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ABSTRACT We propose a continual learning (CL) method (called CLiCK), a hybrid of an architecture-based
approach that increments a model when it detects that the dataset characteristics have changed significantly,
and a rehearsal-based approach that exploits an episodic memory to store past dataset samples. The proposed
CLiCK makes the final decision by taking the ensemble of the inference results for the current and a series
of past models. A novelty of CLiCK is to introduce a concept for a slack class, which is an auxiliary class
to represent unseen or undetermined classes that do not belong to the current dataset. Because the models
trained with a slack class have the capability to differentiate between the classes that they were trained
on and unseen classes, the inference results of the models that do not have knowledge about input can be
automatically neglected in the final decision. Our experiments show that the proposed CLiCK achieves
performance comparable to joint learning, which uses the entire dataset for each task, in domain-incremental
scenarios on the MNIST dataset. In class-incremental scenarios on the MNIST and CIFAR-100 datasets,
CLiCK outperforms other existing CL methods significantly.

INDEX TERMS Continual learning, episodic memory, intermediate models, slack class.

I. INTRODUCTION
One of the primary challenges in artificial intelligence is to
create models that are adaptable and flexible enough to handle
new tasks and datasets in a given domain as they grow over
time. In traditional offline learning, creating a model that
performs well on a specific task requires training the model
on the task’s dataset. If a new task is introduced, the training
process is reperformed with the new dataset. However, when
the learning model starts to be trained with only the new task’s
dataset, its knowledge is gradually skewed towards the new
tasks leading to a decrease in performance on previous tasks.
This phenomenon is known as catastrophic forgetting (CF) [1].
To avoid CF, the training process must be repeated using a
comprehensive dataset that includes data from all previous
and current tasks to maintain the model’s performance on all
previous and current tasks. Unfortunately, this training process
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using the entire dataset can be computationally expensive
and might not be feasible or allowable in data-intensive
applications.
Continual learning (CL) aims to improve the learning

capacity of a model by allowing it to accumulate and
expand its knowledge in a dynamic and ever-changing data
environment without forgetting knowledge about previously
encountered dataset [1], [2]. To prevent the model from
forgetting information about previous tasks as it learns
new information, several methods have been proposed in
the literature, such as rehearsal strategy, dynamic model
architecture, parameter updating regularization, and multiple
single-class classifications. One popular approach among
these is the rehearsal-based or experience replay method,
which stores a subset of the previous training data in a memory
buffer for use during the training of new tasks. CL in the
continuously-changing dataset stream environments is much
more challenging because it is difficult to define a distinct task
from the data streams. In these general scenarios, CL models
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must effectively adapt to not only new classes but also varying
data distributions of existing classes. In addition, the models
are required to perform the learning for the dataset changes
appropriately even without explicit task boundaries.
We propose a novel approach called CLiCK, a Continual

Learning framework for exploiting intermediate network
models with a SlaCK class. The proposed CLiCK mitigates
the CF issues by using the integration of a series of previous
models (called intermediate models) that have been already
generated using past datasets and a new model for the current
dataset. This approach of integrating all the models is based
on the assumption that the knowledge of past datasets is
already retained well in the previous intermediate models.
In the general CL scenarios, if the error rate of inference result
increases, it implies that the distribution of the data stream
is changing and becomes different from what the previous
models were trained for. When the error rate exceeds a certain
threshold, the CLiCK generates a new model and trains it
using the currently available dataset. The inference of CLiCK
is performed by integrating the newly-generated model and
all the previous intermediate models.

