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ABSTRACT In this paper, a prediction model based on Empirical Wavelet Transform (EWT) for
FGSM-Bi-LSTM network is proposed to address the short-term power load forecasting problem. The model
performs noise reduction on the data by combining time windows with EWT. Additionally, the model
stability is enhanced by introducing the Fast Gradient SignMethod (FGSM) to generate adversarial samples.
Finally, case experiments based on real-world power station load data are conducted. The results demonstrate
that compared with prediction models such as LSTM, ARIMA, XGBoost, QR-GRU, and Transformer, the
proposed FGSM-Bi-LSTMmodel reduces RMSE by 85.22%, improves MAE by 62.60%, and increases r by
9.83%. This demonstrates the strong generalization ability of the model to be extended to other time series
prediction tasks.

INDEX TERMS Bi-LSTM, EWT, deep neural networks, FGSM, short-term load forecast, smart grid.

I. INTRODUCTION
With the continuous development of power systems and the
advancement of smartification, transformer load forecasting
has become a key topic in the power field. Accurate load
prediction is crucial for power system operation and energy
management, which helps to optimize the allocation of power
resources, improve the quality of power supply, as well as
achieve energy saving and emission reduction [1]. However,
due to the complex dynamics of power loads, current pre-
diction algorithms generally suffer from low accuracy [2].
Lower prediction accuracy may lead to waste of resources
or even safety hazards due to equipment overload on the one
hand, while on the other hand, it may lead to problems such as
power outages, whichmay bring serious impacts on the stable
operation of the society [3]. Given the highly dynamic and
periodic nature of power load data, current research on load
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forecasting is mainly divided into short-term, medium-term
and long-term categories [4]. Among them, short-term load
forecasting receives the most attention from decision makers,
because it directly supports power supply authorities in the
regulation and energy management of smart grids.

In recent years, with more andmore methods being applied
to short-term load forecasting, the error rate of prediction
has been reduced and the accuracy of power load forecast-
ing has been improved. Erdogdu combined autoregressive
integratedmoving average (ARIMA)with cointegration anal-
ysis for power load analysis [5]. However, for short-term
time series with complex seasonal patterns, ARIMA does
not capture seasonal variation well. Compared to tradi-
tional time-series prediction techniques such as ARIMA,
various types of machine learning models have better learn-
ing effect on the complex dynamic changes of power load.
Models such as Artificial Neural Networks (ANN) [6],
XGBoost (eXtreme Gradient Boosting) [7], and Support Vec-
tor Machine (SVM) [8] have also gained widespread use in
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power load forecasting. Further, with the increase in com-
putational power, deep learning was applied to time series
prediction. Where, Shi et al. applied RNN (recurrent neural
network) to household electricity load prediction, although
better results were obtained, but the effect is lacking for
sample data with high feature complexity [9]. Niu et al.
utilized Gated Recurrent Units (GRU) for wind power gen-
eration forecasting [10]. Ageng et al. proposed an hourly
load forecasting framework combining data preparation and
Long Short-Term Memory (LSTM) [11]. Atef et al. on the
other hand introduced a deep Bi-LSTM (bi-directional long-
short term memory) approach to enhance the accuracy of
residential electricity demand forecasting [12]. It is worth
noting that LSTM and GRU are able to handle the temporal
characteristics of power load data well due to the RNN-based
structure that establishes links between neurons in the hidden
layer. However, they are not accurate enough in predicting
sequences with the presence of high frequency fluctuations
and large noise. Therefore, effective noise removal techniques
need to be designed to improve the robustness of the model.

