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ABSTRACT Multilingual based voice activated human computer interaction systems are currently in
high demand. The Spoken Language Identification Unit (SPLID) is an inevitable front end unit of such
a multilingual system. These systems will be a great boon to a country like India where around 24 official
languages are spoken. Deep learning architectures for spoken language identification have progressed to
the point that they can now perform well, even in the presence of various background noises. However,
a strong phonetic relationship across various Indian languages leads to increased confusion in the SPLID
unit. Therefore, the goal of this study is to propose a synthetic voice data augmentation method based on
speech synthesis to improve the spoken Indian language identification system. Here the research attempts
to determine how well pre-trained computer vision models recognize spoken languages in synthetic and
classical audio augmentation environments. The accuracy of the models was compared using bottleneck
features extracted from three different pre-trained models VGG16, RESNET50, and Inception-v3 while
using an Artificial Neural Network (ANN), Support Vector Machine (SVM), Logistic Regression (LR),
Random Forest (RF), Naive Bayes (NB), Decision Tree (DT) and KNN (K-Nearest Neighbors) as classifiers.
The proposed system was tested on three Indian language datasets - two comprising seven Indian languages
(Hindi, Malayalam, Tamil, Telugu, Marathi, Kannada and Bengali), one containing five Indian languages
(Tamil, Hindi, Malayalam, Oria and Assamese), and on a foreign language dataset. It was found that the
addition of synthetic audio samples improved the accuracy by 17%. Among the pre-trained models, VGG16
and Inception-v3 combined with PCA and ANN were found to have the maximum accuracy of 97%.

INDEX TERMS Classifiers, data augmentation, inception-v3, RESNET50, speech synthesis, SPLID,
VGG16.

I. INTRODUCTION
Voice applications, such as Automatic Speaker Verification
Systems (ASV), Interactive Virtual Response (IVR) systems,
contactless health care systems, and Google Assistants, are
currently in high demand. These systems are adaptable to
ordinary people only if they can process voice commands
in different languages. Thus multilingual based systems are
those systems that should be capable of recognising many
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languages. Therefore in an Indian setting, such systems are a
great boon because India is a country with around 24 official
languages spoken by its citizens. Even today end-to-end
multilingual systems are receiving attention, and most of
the traditional systems require separate Language Dependent
(LD) models for processing. In multilingual systems, Spoken
Language Identification (SPLID) is a vital front-end unit.
There are numerous approaches in the literature, ranging
from traditional to deep learning paradigms in the field
of spoken language identification. Several features includ-
ing Mel Frequency Cepstral Coefficients (MFCC), Linear
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Frequency Cepstral Coefficients (LFCC), SDA (ShiftedDelta
Add), and fused features are utilized in feature selection
whereas several classifiers, such as the Gaussian Mixture
Model (GMM), Support Vector Machine (SVM), and Naive
Bayes (NB) are employed in spoken language identification.
Deep learning architectures such as Deep Neural Network
(DNN), Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) are also used in SPLID. Classi-
fication accuracy is affected by noise variability, speaker
variability, gender variability, accent variations, and restricted
availability of training data. Although these models have
been proven to have high accuracy at development time,
they may yield unexpected results when used in real-time
situations. To improve classification model accuracy, the
data-centric approach of deep learning is currently receiving
more attention than the model-centric approach. The model-
centric approach concentrates on the model architectures and
parameters for performance improvement. However, the data-
centric AI approach focuses on improving data rather than
the model for more powerful performance. Augmentation is
a subclass of data-centric approaches that can create new data
points through interpolation, extrapolation or other means.
Augmentation in speech applications can be of non-spectral
augmentation, such as speed perturbation, noise, music, and
reverb which were used in most of the studies. Spectral
augmentation [1] such as time masking (vertical/horizontal)
or frequency masking has also been tested. But all these
augmentation methods were performed on the same existing
utterance samples in the dataset. Such methods may be called
classical augmentation. In this paper, we use augmentation
methods that can artificially create new utterances using
speech synthesis. We refer to such augmentation methods
as synthetic augmentation. In this work, we examine the
effect of both classical and synthetic augmentation methods
in enhancing the performance of SPLID systems in Indian
languages.

A. SCOPE AND NOVELTY
Although Indian languages are broadly classified into four
language families, the population of India is made up of about
73% speakers of Indo-Aryan languages and 20% speakers
of the Dravidian language family. The Indian languages
considered in our work are Hindi, Marathi, Oria, Assamese
(Indo-Aryan family) and Malayalam, Tamil, Telugu, Kan-
nada (Dravidian family). There are many similar sounds and
pronunciations of phonemes in various Indian languages.
These common origins among different Indic languages
cause inter-dependencies which can lead to misclassification
of the SPLID unit. Thus, from an Indian language perspective,
language identification can be improved significantly if the
model can be trained with a large number of versatile audio
samples. However, most datasets contain only a limited
number of training audio samples from a single speaker.
On the other hand if it is a multi-speaker dataset, the same
audio utterances are repeated by other speakers. Hence, the
SPLID method requires a large but versatile number of audio

samples in the dataset. But manual data collection and data
labelling of such larger dataset creation demand extensive
time and huge costs. Thus, synthetic data generation is
crucial because it can be used to create data to simulate and
represent non-encountered audio utterances. Augmentation
using synthetic speech synthesis can be used for artificial
generation of new audio utterances. We propose a novel
approach for enhancing the performance of SPLID systems
in Indian languages by employing synthetic voice data
augmentation methods. Synthetic augmentation of the audio
samples is done using speech synthesis. In addition, this work
proves the efficacy of dimensionality reduced pre-trained
models initially developed for computer vision applications
in the spoken language identification task. In brief, this
work aims to contribute to both data-centric and model-
centric approaches. The data-centric approach is in terms
of classical and synthetic augmentation whereas the model-
centric approach is in terms of the use of hybrid models
incorporating PCA for the improvement of SPLID systems.
These hybrid models include pre-trained neural networks
such as VGG16, RESNET50, and Inception-v3 followed by
PCA and seven different classifiers like ANN, SVM, LR,
RF, NB, DT and KNN. We refer to the combination of a
pre-trained model with PCA and ANN as a modified pre-
trained model. Since the work concentrates on three pre-
trained models, VGG16, RESNET50, and Inception-v3, the
corresponding modified pre-trained models are referred to
as MOD-VGG16-PCA, MOD-RESNET50-PCA, and MOD-
Inception-v3-PCA respectively.