The proposed CLiCK is a hybrid approach of architecture-
based CL [3], [4], [5], [6] and rehearsal-based CL [7],
[8], [9], [10], [11], [12], [13]. The architecture-based
CL approaches attempt to append a new set of network
model parameters [3] or to reuse a subset of existing model
parameters (e.g., subnetwork) [4], [5], [6] for a new task. These
architecture-based approaches can mitigate CF effectively by
freezing/reusing the model parameters for the previous tasks.
However, their inference requires the knowledge/inference of
the task identification that the model/subnetwork was trained
for. Our CLiCK increments a model when it detects that
the dataset characteristics have changed significantly, but it
does not require any task identification for inference. Instead,
CLiCK simply integrates the inference results of all the
intermediate models without exploiting model-task mapping
information, and thus the CLiCK is suitable for these general
CL scenarios. The rehearsal-based CL approaches take a
strategy to maintain episodic memory for mitigating CF issues.
They exploit a portion of data belonging to past tasks stored
in the episodic memory to update the CL model for new tasks.
It is highly desirable to fill the episodic memory with the most
representative samples belonging to the past tasks [7], [13].
For a new task, the model is trained to minimize a weighted
sum of a loss function for new data samples and for past data
samples stored in the episodic memory [8], a loss function
with a constraint to regulate the weight updating [9], [10],
a modified loss function with additional terms to regulate the
weight updating [11]. These approaches attempt to balance
the current and past learning performance, and thus they have
difficulty avoiding the tradeoff relationship of CF. In general,
rehearsal-based approaches tend to experience a decrease
in learning performance as the number of tasks in memory
increases, due to the decrease in the number of samples for
each task. Under CLiCK, the training of each intermediate
model focuses on the learning performance for the current

training data stream rather than making a balance of learning
performance between the current and past data streams.
Furthermore, as all the samples in episodic memory are
mapped into a single synthetic class called slack class, CLiCK
does not require a large-sized memory buffer. In a nutshell,
CLiCK is an architecture-based CL method that appends the
models gradually and a rehearsal-based method that exploits
a memory. However, the memory of CLiCK is used for the
discrimination purpose of deciding whether an input belongs
to one that has been unseen during the training process.
A novelty of CLiCK is the introduction of a concept for a

slack class. Under CLiCK, as there are multiple intermediate
models, we have a question for CL, ‘‘which model is to be used
as the best one for the final decision?’’ or ‘‘how can the models
be combined for the decision?’’. If we know which model
is the best one, it would be possible to nullify the decision
results of the others. Alternatively, if each model can identify
whether or not it can handle an input, such a model that has no
knowledge of the input can nullify its decision by itself during
the integration of the final decision. To this end, each model
is trained with its own dataset and synthetic data samples with
an auxiliary class (i.e., slack class). The slack class of a task
represents unseen or undetermined datasets that do not belong
to the current task. The data samples of the slack class are
readily generated from thememory that stores the data samples
of past tasks. Once a model is trained together with a slack
class, it has the capability to differentiate between the datasets
that it was trained on and unseen/undetermined classes for
input data. If a classification result of an intermediate model
falls into a slack class, it implies that the model does not
have any knowledge about the input, and the model can be
excluded. As a result, the classification of input data can be
made by the models that have knowledge of the input data in
CL. The key contributions of this paper are summarized as
follows:

• The proposed CLiCK exploits the existing past models
for the classification of past tasks and enables the training
of the current dataset to focus on a new dataset.

• The concept of the slack class is introduced to make the
intermediate models ready to be used with new tasks in
the future.

• The generation of slack class samples requires the
retention of only a small subset of non-relevant data for
the current task, reducing the need for a large memory
buffer size.

• CLiCK can be readily incorporated with any type of
network model. The performance of the proposed method
has been evaluated using VGG-11, ResNet-18, and
GoogLeNet in the challenging CL scenarios with the
MNIST and CIFAR-100 datasets.