Further, in order to overcome the lack of accuracy and nar-
row applicability of a single model in power load prediction
modeling, combined prediction approaches have emerged.
Li et al. used sample entropy (SE) to reconstruct the sequence
after complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) decomposition, and proposed a
CEEMDAN-SE-LSTM model combined with LSTM. And
the accuracy of the model is proved by example valida-
tion [13]. Jha et al. combined LSTM with a random forest
approach [14]. On the other hand, Zhang et al. designed a
multi-objective optimization algorithm to balance stability
and accuracy, partially overcoming the shortcomings of indi-
vidual models [15]. However, the complexity of the above
models also leads to high computational costs and is prone
to overfitting when training data is limited. This results in
unstable predictions in the short term. Therefore, there is a
need for a newmodel that can effectively denoise and enhance
robustness, while avoiding reduced computational efficiency
due to high complexity.

As an important component in time series forecasting,
noise processing has received extensive research attention.
In order to reduce noise in time series data, scholars have
utilized signal processing techniques for data denoising [16],
[17], [18]. For instance, Laouafi et al. developed a wavelet
decomposition method that improved the accuracy of power
load forecasting [19]. Luo et al. introduced empirical modal
decomposition (EMD) to reduce interference signals in their
study of the distribution network situational awareness prob-
lem [20]. Dong then proposed a short-term load prediction
method by decomposing the original load sequence using
EEMD (ensemble empirical mode decomposition) [21].
While employing signal processing techniques such as EMD,
it’s important to be aware of the potential challenge of
mode mixing during the decomposition process. Mode mix-
ing occurs when distinct components of the signal become
entangled or mixed together, making it difficult to separate

them accurately. This phenomenon can result in a reduction
in the accuracy of the decomposition results and can pose
challenges in interpreting and effectively utilizing the decom-
posed components [22]. For this reason, this paper combines
EWT with sliding window to decompose the load of smart
grid, which ensures the accuracy of the data while reducing
the noise.

Although an increasing number of machine learning (ML)
studies have been applied to power systems, research shows
that data-driven event causality analysis can be vulnerable
to well-crafted malicious data, which even state-of-the-art
smart meters struggle to detect [23]. Chen et al. demonstrated
that most ML algorithms proposed in power systems are
vulnerable to adversarial examples, resulting in unpredictable
harm to the system [24]. Given this potential vulnerability,
securing load forecasting models against adversarial attacks
is an important issue to address. To guard against such adver-
sarial attacks, researchers have proposed various strategies
for generating adversarial samples to enhance the robustness
of the model [25], [26], [27], [28]. However, the iterative
process of these methods is more cumbersome. Whereas
FGSM is used as an adversarial machine learning technique,
especially in deep learning models, for generating adversarial
samples and is widely used in image recognition tasks to
evaluate the robustness of models [29]. But it is rarely applied
in time series forecasting [30]. It was not until 2019 that
Fawaz et al. first (to be sure) applied adversarial training to the
task of classifying time series, demonstrating that generating
adversarial samples for training of the FGSMwould dramati-
cally improve the robustness of the model [31]. Based on that,
this paper introduces FGSM to the task of load time series
prediction in power systems for the first time to improve
robustness against potential attacks.

In summary to address the shortcomings of current
research, this paper proposes a prediction model based on
EWT and FGSM-Bi-LSTM network as shown in Fig. 1, and
by example verifying the robustness of the model. The main
research contributions of this paper are as follows:

1. EWT is combinedwith timewindows to decompose the
original data forwardly, reducing noise and avoiding
data loss.

2. FGSM is first introduced into power system time series
forecasting. The loss function integrating regression
and classification errors improves robustness.

3. Example validation is carried out based on real power
load data. And the proposed model is compared with
other state-of-the-art models. The results show that the
model has a good ability to fight against perturbations,
and can accomplish the task of short-term power load
prediction with stable prediction results.

The remaining sections of this paper are organized as
follows. Section II introduces the time series decomposi-
tion model combining EWT and the time window approach.
Section III presents the optimized Bi-LSTM algorithm based
on FGSM and introduces a novel loss function. Section IV
conducts simulation experiments using various datasets,
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FIGURE 1. The designed algorithm framework.

compares the performance of the proposed model with other
forecasting models, and validates its superiority. Section V
concludes the paper.