The contribution of the work can be summarised as
follows:

• We created and annotated synthetic audio data samples
using Indic Text To Speech (TTS) dataset.

• We investigated the impact of the augmentation of
synthetic audio samples using speech synthesis and
classical augmentation on the models performance
accuracy. It is observed that the model performance
depends on the quality of the synthetic augmentation.

• We determined the impact of the pre-trained mod-
els VGG16, RESNET50, and Inception-v3 as feature
extractors combined with different machine learning
classifiers (ANN, SVM, KNN, NB, LR, DT and RF) on
four standard datasets (IIIT-H, IIT-M, Mozilla Common
Voice, and VoxForge voice datasets).

• Next, we analysed the effect of a significant feature
selection using PCA on the model.

II. LITERATURE REVIEW
MFCCs [2], SDC [3], i-Vector [4], Linear Discriminant
Analysis [LDA] [5], and x-vector [6] are the primary
conventional methods used for spoken language identifi-
cation. A mel-spectrogram combined with a Convolutional
Recurrent Neural Network [CRNN], X-vector combined with
DNN and Wave2Vec speech representations was tested in
[7] and it showed the highest F1-score of 91%. Some of
the works carried out in this area include SPLID with
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ConvNets [8], Self-Attentive Pooling and deep 1D Time-
Channel Separable Convolutions [9], the fusion of L-CNN
and RNN [10], MFCC and LSTM [11]. Deep Multilayer
Perceptron, Convolutional Neural Networks, and denoising
Auto-Encoder type deep learning architectures are currently
used for speech enhancement. A comparative analysis of
these models was performed using the spectrogram of audio
signals in [12]. Augmentation techniques are normally used
to improve the generalization capability of systems to various
unknown attacks. Speaker variability, gender variability, age
variability, room conditions, environmental conditions, and
recording conditions all affect the accuracy of the spoken lan-
guage identification units. Previously, unknown attacks in the
case of spoken language identification under noisy conditions
were addressed using conventional methods. A compressive
technique applied on high dimensional phase and magnitude
based features [13] and an adaptive weighting selector for
the unknown attack in combination with clustering tech-
niques are some of the approaches considered for unknown
attacks without data augmentation [14]. Data augmentation
techniques such as room reverberation, noise addition, pitch
shifting, time stretching, polarity inversion, time masking,
frequency masking, and gain change are the commonly used
techniques for audio samples [15]. A CNN as a feature
extractor and LSTM as a classifier were tested on a spectral
augmented code switched database for SPLID [16] and
improved 3-5% accuracy over the baseline model. Spectral
augmentation for LID was presented in [17]. A conditional
Generative Adversarial Network (c-GAN) was used as a
classifier for spoken language identification [18]. A 6-fold
augmentation strategy that combines the original ‘‘clean’’
training list with five augmented copies, which consists
of speed perturbation, noise, music and reverb was used
for LID in [19]. Spectral augmentation along with CRNN
provides considerable improvement in accuracy in [20],
where speech signals are converted into a mel-spectrogram.
Pre-trained models such as RESNET50, CRNN-RESNET50,
and Inception-v3 were also experimented in [21], [22],
and [23]. The datasets mostly considered in SPLID do not
include synthetic audio samples. However, our approach
uses synthetic augmentation, which generates synthetic audio
samples. There exist techniques to discriminate between
real and artificial audio samples and they are primarily
applied in the spoofing detection tasks. They can also
be used to validate our newly generated synthetic audio
samples. MFCC [24], LFCC, and CQCC [25] are the
main features used for synthetic spoofing detection. Various
deep learning architectures like DNN [26], [27], LCNN
[28] and LSTM [29] have been employed for spoofing
detection. For the replay attack detection, seven augmentation
techniques were tested; out of these, dynamic value change
and pitch change showed an 8% improvement in base
model accuracy [30]. A data augmentation technique using
a-law and mu-law based signal companding was explored
in [31] for the detection of logical access attacks. For data

augmentation, an Auxiliary Classifier Generative Adversarial
Network (AC-GAN) was also proposed to generate more
speech samples with diverse variants [32] combined with a
post-selection quality frame selection based on CNN, giving
more accuracy.

A. MOTIVATION BEHIND THE RESEARCH: SIGNIFICANCE
OF SYNTHETIC VOICE AUGMENTATION ON INDIAN
LANGUAGES
The Indian languages with similar roots are likely to
be mistaken for one another. Indo-Aryan (IA) languages
evolved from the Sanskrit/Prakrit combination. Prakrits have
gradually developed into modern IA languages like Marathi,
Hindi, Bangla, Gujarati and Punjabi. Dravidian languages
have evolved from Proto-Dravidian roots; hence, their origin
is entirely independent of Sanskrit [33], [34]. During their
growth, they were influenced by Sanskrit and Prakrit and
many words were absorbed from these two languages into
Dravidian languages. The Indian languages are phonetically
correlated. Dravidian languages contain both long and short
vowels (e.g. ē, ō and e,o), whereas most Indo-Aryan
languages only have long vowels (e.g. ē, ō). The exceptions
among Indo-Aryan languages are Konkani, Sinhala and a few
others. This indicates the similarity between speaking the
words in these languages. Consider the examples of ‘‘Who’’
and ‘‘What’’ respectively:

Examples in Dravidian languages:
a)Kannada: yāru, ēnu b) Telugu: evaru, ēmi
c) Tulu: ēra, dāne d)Malayalam: ār, ent
Examples in Indo-Aryan languages:
a)Sanskrit: kah. , kim b)Hindi: kaun, kyā
c)Konkani: kŏn. , kasane d)Marathi: kōn. , kāy
From the above, it is seen that the same word ‘‘Kaun’’

(meaning who) exists in Hindi, Konkani and Marathi. Such
word similarities are found more among languages from the
same language family than among languages from different
language families. Therefore, this may result in increased
confusion in the SPLID task. Context-dependent algorithms
in the SPLID unit may reduce this confusion. Deep neural
context-dependent networks such as LSTM and RNN may
somewhat fix this problem. But all of these networks are
hungry for data to achieve better performance. So one of
the essential requirements for developing SPLID models
is the set of transcribed audio samples. Moreover, audios
have to be phonetically rich and balanced; phonetically rich
means that all the phonemes of the language are present,
and balanced means that the phonemes should, as far as
possible, have the same number of occurrences. But creating
such a dataset requires a longer time and a higher cost.
Synthetic data augmentation is a preferable solution for this
problem. Although speech synthetic augmentation works are
common in foreign languages, this proposed research on
synthetic augmentation using speech synthesis leads to a
new pathway for SPLID work. We experimented with a
data augmentation method with the help of synthetic voice
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FIGURE 1. Block diagram of the proposed system.

generation in Indian languages. Text sentences from one
Indian language dataset (IIIT-H dataset) were selected and
their corresponding synthetic voices were generated using
the IIT-M speech synthesis model. These newly developed
synthetic utterances are then split as training and testing
datasets and are used for training the model. These synthetic
voice samples help to improve model performance, thereby
reducing confusion in LID classification.

III. PROPOSED METHOD
The proposed research aimed to determine the efficacy
of synthetically and classically augmented audio samples
and to develop an optimum model for spoken language
detection in Indian languages. The transfer learning strategy
is used here for feature extraction. The best model for the
task was selected by comparing the results obtained by
conducting the model experimentation in two ways. In the
first approach, the feature extraction done by the pre-trained
models in combination with two fully connected hidden
layers was used for the classification of the languages under
study. Here, we retrain the fully connected layers using
various hyperparameters such as the optimizer, learning rate,
and activation function after freezing the weights of the
convolution layers with the values from the respective pre-
trained model. The last layer of the pre-trained models was
selected as the feature extraction layer. Hence the extracted
feature dimensions are different for each model. Since both
pre-trained models and ANN are neural networks, this first
approach can be called the modified pre-trained model
approach. In the second approach, features extracted from
pre-trained models were passed to different conventional
machine learning classifiers for prediction. Figure 1 depicts
the proposed method incorporating both the above mentioned
approaches. ANN, SVM, NB, LR, RF, KNN and DT were
chosen as the classifiers. The three main pre-trained models
VGG16, RESNET50 and Inception-v3 were selected for
this study because of their success in SPLID works. But

instead of directly feeding these features to the classification
stage, the significant features were selected with the help
of PCA - a well-known dimensionality reduction technique.
This step dramatically reduces the number of classification
parameters.

As a pre-processing step, amel-spectrogram representation
of the audio samples was obtained. These spectrogram
images were then split into training and testing samples.
The size of the image required for each pre-trained model
is different. Hence the image size was adjusted accord-
ingly for each pre-trained model. In the first phase of
experimentation, the pre-trained model accuracy was tested
on classically augmented real data samples of the IIIT-H,
IIT-M, VoxForge andMozilla CommonVoice datasets. These
datasets contained only real audio samples. Using non-
spectral augmentation technique, new data samples were
created. This method is referred to as the CLASSICAL-AUG.
The different augmentation strategies used here are white
noise addition, pitch shifting, gain shifting, and time shifting
which are discussed in section V under ‘‘Classical speech
augmentation’’. In the second phase, synthetic augmentation
using speech synthesis was used and this method is called
SYNTH-AUG. On both the newly created data samples, three
pre-trained models VGG16, RESNET50 and Inception-v3
were tested. These extracted features are given as inputs to
the classification stage. The different steps of this proposed
method are explained in detail below, starting from feature
extraction, model architecture, hyperparameters, classifiers,
models with classical augmentation and models with syn-
thetic augmentation. The remainder of this paper is organized
as follows: Section IV describes the mel-spectrogram feature
extraction. Section V explains the details of datasets, the syn-
thetic and classical augmentation methods, feature selection
using PCA, pre-trained model architectures, classifiers and
their hyperparameters. Section VI presents the results and
discussion and section VII presents the conclusion and future
scope.
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IV. MEL-SPECTROGRAM GENERATION
Mel-spectrograms are generated using audio clips or utter-
ances of the data. A mel-spectrogram is a spectrogram
in which the frequencies are converted to the mel scale.
A spectrogram is a bunch of FFTs stacked on top of each
other. This is a way to visually represent a signal’s loudness,
or amplitude, as it varies over time at different frequencies.
Figure 2 shows the mel-spectrogram of the real, classical and
synthetic audio samples. The conversion of frequencies f
(Hz) to Mel scale m (mels) is as follows.

m = 2595 ∗ log10(1 + f /700) (1)

FIGURE 2. Mel-Spectrogram image of a) Original audio sample
b) Classically augmented audio sample c) Synthetically augmented audio
sample.

The signal has a sampling frequency of 22050 Hz. The
number of channels (mel filters) used in this spectrogramwas
128. An overlap length of 1024 samples and a window length
of 2048 samples were used to obtain the spectrogram. The
number of frames obtained is 65.

V. WORKFLOW
The two objectives of this work were to find the effect of the
combined pre-trained network and PCA with classical audio
augmentation and synthetic audio augmentation on spoken
language identification.