II. RELATED WORK
A. REHEARSAL-BASED CLs
Rebuffi et al. [7] proposed a class incremental learning
method called iCaRL. When new classes are added, iCaRL
stores representative samples per class in memory and
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determines the classes of the newly added data as one
with the nearest feature mean value among the stored data
samples. Shin et al. [8] proposed incorporating a generative
replay (GR) model into CL to alleviate the CF problem.
GR produces samples from previous tasks and combines them
with the input samples of the current task. Lopez-Paz and
Ranzato [9] proposed a memory-based CL method, (called
gradient episodic memory, GEM) for continual learning
under the assumption that the input of the model is the
stream of data with the non-independent identically distributed
(non-IID) distribution. Chaudhry et al. [10] proposed a
lightweight version of GEM called Averaged GEM (A-GEM),
which mitigates the computational complexity of GEM by
replacing the constraints for individual past tasks with that
for the average loss over past tasks. Buzzega et al. [11]
proposed the Dark Experience Replay (DER) for CL in
a boundary-free environment, which relies on knowledge
distillation and regularization exploiting rehearsal memory
buffer to approximate the entire training trajectory. They also
proposed DER++, which additionally leverages the ground
truth labels, for a case where the distribution of the input
stream suddenly changes. Caccia et al. [12] proposed the
Experience Replay with Asymmetric Metric Learning (ER-
AML), which uses different similarity-based loss functions for
the newly-incoming data stream and buffered data in rehearsal
memory for past tasks. Prabhu et al. [14] proposed a simple
and greedy episodic memory-based method (called GDumb),
which achieves a good performance in the class-incremental
scenarios of the CL environment when the memory buffer
is sufficiently large. Compared to the existing methods, the
proposed CLiCK uses memory to store past datasets but
uses it differently in that all the samples in the memory are
used for generating synthetic samples belonging to the slack
class.

B. ARCHITECTURE-BASED CLs
Rusu et al. [3] proposed a progressive neural network (PNN),
which initializes a new column network for each new task.
The other is model pruning, which temporarily disables
some portions of model parameters. Mallya and Lazebnik [4]
proposed a dynamic model expansion (called PackNet), which
allocates multiple tasks to a single network by iterative
pruning. PackNet sequentially prunes the model parameters
not contributing to the performance of the current task while
keeping them available for future tasks. Wortsman et al.
[5] proposed a flexible continual learning algorithm called
SupSup, designed for scenarios with a large number of tasks.
SupSup trains a separate subnetwork for each task and utilizes
a linear superposition of the subnetworks to identify the task,
performing inference with the selected subnetwork. Kang
et al. [6] proposed a method called Winning SubNetworks
(WSN), which was inspired by the Lottery Ticket Hypothesis.
WSN sequentially learns and selects optimal subnetworks for
each task by jointly learning model weights and task-adaptive
binary masks.

C. REGULARIZATION-BASED CLs
Elastic Weight Consolidation (EWC) leverages Fisher
information matrix to restrict changes to the model parameters,
allowing the model to find a good solution for both previous
and current tasks [15]. Zenke et al. [16] proposed a simple
structural regularize using synaptic intelligence (SI), which
measures the importance of each model parameter and
penalizes the change to important parameters to prevent them
from being overwritten. Li and Hoiem [17] proposed learning
without forgetting (LwF), which does not use data from past
tasks. LwF adds new task-specific parameters and trains it
such that the output values of the past model for the new data
do not change significantly.

D. MULTIPLE SINGLE-CLASS CLASSIFIERS
Ye and Zhu [18] proposed an incremental learning algorithm
that uses both support vector data description (SVDD) and
convolutional neural networks (CNN) as one-class classifiers.
They retained the hyperspheres of SVDD for the classes
from past tasks and generated a new hypersphere for each
new class to avoid CF. Wiewel et al. [19] proposed to
transform the multi-class classification problem into multiple
one-class classification problems in CL scenarios. Hu et
al. [20] proposed a single-class loss function along with
a regularization method to solve one-class classification
problems and applied the one-class classification method to
CL problems. The proposed CLiCK differs from multiple
single-class classification methods by not creating a separate
neural model for each class. Instead, it utilizes intermediate
models generated for previous tasks, as they have already
acquired sufficient knowledge for those specific tasks.