II. TIME SERIES DECOMPOSITION ALGORITHM
Power load forecasting data is often affected by vari-
ous interference and noise factors, resulting in instability
and inaccuracy. Therefore, performing denoising on the
data is necessary prior to forecasting, to ensure reliability
and accuracy. Empirical Wavelet Transformation (EWT) is
an automated signal processing method used for feature
extraction and denoising of non-stationary and non-linear
signals [32]. Unlike traditional wavelet analysis methods,
EWT utilizes adaptive filters to decompose the signal pro-
gressively based on its local characteristics. Since EWT has
limited degrees of freedom in wavelet selection, it adopts
the principles of constructing Littlewood-Paley (Eq. 1) and
Meyer (Eq. 2) wavelets to define the empirical scaling and
wavelet functions:

φ̂n(ω)=



1 if|ω| ≤ (1− γ )ωn

cos[
π

2
β(

1
2γωn

(|ω| − (1− γ )ωn))]

if(1− γ )ωn ≤ |ω| ≤ (1+ γ )ωn
0 else

(1)

ψ̂n(ω)=



1 if(1+ γ )ωn ≤ |ω| ≤ (1− γ )ωn+1

cos[
π

2
β(

1
2γωn

(|ω| − (1− γ )ωn+1))]

if(1− γ )ωn+1 ≤ |ω| ≤ (1+ γ )ωn+1

sin[
π

2
β(

1
2γωn

(|ω| − (1− γ )ωn))]

if(1− γ )ωn ≤ |ω| ≤ (1+ γ )ωn
0 else

(2)

where, the normalized frequency is denoted as ω, and it
possesses periodicity. In order to satisfy the Shannon crite-
ria, we make ω ∈ [0, π]. γ is an important parameter to
ensure that the overlap region between two consecutive state
intervals is minimized, and its value is determined by the
calculated boundary values as shown in Eq. (3):

γ < min
{
ωn+1 − ωn

ωn+1 + ωn

}
, γ ∈ [0, 1], (3)

β(x) = x4(35− 84x + 70x2 − 20x3). (4)

The reconstructed original signal can be expressed
as Eq. (5):

f (t) = W t
f (0, t)

∗φ1(t)+
N∑
n=1

W t
f (n, t)

∗
ψn(t), (5)

In Eq. (5), ∗ is the convolution operation, W t
f (0, t) is the

approximate coefficient after Fourier transform, andW t
f (n, t)

is the detail coefficient after Fourier transform.
Due to the issue of data loss in prediction when

applying signal decomposition algorithms directly to time
series, in order to avoid the loss of future data in
decomposition-based prediction models, this paper adopts a
combination ofmovingwindow and EWT to denoise the data.
Fig. 2 shows the noise reduction process flow and the specific
steps are as follows:

1. Segment the time series data according to a certain
window size, and each segment is a subsequence.

2. For each subsequence, perform the EWT transforma-
tion.

3. For each scale factor, calculate its local variance, which
is used to determine whether the scale factor is noise or
not.

4. Scale factors with local variance below the threshold
are set to 0 according to a preset threshold value.

VOLUME 11, 2023 105059



Q. Liu et al.: Short-Term Power Load Forecasting in FGSM-Bi-LSTM Networks Based on EWT

5. For each subsequence, perform the inverse EWT
transformation to obtain the denoising subsequence.

6. Merge the denoised subsequences into a new sequence.

FIGURE 2. Noise reduction process flowchart.

III. MODEL ARCHITECTURE
A. LSTM NEURAL NETWORK
LSTM is a network model based on the improvement of the
RNN (Recurrent Neural Network) algorithm and is widely
used for processing time series data. To alleviate the issues of
gradient vanishing and exploding that often occur in RNNs,
LSTM introduces three gate units (input gate, output gate,
forget gate) to control the flow of information transmission.
This allows the network to selectively retain and forget infor-
mation, thereby better capturing long-term dependencies in
the sequence. Fig. 3 shows the structure of the traditional
LSTM.