A. DATASETS
To accomplish the first objective of language identification
with classical augmentation, we need a dataset that contains
different Indian languages. The experiment started with
four general datasets: IIIT-H, IIT-M, VoxForge and Mozilla
Common Voice dataset. VoxForge is a Foreign language
dataset. We used it for model comparison.

1) IIIT-H DATASET
The IIIT-Hyderabad Indic speech dataset [35] was developed
by Speech and Vision Lab and consists of data in textual and
speech format. Seven languages from the IIIT-H dataset were
chosen for this study. The same dataset was used for synthetic
data augmentation. The languages under consideration are
Malayalam, Tamil, Hindi, Telugu, Marathi, Kannada and
Bengali. The dataset comprises 7000 audio samples divided
approximately equally among the seven language classes.

2) IIT-M DATASET
This dataset results from a project to develop text-to-speech
(TTS) synthesis systems [36] for Indian languages and

enhance the quality of synthesis. It consists of thirteen
languages. Seven languages from the IIT-M dataset were
selected for this study. The same dataset was used for syn-
thetic data augmentation. The languages under consideration
are Malayalam, Tamil, Hindi, Telugu, Marathi, Kannada and
Bengali.

3) VoxFORGE DATASET
The work on VoxForge [37] is based on eight foreign
languages. VoxForge is a project set up to collect transcribed
speech for use in open source speech recognition engines.
This dataset is large and diverse in terms of variety and
size. Here, we have considered 1000 audio samples for each
language category, thus avoiding class imbalances of any
kind. We used eight languages, namely German, French,
Russian, Italian, Portuguese, Dutch, English and Spanish to
test our model.

4) MOZILLA COMMON VOICE DATASET
Mozilla Common Voice is an audio dataset that consists
of a unique MP3 and corresponding text file. This dataset
is publicly available. They have prepared this dataset by
considering multilingual links between speech segments of
different languages. The dataset also includes demographic
metadata like age, accent etc. The common_voice_7_0
dataset consists of 11192 validated hours in 76 languages.
We used Indian languages, namely Tamil, Hindi, Malayalam,
Oria and Assamese from the Mozilla Common Voice dataset
[38] for the proposed study. For a balanced dataset, we used
approximately 1000 samples from each language.

B. SYNTHETIC AUGMENTATION AND CLASSICAL
AUGMENTATION
The augmentation process was classified into classical and
synthetic augmentation. Creating synthetic voice samples is
a tedious task. This will be explained in the following.

1) SYNTHETIC SPEECH AUGMENTATION
Speech Synthesis (SS) techniques have been developed, and
can be utilized to make synthetic speech. Unit selection
speech synthesis, Hidden Markov Model (HMM) speech
synthesis, and Neural Network (NN) based voice synthesis
[9] are techniques commonly used in SS systems. Therefore,
a dataset that contains real and synthetic audio utterances
is required. So we decided to use INDIC TTS [36], which
is primarily concerned with the synthesis of speech from
text. This dataset is a collaborative initiative for synthesising
diverse Indian languages established bywell-known institutes
such as IITs. So we prepared a synthetic dataset using the
Indic TTS website. The synthetic voice generation method
used in the IIT-M dataset was HTS-US. This was used for
synthetic sample generation. Each language has a separately
trained TTS model. Original voice samples were obtained
from the IIT Madras speech lab. Synthetic audio samples
were generated from the INDIC TTS site with the help of
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Python script and Selenium package [42], [43]. Although the
Indic TTS team generated four alternative speech synthesis
models, the publicly available speech synthesis model from
the INDIC TTS is HTS-STRAIGHT. Programmatic labelling
was used for annotations of the dataset. A separate folder
was created for each language for the synthetic and authentic
sample datasets. The validity of the created data samples
was ensured using speech spoofing detection techniques
[44]. The synthesised sentences were selected from the IIT-
M dataset, which covers a diverse language space. But the
creation of the synthesized sample distribution of the Telugu
language meets with some unprecedented delay. So for the
Telugu language, we selected sentences of short duration.
This created a synthetic dataset for this investigation. Table 1
lists the details of the synthetic dataset.

TABLE 1. Details of synthetically augmented dataset.

2) CLASSICAL SPEECH AUGMENTATION
Here the augmentation performed on real samples in the
dataset is considered classical augmentation. The sampling
rate was set to 22050 Hz. Augmentation techniques like white
noise addition, pitch shifting, gain shifting, time stretching
and speed change are applied to the dataset for the creation
of classically augmented samples. This augmentation is
done with the help of the Librosa library. Librosa is a
package from Python to analyse audio signals. Dataset
details with classical augmentation are given in Table 2.
The classical augmentation methods used for making the
classically augmented dataset are explained below.

1) Pitch shifting: Pitch shift by a randomnumber in [−4,4]
semitones (Semitone Shift Range)

2) Gain changes: The gain of the audio signal is changed
by a specific number of decibels (dB) (min factor=0.1,
max factor=0.4)

3) White noise: Noisy signal is generated by adding to the
clean signal a random noise signal parameterised by a
noise percentage factor. The selected values of the noise
percentage factor were 0.1, 0.2, 0.3, 0.4 and 0.5

4) Signal speed scaling by a random number in [0.8, 1.2]
5) Time shift in the range [−0.005, 0.005] seconds.

C. FEATURE EXTRACTION
Feature extraction is an essential step in signal analysis.
A two phase feature selection method was attempted in this
study. In the first phase, we use transfer learning methods that
utilize CNNs to extract deep linguistic features to represent
the characteristics of a speech utterance. Transfer learning
is a widely explored method that can be used to accelerate
training and improve the performance of the deep learning
model. Three pre-trained networks VGG16, RESNET50

TABLE 2. Details of classically augmented dataset.