III. PROPOSED METHOD
A. CL WITH A SLACK CLASS
We propose CLiCK which performs the classification in CL
using the intermediate network models trained for the past
datasets and a current model trained with a new dataset. If the
characteristics of the dataset change over time in a general
CL scenario, the inference error of CLiCK may increase.
It implies that the current task is over and a new task begins.
Therefore, when CLiCK experiences an increase in the error
rate exceeding a threshold, it triggers a task of model training
with a set of training samples at the moment. It is worth noting
that the tasks of model training are not predetermined with a
set of distinct classes in a general CL scenario. However, the
model training tasks will be referred to as tasks for the sake
of simplicity in this paper.
For the CL framework, we define a sequence of tasks

denoted by T = {t1, · · · , tN }, where N is the total number
of tasks. A task tk ∈ T comprises a set of classes Ck ⊆ C =

{1, · · · , c} and a set of training data samples (xk , yk )’s drawn
from data distribution of Dk , where xk is the input data and
yk ∈ Ck . Suppose tk is the current task, which is the last task
available in T . Then, the task tk aims to optimize a neural
model that minimizes an objective function on the mixture
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distribution of entire classes belonging to the past and current
tasks.

min
θk

E(x,y)∼f (x,y;D1,··· ,Dk )[l(2(x; θk ), y)], (1)

where f (x, y;D1, · · · ,Dk ) is a mixture distribution, 2 is
the classifier for the input x with the parameter of θ , and
l is a loss function. The above optimization corresponds to
the conventional joint training that requires the entire data
distributions of (D1, · · · ,Dk ) up to the current task.

Unlike the joint training in (1), the CL trains the model only
using the distribution of the current task. Given θk−1 and Dk ,
the optimization is given by

min
θ̃k

E(x,y)∼Dk [l(2(x; θ̃k ), y)], (2)

where θk−1 is the network model of task tk−1 and used as the
initial weight of θ̃k in the training process. As the training
is performed using Dk , the classification performance of
finetuning learning in (2) degrades compared with (1).

Here, we introduce a novel concept of a slack class, which
is a representative class that refers to unseen/undetermined
classes that do not belong to the current task. The data samples
with the slack class are sampled from the episodic memory
Mb and are used for the training of a model along with its
own data samples. The training with a slack class enables each
model to be exploited for the classification of future tasks in
the CL environment. A model trained with a slack class can
identify the samples unseen during its training process and
avoid inferring that such samples fall into one of the classes
that it was trained for. The classes belonging to the future tasks
and unseen during the training of a model will be classified as
the slack class of the model.

For example, let us consider a simple class-incremental CL
scenario, where C1 = {0, 1}, C2 = {2, 3}, and C = {0, 1, 2, 3}.
Let sk denote the slack class for the task tk . If an input of
class 2 is classified using θ̃1, the result cannot be avoided from
being either 0 or 1. This is why the past task models cannot be
exploited for the current task with another set of new classes
in CL even though each one can achieve high classification
accuracy for its own classes. In contrast, suppose that a model
θ̂k is trained with sk . For an input x of class c /∈ Ck , the model
θ̂k can classify the input as sk rather than one of the classes in
Ck . In the example, θ̂1 and θ̂2 are trained with C1 ∪ {s1} and
C2 ∪ {s2}, respectively. When an input of class 2 is classified
using θ̂1, the result would be s1 rather than either 0 or 1. The
model θ̂1 can identify that the input does not belong to the
classes of task t1. If a model classifies an input as a slack class,
the inference result of the model is neglected because the
model has not seen such an input during its training process.
Namely, for an input xk of class c ∈ Ck , the neural

model θ̃k for task tk is supposed to give a right classification
decision with a high probability, i.e., 2(xk ; θ̃k ) = c with high
probability if the training is performed properly. However, the
preceding models of θ̃1, · · · , θ̃k−1 give a wrong classification
for the input xk belonging to tk because the classes c ∈ Ck
were not seen when they were trained in the CL. When an

input xk with class c /∈ Ck−1 and c ∈ Ck is classified using the
past intermediate model θ̃k−1, the model θ̃k−1 would classify
the input xk into one of the classes in Ck−1 because of the
equality constraint, i.e.,