The structure of RNN represented by Eq. (6) to (7).

Ot = g(V · St ) (6)

St = f (U · Xt +W · St−1) (7)

where, Ot represents the output at time t , and St represents
the value of the hidden layer at time t .W is the weight matrix
to represent the weights between each time point.

FIGURE 3. LSTM network structure.

During the training process of the LSTM neural network,
the data features at time step t are initially input into the
input layer, where they undergo processing by the activation
function. Subsequently, at time step t , the data, the output of

the hidden layer at time step t-1, and the information stored in
the cell unit at time step t-1 are fed into the nodes of the LSTM
structure. These data are then processed by the Input Gate,
the Output Gate, the Forget Gate, and the cell unit within the
node before being passed on to the next node or the output
layer. Finally, the backpropagation error is computed, and
individual weights are updated. The calculation formulas are
presented in Eqs. (8) to (13):

ft = σ (Wf · [ht−1, xt ]+ bf ), (8)

it = σ (Wi · [ht−1, xt ]+ bi), (9)

C̃t = tanh(Wc · [ht−1, xt ]+ bC ), (10)

Ct = ft · Ct−1 + it · C̃t , (11)

ot = σ (Wo · [ht−1, xt ]+ bo), (12)

ht = ot · tanh(Ct ), (13)

where, σ represents the sigmoid function. ht−1 is the output
of the previous state. xt is the input for the current state.
Wf ,Wi,Wc,Wo represent the weight coefficient matrices.
ht is the output of the current state, and [ht−1, xt ] indicates
the concatenation of two matrices.

B. BI-LSTM NEURAL NETWORK
In recent years, Bidirectional Long Short-Term Memory
(Bi-LSTM) networks have been widely adopted in domains
such as natural language processing, speech recognition,
and time series analysis. This is because Bi-LSTMs can
learn temporal dependencies in both directions and have
shown superior performance compared to unidirectional
LSTM models. Different from traditional LSTM networks,
Bi-LSTM networks can learn both forward and backward
time dependencies by adding a reverse LSTM layer. This is
very helpful for mining the long-term trend and short-term
fluctuation characteristics in the grid load time series. The
forward and inverse LSTMs capture different patterns of time
series, and finally the outputs of both of them are combined
together, which can make the prediction more accurate and
robust. Fig. 4 show the structure of the Bi-LSTM.

FIGURE 4. Bi-LSTM network structure.

Specifically, the structure of Bi-LSTM network can be
divided into two parts: forward LSTM layer (

−→
ht ) and reverse

LSTM layer (
←−
ht ). The forward LSTM layer handles the time

step from the beginning to the end of the input sequence,
while the reverse LSTM layer handles the time step from
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the end to the beginning of the sequence. In this way, the
Bi-LSTM network can capture both past and future con-
textual information to understand patterns and features in
sequence data more comprehensively. These two parts can be
represented as follows:

−→
ht =

−−−→
LSTM (ht−1, xt , ct−1), t ∈ [1,T ] (14)

←−
ht =

←−−−
LSTM (ht−1, xt , ct−1), t ∈ [T , 1] (15)

Ht = [
−→
ht ,
←−
ht ] (16)

C. FGSM GENERATES ADVERSATIAL SAMPLES
FGSM is widely used in the field of deep learning and
machine learning as a simple but effective technique for
generating adversarial samples. Its core idea is to deceive the
deep learning model into generating false outputs by adding
tiny perturbations to the input data. Its perturbation is shown
in Eq. (17), which is a key parameter in adversarial attacks
that determines the magnitude of the generated adversarial
samples. Different perturbation sizes can generate adversarial
attacks of different strengths, ranging from small changes to
more significant perturbations.