TABLE 3. Comparison of model accuracy using different dimensionality
reduction methods.

and Inception-v3 were utilized. The output feature map is
25088 in the case of VGG16. This feature map dimension
is the flattened output of the last frozen layer (512*7*7)
of VGG16. Similarly, the dimensions for RESNET50 and
Inception-v3 are 100352 and 131072 respectively. Following
the first feature extraction phase, a second dimensionality
reduction phase was applied to the extracted pre-trained
features. The selection of the most discriminative features
will always help to speed up classifier training and system
robustness. This method will help the model select the
significant features and reduce the feature dimension. Linear
and nonlinear dimensionality reduction techniques such
as PCA, K-PCA, LDA, ICA, SVD, LLE, Modified LLE
and Isomap were tested and are tabulated in Table 3.
Among these, PCA and ICA showed the best results.
PCA extracts orthogonal dimensions with the maximum
variance of the training instances. PCA focuses on the
mutual orthogonality of the major components and finds the
uncorrelated components in a reduced feature space. PCA is
chosen over ICA for discriminative feature selection in the
second phase. These reduced feature sets are used to predict
language probabilities. The optimal number of features for
PCA was fixed at 300. This feature number was iteratively
fixed by observing the classification accuracy results versus
the number of features. Figure 3 depicts the graph of the
number of features versus classification accuracy of the
VGG16 model using PCA.We can see the trend of increasing
accuracy with the number of components with a limit of 300.
The classification accuracy initially has a steep increase, and
then it has a zero slope after 300. Hence we selected the
optimal number of components for PCA as 300. Thus, the
extraction’s feature size from phase 1 to phase 2 is reduced
from 25088 to 300 in the case of VGG16. Therefore, using
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FIGURE 3. Plot of variance versus number of features of the VGG16 model using PCA.

PCA with a feature map of 300, there is an 82.62% decrease
in the feature dimension from the pre-trained feature kernel
map. This helped in reducing the memory requirements and
improving the predictive accuracy.

D. ARCHITECTURES AND HYPERPARAMETERS DETAILS
OF THE PRE-TRAINED MODELS
1) ARCHITECTURE OF VGG16
It is a commonly used pre-trained model [39] that is
used primarily for images. It is an extensive network with
approximately 138 million parameters. It uses 64, 128 and
256 convolutional filters and three layers of 512 convolutional
filters and convolutional filters with max pooling layers. It
uses two fully connected layers with 4096 nodes. The output
layer is a softmax layer of 1000 nodes. Each layer consists
of a large set of 3*3 convolutional filters. It has an input
size of 224*224*3. Therefore, themel-spectrogram images of
the audio samples in our study were resized into 224*224*3
pixels. We utilized the ‘‘Inter-Linear’’ interpolation method
for upsampling the dimension to 224. The unique feature of
VGG16 is that instead of having many hyperparameters they
focused on convolution layers of 3 × 3 filters with a stride
of 1 and always used the same padding and maxpool layer
of 2 × 2 filters of stride 2. It follows this arrangement of
convolution and max pool layers consistently throughout the
architecture. A general diagram is shown in Figure 4.

2) ARCHITECTURE OF RESNET50
RESNET50 [40] accepts an input of size 224*224*3 pixels.
Consequently, the mel-spectrogram image must be scaled to
224*224*3 pixels. The Residual Network (RESNET) is a
well-known deep learning pre-trained model. The problem
of training very deep networks has been resolved by the
introduction of residual blocks. The RESNET model is made
up of these blocks. RESNET is derived from VGG19 and has
residual connections between the layers. Skip connections are

at the heart of a residual block. The problem of the vanishing
gradient in deep CNNs is eliminated because of these skip
connections. The skipped connections provide regularisation
that may hurt the performance of the architecture. There is a
34-layer plain network in the architecture inspired by VGG19
in which the shortcut or skip connections are added. These
skip connections or residual blocks convert the architecture
into a residual network. The RESNET50 model consists of
five stages, each with a convolution and an identity block.
Each convolution block has three convolution layers and each
identity block also has three convolution layers. RESNET50
has more than 23 million trainable parameters.

3) ARCHITECTURE OF INCEPTION-v3
In comparison to VGG16, Inception Networks (GoogLeNet/
Inception-v1) [41] have proven to be more computationally
efficient, both in terms of the number of parameters generated
by the network and the economical cost incurred. The
image input size was set to 299*299*3 in this case, which
has specific advantages like factored convolution, smaller
convolution (3*3 convolution), asymmetric convolution, and
auxiliary classifier. Convolutions, average pooling, max
pooling, concatenations, dropouts and fully linked layers are
some of the symmetric and asymmetric building components
that constitute the model. The model makes considerable
use of batch normalisation, which is also applied to the
activation inputs. Softmax was used to calculate the loss.
The architecture of the Inception-v3 network was developed
gradually and methodically, as follows:

1) Factorized Convolutions: This decreases the number
of parameters used in the network, which lowers
the computational complexity. It also monitors the
effectiveness of the network.

2) Smaller convolutions: Training progresses more
quickly when smaller convolutions are substituted for
larger ones. A 5*5 filter has 25 parameters; two 3*3
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FIGURE 4. General depiction of the proposed model: Feature extraction using pre-trained model and ANN as classifier.

TABLE 4. Hyperparameters selected for the proposed model.

filters in place of a 5*5 convolution have only 18
(3*3 + 3*3) parameters.

3) Asymmetric convolutions: A 1*3 convolution followed
by a 3*1 convolution can be used instead of a 3*3
convolution. The number of parameters would be
slightly larger than that of the suggested asymmetric
convolution if a 3*3 convolution was swapped out for
a 2*2 convolution.

4) Auxiliary classifier: A small CNN called an auxiliary
classifier is placed between layers during training, and
the loss it incurs is added to the loss of the primary
network. In Inception-v3, an auxillary classifier is used
as a regulariser.

5) Grid size reduction: Grid size reduction is usually done
by pooling operations.

E. CLASSIFIERS AND HYPERPARAMETER SETTINGS
We utilized different classifiers like ANN, SVM, KNN, LR,
DT, NB and RF for the classification task. Since ANN
gives the best results for the proposed model, a detailed
explanation about the ANN architecture and the selection
of hyperparameters is given below. Although the other
classifiers are famous machine learning classifiers, their
hyperparameters settings are also discussed.