∑
c∈Ci P(2(xk ; θ̃i) = c) = 1 for i ∈

{1, · · · , k − 1}. In contrast, the introduction of the slack class
converts the equality condition into an inequality condition as
follows:∑

c∈Ci

P(2(xk ; θ̂i) = c) ≤ 1 for i ∈ {1, · · · , k − 1}. (3)

Note that
∑

c∈Ci P(2(xk ; θ̂i) = c) + P(2(xk ; θ̂i) = sk ) =

1 for i ∈ {1, · · · , k − 1}. The inequality above implies that a
model trained with the slack class has a degree of flexibility,
allowing an input sample not to bemapped to any of the classes
the model is trained on.

B. MODEL TRAINING OF CLiCK
For each task, the model is trained with both its own dataset
and the data samples of the slack class. The data samples of the
slack class are generated using episodic memoryMb, which
keeps the samples of past tasks evenly. Figure 1 illustrates the
overall architecture of CLiCK. Here, k is the index of tasks
for model training. For the first task t1 with k = 1, there is
only one task, and it corresponds to a single-task classification.
Thus, the classification decision is made using the only model
θ̂1 generated by the dataset belonging to t1. For k = 2, θ̂2 is
trained with both its own dataset and those of a slack class
sampled from ‘Training Data 1’ in Figure 1. After completing
the training of θ̂2, the episodic memoryMb is filled with the
samples of t1 and t2 evenly. From k = 3, the model is trained
with both its own dataset and the samples inMb. After the
training of tk , 1/k of the samples inMb are replaced with
those belonging to tk , and thenMb is randomly shuffled. Note
that the model θ̂1 is not trained with a slack class in Fig. 1.
It may cause inaccuracy of inference when its inference result
is combinedwith the others in the future. Under the assumption
that the dataset for k = 1 is readily available at k = 2, the
model θ̂1 for the first task is trained again with the slack class
data sampled from the second task’s dataset when the second
task t2 is created. This exception is required only for θ̂1, and the
results reported in this paper are obtained with the retraining of
θ̂1 at k = 2. Unlike other episodic memory-based approaches,
CLiCK does not use episodic memory to infer each class of
the samples in episodic memory. Instead, it uses the memory
to generate the samples of the single slack class to differentiate
between the current task and unseen/undetermined tasks.

C. CLASSIFICATION INFERENCE OF CLiCK
The classification decision is made by integrating the inference
results of all the models including the current model, i.e.,
θ̂1, · · · , θ̂k−1 and θ̂k . As the knowledge about past tasks is
already retained in the models of the preceding tasks, CLiCK
does not need to train the model using the datasets belonging
to the past tasks. Instead, it exploits the existing intermediate
models of the preceding tasks. As shown in Fig. 1, for an
input x, the inference results of 2(x; θ̂i) are computed for
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FIGURE 1. Architecture of CLiCK. Training datasets are merged with slack class samples to
train the corresponding models. For each class, the maximum of the class probabilities from
the models is taken to choose the class with the largest maximum as the inference result.
If training data 1 is available at k = 2, the first model θ̂1 can be retrained using the slack class
samples drawn from training data 2.

∀i ∈ {1, · · · , k}. Using the inference results, the maximum
value of class probabilities for each class is obtained. Here, the
probabilities for the slack class are not involved as illustrated
in Fig. 1. If the probability of a model has a large probability
for the slack class, it implies that the model does not have
meaningful knowledge about the input. In this case, the
model would give small inference values for non-slack classes.
Therefore, the input x is not likely to be classified as one
of the classes in the task belonging to the model. By taking
the maximum probability value for each class, the inference
result of the models that have not seen the input can be
simply discarded. The final classification decision is made
by choosing the one that has the largest probability among
the classes. Formally, given the models of θ̂1, · · · , θ̂k , the
classification decision for an input x is given by

y = argmaxc∈C

(
max

i∈Tc:={t∈T |c∈Ct }
P(2(x; θ̂i) = c)

