likelihood of observing
the observed differences in performance by chance. If the
p-value is below a predetermined significance level (e.g.,

FIGURE 6. Graphical description of the three-bar truss design problem.

0.05), it suggests that the observed differences are statistically
significant, indicating that one algorithm performs signifi-
cantly better or worse than the other.

The p-values obtained from the Wilcoxon test are listed in
Table 6. These statistical results were based on the perfor-
mance results presented in Table 3 (where n = 30). On the
other hand, Table 7 shows the p-values obtained by the
rank-sum test considering the results of Table 4 (where n =
100). Finally, Table 8 presents the p-values obtained by the
Wilcoxon test. The performance results for this case are
listed in Table 5 (where n = 200). These tables present
a pairwise comparison between CNBC and the rest of the
tested algorithms to validate the experiments implemented
statistically. Tables 6-8 employ the symbols ▲, ▼, and ▶.
When CNBC achieves remarkably better results than a given
adversary algorithm, the symbol ▲ is used. Then, the symbol
▼ is utilized when CNBC generates a worse result than its
opponents. Finally, the symbol ▶ is employed in the case
when the Wilcoxon test cannot discriminate between the
numerical results. This symbology can help to visualize the
results clearly.

Based on the p-values in Table 6, it can be suggested that
the Wilcoxon test cannot identify a significant difference
between CNBC and GWO for functions f6, f9, f13, and f22.
In addition, it can be confirmed that the proposed method
produces a result similar to that of the SCA for functions
f6, and f17. Additionally, under the pairwise comparison of
CNBC and PSO, it can be deduced that both algorithms
show similar performance for the function f8. These results
corroborate those presented in Table 3. In this analysis, the
Wilcoxon test based on Table 3 demonstrated the effective-
ness of the method in terms of accuracy and sturdiness. There
are only seven comparative cases in which the rank sum is
unable to distinguish between the numerical results. In addi-
tion, it is noticed that the three algorithms (GWO, PSO, and
SCA) generate similar results to CNCB in six functions over
twenty-three benchmark functions.

According to Table 7, (where the 100-dimensional results
are exposed), the CNBC approach produces similar results to
GWO for functions f12, f13, f20, and f22. Additionally, in func-
tion f8, the p-values obtained in the comparison between
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FIGURE 7. Convergence graphs from Table 4.
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FIGURE 7. (Continued.) Convergence graphs from Table 4.
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FIGURE 7. (Continued.) Convergence graphs from Table 4.
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FIGURE 7. (Continued.) Convergence graphs from Table 4.

CNBC and PSO suggest that the rank sum cannot estab-
lish a significant difference between them. In addition, the

Wilcoxon test conducted for the 100-dimensional results sup-
ports the scalability characteristic of the proposed approach
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TABLE 11. Numerical results of Three-Bar Truss Design Problem.

TABLE 12. Statistical results of three-bar truss design problem.

because it is observed that only two algorithms (GWO and
PSO) generate similar results to CNCB in five functions over
twenty-three benchmark functions. It is evident that CNBC
overcomes the other techniques that have been compared,
especially in higher-dimensional search spaces.

Finally, based on Table 8, it can be pointed out that the
Wilcoxon test cannot distinguish the results generated in f13
and f22 between the pairwise comparisons between CNBC
and GWO. In addition, the p-values obtained by the rank-sum
method indicate that the proposed method and PSO generate
similar results in function f8. Results of Table 8 confirm the
scalability property of CNBC because it should be mentioned
that only two algorithms (GWO and PSO) generate similar
results to CNCB in three functions over twenty-three bench-
mark functions. In addition, it verifies CNBC’s effectiveness,
robustness, and scalability because evenwhen the dimensions
increase, the proposed method produces feasible solutions,
whereas other algorithms decrease their effectiveness.

To make a deeper analysis of the capabilities of the pro-
posed method for dealing with high-dimentios, a comparison
is made against a metaheuristic algorithm for high dimen-
sional optimization problems called Dynamic Stochastic

FIGURE 8. Graphical description of the Pressure Vessel Design Problem.

TABLE 13. Statistical results of pressure vessel design problem.

Search (DSS) [62]. This algorithm has presented its effective-
ness in developing experiments over 300 and 3000 dimen-
sions over unimodal and multimodal benchmark functions.
In our comparison, it is considering a representative sample of
these functions. The set of functions used for our comparison
is constituted by unimodal andmultimodal functions: Sphere,
Step, Ackley, Generalized Penalized, and Griewank. These
functions are described in Appendix A Table 17 as f1, f6, f11,
f12, and f17. Also, the parameters used are equal to the original
article: the population size has been set in 50, the maximum
number of iterations is set to 500, and both algorithms are per-
formed for 30 experiments. The best results are highlighted
in bold to emphasize the better performances.