1) TRANSFER LEARNING WITH ANN
The input, hidden and output layers are the three layers
of nodes that must be present in a basic ANN. Here the

fully connected feed-forward neural network has two fully
connected (FC) layers, followed by an output layer. For
example, in VGG16 on top of the input layer, the stacked fully
connected layers have 256 and 64 neurons respectively. Thus,
an input at level j, xj is mapped to its corresponding activation
yj (input of the layer above) as shown below. The activation
function for these two layers is Rectified Linear Unit function
(RELU).

yj = RELU (xj) = max(o, xj) (2)

xj = bj +
∑
i

wijyi (3)

where i is an index over the units of the layer below and bj
is the bias of unit j. The number of languages under study
decides the number of output nodes. The output layer is then
configured as a softmax layer, where hidden units map input
xj to a class probability pj in the form

pj =
exp(xj)∑
i exp(xj)

(4)

where i is an index over all the classes. As a cost function for
back-propagating gradients in the training stage, we used a
cross-entropy function. Different numbers of hidden layers
with different numbers of neurons were tested. Note that
the presented architecture works at the frame level, meaning
that each single frame (plus its corresponding context) is
fed-forward through the network, obtaining a class posterior
probability for all target languages.
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2) HYPERPARAMETER SELECTION - PRE-TRAINED MODELS
Hyperparameters are variables that specify the network struc-
ture, such as the number of hidden units, dropout, activation
function, and weight initialization, and how the network is
trained such as learning rate, batch size, and epochs. The
process of selecting appropriate hyperparameter values for a
learning algorithm is known as hyperparameter tuning. The
different parameters used here are the optimizer, learning rate,
activation function and number of neurons in the customized
layers. The search space for the hyperparameters was selected
based on the previous works found in the literature. The
specific values for these parameters were chosen by using
a grid search. The search space for the optimizers is Adam,
RMSProp, and SGD. The model was tested with two learning
rates with values 1e-3 and 1e-4. The search space for the
activation function comprised ReLu, Tanh and Softmax, and
the possible number of neurons in the customized layers were
64, 128, 256, and 512. Table 4 shows the hyperparameter
details selected for the proposed model.

3) TRANSFER LEARNING WITH OTHER CLASSIFIERS
The performance of the saved model feature parameters
from the pre-trained models was also compared with
different classifiers like SVM, KNN, LR, DT, NB, and RF.
The hyperparameters of the classifiers were selected after
different iterations. A majority voting ensemble method is
explored to obtain the best results for each classifier. In an
ensemble technique, a few poor learners are combined to
perform better than the basicmodels. The ensemble technique
may use weighted voting among the classifiers to forecast
the label of occurrences. We fit five different versions of the
KNN algorithm, each with a different number of neighbours
used when making the predictions. We used one, three, five,
seven, and nine neighbours (odd numbers to avoid ties).
When k increases from 1 to 9, the error of the KNN classifier
subsequently increases. The SVMalgorithm does not natively
predict probabilities, although it can be configured to predict
probability-like scores. We fit five different versions of
the SVM algorithm with a polynomial kernel, each with a
different polynomial degree, set via the ‘‘degree’’ argument.
We used degrees 1-5. A value of C=100 and γ=2*10−2 is
selected for all the polynomial degrees. Our expectation is
that by combining the predicted classmembership probability
scores predicted by each different SVMmodel, the soft voting
ensemble will achieve a better predictive performance than
any standalone model used in the ensemble, on average.
We used a function called get_voting that creates the SVM
models and combines them into a soft voting ensemble. The
parameter that significantly affect the performance of the
RF classifier is ntree (number of trees). So we set ntree
values from 1:9. We can also demonstrate ensemble voting
for classification with a decision tree algorithm. Here, each
DT with a different maximum depth of the decision tree is
set using the maximum depth argument. We used different
depth values of 1-9. For the Logistic Regression model,

we applied an L2 penalty assigning equal class weights
to the output classes. The hyperparameters were obtained
in repeated stratified cross validation, with 10-fold cross-
validation with a repeat count of 3.

F. EVALUATION METRICS
We have assessed the model performance using a number
of criteria including accuracy, precision and recall. Accuracy
gives more importance to tp and tn whereas precision and
recall give more importance to fp and fn.

1) Accuracy: It is the ratio of correct outputs compared to
the total number of outputs.

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
(5)

2) Precision: It is the ratio of correct positive predictions
to the total predictions from the positive class.

Precision =
tp

tp+ fp
(6)

3) Recall: The recall is used to measure the fraction of
positive patterns that are correctly classified.

Recall(r) =
tp

tp+ tn
(7)

4) F1 Score: F1 score (also known as F-measure or
balanced F-score) is an error metric that measures
model performance by calculating the harmonic mean
of precision and recall for the minority positive class.

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

(8)

VI. RESULTS AND DISCUSSION
Google Colab was used to implement all the models. The
mel-spectrogram images of audio samples were generated,
and these images were used to create the training and
testing sets. These were fed into the pre-trained models as
inputs. Different input sizes are required for other pre-trained
models. As a result, the sizes were changed to meet the
requirements.

A. RESULTS OF CLASSICAL AUGMENTATION:
CLASSICAL-AUG
Since both the pre-trained model and ANN are neural
networks, the resulting combined model can be referred
to as a modified pre-trained model. Hence, in this
study, we represent the modified pre-trained models with
PCA as MOD-VGG16-PCA, MOD-RESNET50-PCA and
MOD-Inception-v3-PCA. Similarly, the respective modified
pre-trained models without PCA were named as MOD-
VGG16, MOD-RESNET50 and MOD-Inception-v3.