)
, (4)

where Tc is a set of tasks that include class c during the training.
As an example, let us consider a general CLwhereC1∩C2 ̸= ∅,
e.g., C1 = {0, 1} and C2 = {1, 2}. If the input x is of class
1, P(2(x; θ̂1) = 1) and P(2(x; θ̂2) = 1) for c = 1 are larger
than P(2(x; θ̂1) = 0) for c = 0 and P(2(x; θ̂2) = 2) for c
= 2. As a result, it is classified as 1. If the distributions of
c = 1 are different at t1 and t2, an input sample x with c =

1 would have either P(2(x; θ̂1) = 1) ≈ 1 or P(2(x; θ̂2) =

1) ≈ 1 depending on the task that the input sample belongs
to. In this case, the classification of (4) still gives the right

decision. Note that the task to which the input sample belongs
can be identified in (4).

D. OVERHEAD AND LIMITATION OF CLiCK
1) COMPUTATIONAL COMPLEXITY
Each model of CLiCK requires to be trained for an extra slack
class, and the output size of the model is increased by one.
The final classification is made by combining the inference
results of all the models, resulting in an increase in inference
time with respect to the number of models. These architecture-
based CLs’ limitations can be mitigated by reducing the size
of each model because a small-sized model that focuses on
its own task rather than the entire classification tasks can be
used.

2) STORAGE CAPACITY
CLiCK needs to store past models. However, each model does
not need to be too large to consider the potential expansion
of tasks in the future. As new tasks arrive, the corresponding
models are added gradually. As like other rehearsal-based CLs,
episodic memory space is needed. While rehearsal-based CLs
store past datasets to train the model for each class in the
past datasets, CLiCK maps the entire dataset in the episodic
model into the slack class. The performance of CLiCK is less
sensitive to the size of memory and thus requires relatively
small memory in comparison with other rehearsal-based CLs.
When the second model is trained, CLiCK retrains the first
model using the dataset belonging to the first model and the
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slack dataset sampled from the second dataset. For doing this,
the first dataset needs to be stored. To save the storage, the
first dataset is stored in the episodic memory instead of using
a separate memory space.

IV. EXPERIMENTS
We evaluate the performance of the proposed CLiCK
method under various configurations against classic and the
latest state-of-the-art CL baselines. Domain-incremental and
class-incremental continual learning scenarios are considered.
All experiments were conducted on a workstation equipped
with an AMDRyzen 9 5900X CPU and two NVIDIA GeForce
RTX 4090 GPUs.
Dataset and augmentation: We use four popular

datasets, which have been widely used in recent CL
methods [7], [10], [11], [21], [22]. The datasets are as follows:

• MNIST [23] contains 60,000 training images and 10,000
test images of handwritten digits, each of which is 28 ×

28 pixels in size and grayscale. Each image is labeled
with the correct digit, ranging from 0 to 9, and there are
10 classes in total.

• Permuted MNIST [16] is a variation of the original
MNIST dataset, but the pixels of each image have been
randomly shuffled.

• Rotated MNIST [24] is another variation of the MNIST.
The images of the original MNIST have been rotated at
random angles.

• CIFAR-100 [25] comprises 60,000 images of 32 ×

32 size, assigned with one of 100 object classes.
We applied data augmentation techniques, such as
random cropping, random horizontal flipping, and color
jittering, to CIFAR-100 training image data.

Target model and comparing schemes: We employ
the three most commonly used models: VGG-11 [26],
GoogLeNet [27], and ResNet-18 [28]. The intention of this
experimental design is to show that CLiCK is not dependent on
any specific type of network model. ResNet-18 is composed of
4 basic blocks following the first convolution layer. CLiCK is
trained with the stochastic gradient descent (SGD) optimizer
with a learning rate of 0.1, momentum of 0.9, and weight
decay of 5e-4. The results presented in this section are
based on the average of five separate trials. We compare
the proposed method with joint learning, iCaRL [7], A-
GEM [10], DER++ [11],GDumb [14], and finetuning. The
default values for epochs, batch size, and buffer size were 200,
128, and 2,000.