η =∈ sign(∇xJ (θ, x, y)) (17)

where ∈ represents the adversarial strength, x denotes the
input, y is the label of x, θ represents the model parameters,
J is the loss function, and∇xJ (θ, x, y) represents the gradient
of the loss function with respect to x. By linearizing the
loss function around the current value of q. The optimal
max-norm constrained perturbation of the perturbation η can
be obtained.

In order to solve the problem of lack of labeling of data in
the regression task, we classify the load status of transformers
into three categories of normal, heavy load, and severe over-
load. This classification is based on the grid company’s load
evaluation standard for transformers. For the loss function,
we utilize cross entropy, and its specific calculation rules are
detailed below:

loss1 = − log(y|x + η; θ ), (18)

y (φ) =


1, 0<φ ≤ 10
2, 10<φ ≤ 20
3, φ > 20,

(19)

where, loss1 is the cross entropy. y represents different load
states: 1 indicates to a normal load state, 2 indicates a heavy
load state, and 3 indicates a severe overload state. φ is the
transformer load factor.

D. BI-LSTM ALGORITHM BASED ON FGSM
In this paper, we propose a hybrid model, referred to as the
FGSM-Bi-LSTM hybrid model, which takes time series data
as its input. To ensure the reliability and accuracy of the data,
this paper refers to the word vector representation method
used in Natural Language Processing (NLP). We employ a
sliding windowmodel to concatenate the load data at specific

time points with their relevant features, creating a vector
representation.

Additionally, the EWT method is applied to perform
denoising on the data. Madry et al., have suggested that
in networks with high linearity such as LSTM, the pres-
ence of perturbed data can have a significant impact on the
results [29].
To enhance the network’s defense capability, we incorpo-

rate the FGSM to generate perturbations and attack themodel.
To prevent overfitting of the training data, an Early Stopping
algorithm is introduced to monitor the performance of the
model on the validation set. The training process is promptly
terminated when no further improvement is observed on the
validation set. The Early Stopping algorithm pseudo-code is
as follows:

Algorithm 1 Early Stopping
1: best_loss ←∞
2: patience ← 0
3: max_patience ← 10
4: while ( epoch < num_epochs ) do
5: train_model ()
6: validation_loss ← calculate_loss(validation_data)
7: if ( validation_loss < best_loss ) then
8: best_loss ← validation_loss
9: patience ← 0
10: else
11: patience ← patience+ 1
12: end if
13: if (patience ≥ max_patience) then
14: break
15: end if
16: end while

E. MODEL EVALUATION METRICS
To improve the accuracy of the prediction, we first normalize
the individual feature sequences as follows:

x ′i =
xi − xmin

xmax − xmin
, (20)

where xi is the original data, x ′i is the preprocessed data,
xmax and xmin are the maximum and minimum values
respectively. The predicted values are obtained and then
reverse-normalized to obtain the predicted load values.

Furthermore, to assess the model’s validity, we employ a
set of evaluation metrics. Among them, Mean Absolute Error
(MAE), Mean Squared Error (MSE), Root Mean Square
Error (RMSE) and Pearson correlation coefficient (r) are
commonly used in regression tasks to evaluate the goodness
of the model. MAE is a statistical metric for assessing the
performance of a predictive model. Smaller MAE values
indicate higher accuracy and closer proximity of the model’s
predictions to the actual observations. In contrast to MAE,
which squares errors and thus magnifies the impact of out-
liers in MSE, MAE assesses the magnitude of the average
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FIGURE 5. FGSM-Bi-LSTM flowchart.

prediction error of the model. Conversely, RMSE involves
taking the square root of MSE, effectively eliminating the
squared error. Meanwhile, the Pearson correlation coeffi-
cient (r) is employed to quantify the strength and direction
of the relationship between two variables. The specific rules
for calculating the above metrics are shown below:

MAE =
1
n

n∑
i=1

|yi − ŷi|, (21)