1) VGG16
Compared to ResNet-50 and Inception-v3, VGG16 has more
depth of layers. So it will be definitely helpful for the
identification of the most low level features. Table 5 shows
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TABLE 5. Accuracy of modified VGG16 with and without PCA using classical augmentation.

the various accuracies produced by the different classifiers
with the modified VGG16 trained model using the classical
augmentation data. Here the model’s accuracy, precision,
recall and F1 for different classifiers with and without PCA
are tabulated. Compared to models using other machine
learning classifiers, the MOD-VGG16-PCA model yields
good results. As found inmany papers, it is observed here also
that ANN gives better accuracy and performance compared to
other M/L classifiers. From the results, it is evident that all
classifiers with PCA outperformed those without PCA. For
the IIIT-H dataset the MOD-VGG16-PCA model gives the
highest accuracy of 97.1%. The reduced accuracy of 82% for
the MOD-VGG16 (without PCA) indicates the importance
of significant feature selection for classification accuracy. So
using this MOD-VGG16-PCA method an improvement of
17.55 % was obtained in the VGG16 model performance.
The precision and recall for the best model were 0.960 and
0.963 respectively. This high precision value indicates the
reliability of this model in predicting the true class. Based
on the results, only LR-PCA, KNN-PCA and SVM-PCA
with their best parameters can, to some extent, compete with
the proposed method. The accuracies of the LR-PCA, KNN-
PCA and SVM-PCA were almost 94.8%, 92.9% and 91.4%
respectively. Generally it is found that LR will give better
results with proper selection of features. So the VGG16-
PCA in combination with LR is able to give good results
here too. It is known that KNN gives better results than
SVM when the training data size is much larger than the
no. of features (m≫n). This could be why KNN performs

well in our experiments. But the DT-PCA is showing the
lowest accuracy of 76.9%. For the other three datasets
IIT-M, Mozilla Common Voice and VoxForge, the MOD-
VGG16-PCA gives the best results of 96.9%, 95.6% and
95.9% respectively. The drop in model performance for these
datasets in comparison with IIIT-H was around 1%. An F1
score comparison is shown in Figure 5. F1 scores of 0.961,
0.968, 0.949, and 0.959 were obtained by the model (MOD-
VGG16-PCA) on IIIT-H, IIT-M, Mozilla Common Voice,
and VoxForge datasets respectively. All these high F1 scores
proves the proposed model’s (MOD-VGG16-PCA) ability to
both capture positive cases (recall) and be accurate with the
cases it does capture (precision).

2) RESNET50
RESNET50 model with the help of residual connections is
trying to fit a residual mapping. These residual mappings
may not be able to capture all the low level features from
the voice samples. This may be one of the reasons for the
accuracy drop in the MOD-RESNET50-PCA compared to
with other modified pre-trained models. The best results
of all the models come from the MOD-RESNET50-PCA
models. Table 6 and Figure 6 show the results of RESNET50
for different datasets. The classification accuracy of this
model was 93.33%. The accuracy obtained in comparison
with VGG16 and Inception-v3, dropped by 5%. The MOD-
RESNET50-PCA method provides the highest accuracy for
all four datasets. The accuracies for VoxForge and Mozila
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FIGURE 5. F1 comparison of modified VGG16 with different classifiers.

Common Voice datasets are only 87% and 86% respectively.
For the IIIT-H dataset, RF-PCA is showing somewhat better
results of 90.7% as compared to other machine classifiers.
Since RF is an ensemble learning technique, it can keep
the moderate variance, eventually improving accuracy. For
the IIT-M, Mozilla Common Voice and Voxforge, RF gives
accuracies of 71.8%, 80.4% and 85.6% respectively. All
other classifiers do not yield promising results with the
RESNET50 architecture. The models were trained using
the Adam optimizer with a learning rate of 0.0001. To
reduce overfitting within the models, the feed forward and
convolutional layers contain an L2 penalty. All the models
used a batch size of 32. The F1 scores of the model based
on RESNet50 (MOD-RESNET50-PCA) are 0.950, 0.907,
0.847, and 0.879 on IIIT-H, IIT-M, Mozilla Common Voice,
and VoxForge datasets, respectively.

3) INCEPTION-v3
Since Inception-v3 is known to be more competent for
identifying the low level features with fewer layers, it also
shows the best results in our experiment, comparable to
that given by VGG16. The best results of the Inception-
v3 model came from MOD-Inception-v3-PCA on the IIIT-H
dataset. Here MOD-Inception-v3 gives the best results in
comparison with other machine learning classifiers. Even

though KNN-PCA is also competent and gives the same
results, its precision and accuracy are lesser than those of
the MOD-Inception-v3-PCA method. On the IIT-M, Mozilla
Common Voice and VoxForge datasets, the accuracies were
96.11%, 95.4% and 95.3% respectively. So KNN also gives
the best results in line with the results obtained with VGG16.
Precision and recall also provided consistent results. Table 7
and Figure 7 show the results of Inception-v3 for different
datasets. On the IIIT-H, IIT-M, VoxForge, and Mozilla
Common Voice datasets, the model (MOD-Inception-v3-
PCA) achieved F1 scores of 0.975, 0.963, 0.953, and
0.963 respectively.

B. RESULTS OF SYNTHETIC AUGMENTATION:
SYNTH-CLASSICAL-AUG
As a baseline, we used classical data augmentation (see
Section B in Section V). We refer to this network as
PRETRAINED-CLASSICAL-AUG. The two best models
were found to be the MOD-VGG16-PCA model and
the MOD-Inception-v3-PCA model, with both models
trained using classical augmentation. Although these models
achieved accuracies of 97% and 96% respectively, their accu-
racies reduced to 87.5% and 84.2% respectively when the
models were tested on unseen sentences from other datasets.
The RESNET50 model could only achieve an accuracy
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TABLE 6. Accuracy of modified RESNET50 with and without PCA using classical augmentation.