Table 9 presents the comparative results between the
Dynamic Stochastic Search and the proposed method on 300-
dimensions. The proposed method shows its effectiveness
over most of the analyzed functions. In Table 10, the compar-
ative analysis is made over 3000-dimensions. Examining both
tables, it can be observed that even when the dimensionality
had increased ten times (from 300 to 3000 iterations), the
method’s effectiveness was maintained.

Based on this analysis and the statistical analysis pre-
sented in Tables 6–8, it can be corroborated that the meta-
heuristic approach based on complex networks and Bezier
curves (CNBC) reduces the complexity of high-dimensional
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TABLE 14. Numerical results of pressure vessel design problem.

FIGURE 9. Graphical description of the Welded-Beam Design Problem.

functions by modeling the fitness relations between search
agents using complex networks. In addition, the effectiveness
of themethod in terms of accuracy and scalability is validated.

The remarkable capabilities of the proposed method can be
attributed to its unique mechanisms that are employed during
the optimization process. Two fundamental mechanisms con-
tribute to its effectiveness: the generation of agents used for
generating possible trajectories and the selection of points p1
and p2 based on different cases depending on the algorithm’s
performance.

Firstly, the method leverages the use of agents to gener-
ate trajectories. These agents represent different candidate

TABLE 15. Statistical results of welded-beam design problem.

solutions within the search space. By considering the rela-
tionships and distances between these agents, the method
constructs complex networks. It applies graph-based algo-
rithms such as Dijkstra’s algorithm to identify the shortest
paths. This enables the generation of feasible trajectories that
guide the exploration and exploitation of the search space.
Secondly, the method utilizes different cases for selecting
the points p1 and p2. These cases are determined based on
the algorithm’s performance, which is reflected in a counter
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TABLE 16. Statistical results of welded-beam design problem.

variable. By considering the success or delay in finding
better solutions, the method adapts its selection strategy.
This flexibility allows for the incorporation of both random
exploration and targeted exploitation, enabling a more robust
and effective search process. By combining these mecha-
nisms, the proposed method enhances its capacity to navigate
the search space, balance exploration and exploitation, and
identify promising trajectories to improve the optimization
process. These distinctive features contribute to the remark-
able performance and capabilities of the method in tackling
complex optimization problems.

C. CONVERGENCE ANALYSIS
Convergence analysis in metaheuristic methods refers to the
study of the algorithm’s behavior and its convergence towards
an optimal or near-optimal solution over iterations. The main
objective of convergence analysis is to assess the performance
and effectiveness of a metaheuristic algorithm in terms of
its ability to converge to a high-quality solution within a
reasonable number of iterations. This subsection studied the
converge analysis between the proposed method (CNBC) and
ten well-knownmetaheuristic algorithms (BA, CS, CSA, DE,
GWO, HS, PSO, SA, SCA, and SMS).

Convergence data from the 100-dimensional test (Table 4)
were used to generate the convergence graphs. This infor-
mation was selected because it can represent the general
performance of the proposed method, as it is the middle
experiment of the three conducted in Section (4.2) over
30-, 100-, and 200-dimensional spaces. This information

facilitates understanding the performance in both low and
high dimensionality. Convergence graphs are presented in
Figure 7. Based on its convergence, the CNBC approach has
a faster convergence rate than its competitors. This suggests
that complex networks and Bezier curve operators allow the
manipulation of a large amount of information and represent
it by simple connections between nodes, generating feasible
agent trajectories to explore and exploit the search space.
Some of the functions on which it is easier to observe CNBC
profit are f1, f7, f11, f13, f19, and f23.
To produce the trajectories, the Dijkstra’s algorithm selects

the path with the minimal cost in terms of the weights (fitness
values) of the edges in a graph. Prioritizing small differ-
ences can accelerate the algorithm’s convergence towards
a near-optimal solution. By placing more weight on subtle
improvements, the algorithm can quickly converge towards
regions with incremental gains in fitness.

D. ENGINEERING DESIGN PROBLEMS
The optimization method’s main purpose is to generate an
optimal solution to an optimization problem. Many disci-
plines, such as medicine, engineering, economics, among
others had defined many of their fundamental problems as
optimization problems. This section exhibits the proposed
method applied over several engineering design problems to
evaluate the capabilities of CNBC in real-world applications.

The engineering design problems used in this section are
the three-bar Truss design problem, pressure vessel design
problem, and welded-beam design problem [63], [64]. They
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TABLE 17. Mathematical description of the test functions.
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TABLE 17. (Continued.) Mathematical description of the test functions.

are described in Appendix B. Below, the obtained results for
each optimization problem are presented.