A. RESULTS IN CLASS INCREMENTAL SETTINGS WITH
MNIST DATASET
Class incremental learning involves training a model on a
sequence of tasks, each with a different set of classes but
from the same feature space or domain. The goal is to create
a model that performs well on all tasks seen so far without
forgetting what it has learned on previous tasks. In all of our
experiments using the MNIST dataset, we utilized a subset of

500 randomly selected images from a total of 6,000 images
per class for model training. The leftmost results in Table 1
show the accuracy of ResNet-18 for the MNIST dataset in
a class-incremental CL scenario, where the total number of
tasks is five, and each task includes two classes. The results
demonstrate the performance of the algorithms in terms of
the average accuracy over the entire task and the accuracy
of the last task. It is observed that the accuracy performance
degradation of CLiCK compared to joint learning was about
5.56% when using a rehearsal memory size of 100, and 3.88%
when using a memory size of 500 in terms of the average
accuracy. It seems that a memory size of 500 is sufficient for
all rehearsal-based strategies to retain the knowledge of past
tasks in the class-incremental scenario on the MNIST dataset.
Our method outperforms the compared several baselines,
indicating the effectiveness of our method in preventing CF.

B. RESULTS IN DOMAIN INCREMENTAL SETTINGS WITH
MNIST DATASET
Domain incremental learning involves training a model on
a sequence of tasks, each with the same set of classes but
from different feature spaces or domains. The goal is to create
a model that performs well on all tasks seen so far without
forgetting what it has learned on previous tasks, and without
being affected by changes in the feature space or distribution.
Our proposed method was evaluated on both permutedMNIST
and rotated MNIST datasets. In our experiments, we evaluated
the performance of our proposed method on two datasets:
permuted MNIST and rotated MNIST. The permuted MNIST
dataset was created by randomly rearranging the pixels in
each image, while the rotated MNIST dataset was created
by randomly rotating each image by an angle between 0 and
360 degrees. These datasets were used to simulate changes
in the feature space or distribution, which are common
in real-world scenarios. Our method achieved comparable
performance to joint learning in both datasets in Table 1
and Fig. 2, indicating that the intermediate models are able
to classify their own classes accurately and that the classes
not belonging to the task are classified as slack classes.
We observed that DER++ outperformed A-GEM, GDumb,
and finetuning. GDumb was particularly sensitive to memory
size, as it determines the total number of samples used for
training. Overall, the results demonstrate that the proposed
method is effective in both class incremental learning and
domain incremental learning scenarios where data distribution
and classes can change over time. These two CL settings
are crucial in the field of continual learning as they reflect
real-world scenarios where data distribution and classes can
change over time. The experiment results indicate that our
proposedmethod is effective in both class incremental learning
and domain incremental learning scenarios.

C. RESULTS IN CLASS INCREMENTAL SETTINGS WITH
CIFAR DATASET
For the CIFAR-100, we performed a set of experiments in
six CL scenarios. i) The first three scenarios were created by
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TABLE 1. Accuracy result of class/domain incremental CL scenario of MNIST dataset.

FIGURE 2. Top-1 results of ResNet-18 for domain incremental scenarios with MNIST dataset.

making every task have the same number of classes. The three
scenarios in this category have 5, 10, and 20 classes per task.
As a result, they consist of 20, 10, and 5 tasks for the CIFAR-
100 dataset with 100 classes. ii) In the next three scenarios, the
half of classes were trained during Task 1. Then, the remaining
50 classes were evenly divided (i.e., 2, 5, and 10 classes per
task) and were incrementally added to the existing tasks.