TABLE 7. Accuracy of modified Inception-v3 with and without PCA using classical augmentation.

of 83.7%. This indicates an overfitting even though we
utilised a classical data augmentation to enlarge the dataset.
The second step of the experiment involved generating

synthetic voice samples for data augmentation using the TTS
model. Synthetic audio data augmentation can be utilized to
increase the diversity and expand the dataset. Here a two-step
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FIGURE 6. F1 comparison of modified RESNET50 with different classifiers.

procedure was used to generate the new enlarged dataset.
In the first step, new audio samples were created using the
TTS model and added to the training samples. A detailed
explanation of the creation of the synthetic voice samples
is provided in Section V. The embeddings of these new
synthetically augmented data were also used for training.
In the second step, these synthetic samples created by the
TTS model now act as an additional resource for generating
new instances of audio samples. Classical augmentations like
pitch shifting, noise addition, gain shifting, speed scaling and
time shifting were performed on the synthetic voice samples
created by the TTS model, thus generating more voice
samples for training. In this way, we made many synthetic
voice samples for all classes and used these for training
the model. The training dataset now contains the original
voice samples and the newly generated voice samples.
This is referred to as the SYNTH-CLASSICAL-AUG. The
synthetic augmentation results again indicate that the MOD-
VGG16-PCA method provides a better understanding of
the languages. We recorded the classification accuracies for
SYNTH-CLASSICAL-AUG in Table 8. The model MOD-
VGG16-PCA gives an accuracy of 94.3%. With synthetic
data augmentation, the RESNET50 accuracy increased from

83% to 87%. Similarly, Inception-v3 shows a 6.1% increase
in classification accuracy. It is evident that the results
improved with synthetic augmentation. An F1 comparison
and an accuracy comparison of the modified pre-trained
models with PCA using classical augmentation and synthetic
augmentation are shown in Figures 8 and 9.

1) INVESTIGATION OF THE QUALITY OF SYNTHETIC
AUGMENTED DATA
SPLID models require time-consuming and expensive opera-
tions for data collection and labelling. But this can be solved
using synthetic augmentation. It can be observed from the
earlier discussions that the model provides promising results
with synthetic augmentation by speech synthesis. Similarly,
by adopting speech synthesis techniques to augment audio
utterances in the datasets, the operating costs for dataset
creation can also be reduced. But if the synthetic data
do not have sufficient quality, then it will not accurately
reflect the original voice samples. Hence the model can
yield unpredictable results. This section of the study attempts
to investigate the model performance by adding synthetic
augmentation data with varying qualities.
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FIGURE 7. F1 comparison of modified Inception-v3 with different classifiers.

FIGURE 8. F1 Comparison of the modified pre-trained models with PCA
using classical augmentation and synthetic augmentation.

To generate synthesized utterances of varying quality,
we utilised a speciality of the Indian language TTS model
which was created by exploiting the properties of the Indian
languages. In this model, a uniform HMM framework is
exploited for building speech synthesizers. A language-
independent phone set was then derived in this model. These
common phone and common question sets were used to build
HTS based systems. This speciality allows us to synthesise

FIGURE 9. Accuracy comparison of the modified pre-trained models with
PCA using classical augmentation and synthetic augmentation.

a language by utilising other language models. Among the
utterances generated in this way, some were of high quality
and some were of low quality. In our experiment, we have
generated only Malayalam language utterances. Malayalam
sentences are given to voice models of Tamil, Telugu,
Kannada, Marathi and Hindi for the creation of synthesized

102404 VOLUME 11, 2023



A. R. Ambili, R. C. Roy: Effect of Synthetic Voice Data Augmentation

TABLE 8. Accuracy of different modified Pre-Trained models VGG16, RESNET50, Inception-v3 with PCA using classical and synthetic Augmentation.

TABLE 9. Model accuracy with synthetically augmented voice samples of
varying quality.

Malayalam utterances. Out of all the synthesized utterances,
only intelligible utterances were chosen for training. The

accuracy delivered by MOD-VGG16-PCA acting as a binary
classifier for Malayalam is shown in Table 9. ‘‘Malayalam-
Malayalam’’ indicates that the Malayalam utterances are
synthesised using the Malayalam voice model. Similarly,
‘‘Malayalam-Tamil’’ indicates that the Malayalam voice
samples are synthesised using the Tamil voice model. The
use of low-quality synthesized audio samples has resulted
in a decrease in accuracy. Here, all experiments, except
‘‘Malayalam-Malayalam’’ show a decrease in accuracy. This
reveals that modelling based on unrealistic synthetic speech
utterances cannot generate valuable insights. It also proves
that the quality of the added synthetic data can also degrade
the model performance.
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VII. CONCLUSION AND FUTURE SCOPE
Currently ASV, IVR and Google Assistance systems are in
high demand. Countries such as India require robust multi-
lingual voice application systems. In this context, our study
has evaluated the efficacy of synthetic augmentation on the
task of spoken language identification of Indian languages.
We have shown that a combination of a feature extraction
stage composed of a prominent pre-trained computer vision
model, a feature dimensionality reduction stage and a suitable
classification stage yields excellent performance in the Indian
SPLID task. The pre-trained models used in the study
were VGG16, RESNET50, and Inception-v3. On the IIT-M
dataset, VGG16 and Inception-v3 combined with PCA and
ANN yielded a maximum accuracy of 97%. Synthetic
augmentation proved to be the best method for increasing the
model’s accuracy. The scope of this work can be expanded
in various directions. The effect of data variabilities like
speaker variability, age variability etc, on the performance
of SPLID systems can be further investigated. The use of
pre-trained models like WaveNet and WaveGlow for speech
synthesis and synthetic augmentation and their effect on
system performance can be studied. Although the accuracy
approaches that of the baseline, deploying pre-trained models
with a classifier necessitates a larger RAM and a high-speed
processing unit. As a result, further investigation into the
reduction of model parameters bymaking use of only a subset
of layers of the pre-trained computer vision models in the
feature extraction stage can be pursued.
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