1) THREE-BAR TRUSS DESIGN PROBLEM
The Three-Bar Truss Design Problem is an optimization
design problem that considering a 2-dimensional search
space subject to three constraints (see Appendix B Table 18).
This optimization problem focuses on reducing the volume
of a loaded three-bar truss. Figure 6 illustrates the structure
of this problem. Additionally, Table 11 shows the decision
variables, the constraints, and the fitness value obtained for
applying CNBC in the Three-Bar Truss design problem.

Table 12 reports the statistical results obtained for the
Three-Bar Truss executed independently 30 times. For each
experiment, the maximum number of generations is set to
1000 for each algorithm. In this table the worst, mean, stan-
dard deviation, and the best fitness values are presented.
Based on both tables, it is exhibited that the proposed method
can obtain competitive results like other well-known meta-

heuristic algorithms such as BA, CS, CSA, DE, GWO, HS,
and PSO. Also, the obtained results validate the adaptability
of the CNBC algorithm to function adequately for high and
low-dimensional problems.

2) PRESSURE VESSEL DESIGN PROBLEM
The Pressure Vessel Design is one of the most com-
mon engineering problems used for validating optimization
algorithms. It consists of finding the optimal design of a
compressed air storage tank considering the thickness of
shell (Ts = x1), thickness of head (Th = x2), inner radius
(R = x3), and length of shell (L = x4) such that the total
cost of material, forming, and welding is minimized based
on four constraints. The complete definition of this problem
can be found in Appendix B Table 19. In addition, Figure 8
illustrates a graphic representation of the Pressure Vessel
Design Problem.

In Table 13 the statistical results are presented, and
Table 14 exposes the numerical results obtained for
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TABLE 18. Definition of three-bar truss design problem.

TABLE 19. Definition of pressure vessel design problem.

employing the CNBC algorithm to solve the Pressure Vessel
Optimization Problem. It is notable that the flexibility of the
proposed approach allows the incorporation of both random

TABLE 20. Definition of welded design problem.

exploration and targeted exploitation, enabling a more robust
and effective search process.
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3) WELDED-BEAM DESIGN PROBLEM
This design problem optimizes the fabrication cost of a
welded beam based on the width h = x1, length l = x2,
depth t = x3 and thickness b = x4. Also, this chal-
lenge considers seven constraints. The specifications of the
Welded-Beam design problem are exposed in Appendix B
Table 20. In addition, figure 9 illustrates the graphical rep-
resentation of this optimization problem.

Table 15 displays the statistical results, and Table 16
shows the numerical results of the Welded-Beam optimiza-
tion problem. However, the proposed method generates a less
favorable fitness value than to CS, DE, GWO, HS, and PSO.
It has the capability to produce better results than BA, CSA,
SA, SCA, and SMS. Therefore, the proposed approach pro-
duces competitive results. Its performance is attributed to the
higher-level representation applied using complex networks
that capture the essential relationships and dependencies
among the solutions, which are employed to create potential
search trajectories using Bezier curves, producing feasible
solutions that can correctly explore and exploit the search
space.

V. CONCLUSION
Metaheuristic techniques are powerful optimization meth-
ods capable of handling complex and large-scale problems
without relying on explicit mathematical models. However,
due to the inherent complexity and diversity of optimiza-
tion problems, not all metaheuristics can solve all problems
competitively. Each problem requires specific strategies for
optimal solutions, necessitating the introduction of newmeth-
ods to enhance the capabilities of metaheuristics across
various domains. Traditional metaheuristic algorithms often
draw inspiration from natural systems, using metaphors and
analogies. While this approach has its merits, it can limit
innovation by encouraging the replication of existing algo-
rithms with slight modifications. In contrast, metaphor-free
metaheuristic algorithms focus on developing novel algorith-
micmechanisms based on a combination ofmathematical and
computational principles. Considering these mechanisms,
these methods can explore unconventional search opera-
tors and offer improved performance across diverse problem
domains.

This paper introduces a novel metaphor-free metaheuris-
tic algorithm that combines complex networks and Bezier
curves. In this approach, solutions are represented as nodes
in a graph, where the edges capture the differences in their
objective function values. This graph-based representation
enables a higher-level understanding of solution relation-
ships and dependencies. The algorithm calculates the shortest
path between each solution and the best solution, using the
resulting nodes as control points in the Bezier equation to
determine new agent positions. Throughout the optimiza-
tion process, the graph is continuously updated based on
the evaluation of new solutions and their objective function
values, leading to trajectories that facilitate the exploration
and exploitation of the search space.

A set of unimodal, multimodal, and hybrid benchmark
functions was used to numerically and statistically compare
the performance of the proposed approach with various state-
of-the-art metaheuristic algorithms. The comparative results
demonstrated the effectiveness of the method. In addition,
the robustness and scalability of the proposed approach
have been verified because even when the dimensionality
increases, the proposed method produces feasible solutions,
whereas other algorithms decrease their effectiveness.

APPENDIX A
See Table 17.

APPENDIX B
See Tables 18–20.
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