1) COMPARISON OF PERFORMANCE ACROSS DIFFERENT
SCENARIOS
Figure 3 shows the Top-1 accuracy of ResNet-18 for the
CIFAR-100 dataset. In Figure 3, the joint learning shows
the highest accuracy performance in the six scenarios and
serves as a maximum performance bound of the accuracy.
Even in joint learning, the accuracy at the last task is lower
than that at the first task, and it is perhaps due to the increase
in the problem complexity with more possible choices. The
other algorithms significantly suffer from CF. If the number
of classes belonging to the current task is relatively small
compared with the number of previous classes, the accuracy
performance is not good due to the CF problem. This is why the
cases of 20 classes per task give higher accuracy performance
in Fig. 3.
In the first-category scenarios, the accuracy performance

degradation of CLiCK compared to joint learning was
approximately 24.95% for 5 classes per task and 7.14%
for 20 classes per task in Fig. 3. The accuracy in the
second-category scenarios is less than in the first-category
scenarios for each number of classes. Under CLiCK, the

images belonging to the slack class were sampled from
more classes on average in the second-category scenarios,
resulting in the best accuracy performance except the joint
learning. DER++ outperformed A-GEM, iCaRL, GDumb,
and finetuning, and achieved slightly better performance than
CLiCK in the third and sixth scenarios of Fig. 3.

2) EFFECTS OF DIFFERENT MEMORY SIZE
Figure 4 shows the Top-1 accuracy of the rehearsal
memory-based algorithms with respect to the memory sizes.
In this experiment set, each task consists of 10 image classes,
and each image class includes 500 images. We have changed
the memory size m to 1,000, 2,000, and 5,000. It is observed
that the larger memory achieves a more accurate performance
because more samples belonging to the previous tasks can
be retained in the memory. For example, if m = 1,000, the
number of image samples per class in the rehearsal memory
(i.e., images belonging to the previous tasks) becomes 100, 50,
· · · , 11 in Task 2, 3, · · · , 10, respectively, which correspond
to only 20%, 10%, · · · , 2.2% of the joint learning case. Note
that the number of image samples per class in joint learning is
500. In Fig. 4, CLiCK does not show a significant change in
the accuracy performance compared to the other algorithms
whenm changes. The reason is that the samples in the memory
are not used for classifying individual classes in CLiCK and
they are classified as the single slack class, unlike the other
algorithms. The experiment results of the average incremental
accuracy (over all the tasks) and the last task’s accuracy were
reported in Table 2.
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FIGURE 3. Top-1 results of ResNet-18 for the CIFAR-100 dataset in six different CL scenarios.

FIGURE 4. Top-1 accuracy result for the CIFAR-100 dataset with respect to the different memory sizes.

FIGURE 5. Top-1 accuracy results of VGG-11, ResNet-18, and GoogLeNet for the CIFAR-100 dataset.

3) COMPARISON OF THE IMPACT OF DIFFERENT MODELS
Figure 5 shows the Top-1 accuracy performance of VGG-11,
ResNet-18, and GoogLeNet. For the three different learning
models, CLiCK shows the best performance that is the closest
to that of joint learning. Table 3 and 4 show the Top-1 accuracy

results of VGG-11 and GoogLeNet, respectively, for the
class-incremental CL scenarios with the CIFAR-100 dataset.
In the tables, CLiCK achieved the best performance except for
a few cases. Even in the cases where DER++ outperforms
CLiCK, the performance discrepancy is quite small.
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TABLE 2. Top-1 accuracy result of ResNet-18 for CIFAR-100 dataset with image augmentation.

TABLE 3. Top-1 accuracy result of VGG-11 for CIFAR-100 dataset with image augmentation.

TABLE 4. Top-1 accuracy result of GoogleNet for CIFAR-100 dataset with image augmentation.

V. CONCLUSION
We have proposed a new approach, called CLiCK, for
addressing the problem of catastrophic forgetting in continual
learning. CLiCK trains models for new datasets with a slack
class, and the models that do not have knowledge about input

are automatically neglected in the final decision. We have
conducted a thorough evaluation of various scenarios. The
results indicate that CLiCK outperforms existing methods
and has great potential for further development and practical
use.
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