MSE =

n∑
i=1

(yi − ŷi)2

n
, (22)

RMSE =

√√√√√ n∑
i=1

(yi − ŷi)2

n
, (23)

r(yi, ŷi) =
cov(yi, ŷi)
√
D(yi)

√
D(ŷi)

, (24)

loss2 = MSE(predicted, true), (25)

LOSS = (1− w) · loss1 + w · loss2. (26)

where n represents the number of samples, yi is the true value
at time point i, and ŷi is the predicted value at time point i.
Furthermore, FGSM is employed to generate adversarial
samples. Subsequently, a new loss function is constructed by
combining the regression loss and the cross-entropy weighted
sum, as depicted in Eqs. (25) and (26), andwherew represents

the weigh. Finally, the flowchart of the proposed FGSM-Bi-
LSTM model is depicted in Fig. 5.

IV. SIMULATION EXPERIMENTS AND ANALYSIS
In this section we use real transformer data from a provincial
capital city in Southwest China for the case study. Firstly,
the power load data used is introduced, secondly, the noise
reduction process and the setting of the weights of the loss
function are described, and finally, the designed FGSM-Bi-
LSTM model is compared with the ARIMA [5], QR-GRU
network [7], LSTM network [11], the Transformer [15],
XGBoost [33] models are compared cross-sectionally to
study the superiority of the proposed model. The key param-
eters in the proposed FGSM-Bi-LSTM model are shown in
Table 1.

A. DATA DESCRIPCTIONS
Transformer data from three locations in Southwest China
are used to evaluate the accuracy of various input feature
set scenarios and the algorithms proposed in this paper. The
three transformers are uniquely identified by the following
code numbers: ‘‘47691280,’’ ‘‘54649268,’’ and ‘‘72541267,’’
with their respective utilization numbers presented in Table 2.
Each transformer dataset comprises a total of 4,780 real-time
monitoring data points recorded between February 1, 2023,
and March 22, 2023, with a 15-minute sampling interval.
The selected parameters for prediction include three-phase
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TABLE 1. Parameters of FGSM-Bi-LSTM.

maximum current, maximum transformer loading rate, total
unbalance rate, current three-phase average, phase A current,
phase B current, and phase C current, all aimed at predicting
real-time transformer load. In addition, other parameters of
the transformer used in the experiment are shown in Table 3.

TABLE 2. Transformers’ number.

TABLE 3. Transformer parameters.

Further, in order to visualize the complex dynamics of the
power load data, we visualized the load data for the three
transformers used as shown in Fig. 6. It can be seen that the
trends and characteristics of the electrical loads on any given
day are very close to each other, which indicates a strong
periodicity and regularity in the changes of electrical loads
over a 24-hour period. In addition, the more complex dynam-
ics also make the electrical load more difficult to realize.
For this reason, we describe in the following the processing
operations that we introduce in our forecasting model.

B. SLIDING WINDOW-BASEDEWT DENOISING
First, we introduce a time window based EWT noise reduc-
tion method. Due to the potential data loss caused by EWT
during data processing, this study combines the sliding win-
dow algorithm with EWT to denoise the data. The denoising
ability of EWT increases with the number of decomposition

FIGURE 6. Electrical loads of three transformers.

levels, but it may also result in some loss of signal infor-
mation. The decomposition level in this study is N = 2, the
size of the sliding window is 30, and the overlap rate is 0.1.
To ensure that the length of the data does not change, the step
size is shown in Eq. (27) and (28):

o = ⌈z · l⌉ , (27)

s = ⌈z− o⌉ , (28)
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where o is the overlap length, s is the step size, and [ ]
denotes the ceiling function. The processed attributes are
shown in Fig. 7.

FIGURE 7. Visualization of each property after processing.

C. LOSS FUNCTION WEIGHT SETTING
To improve prediction accuracy, this study adjusts theweights
in the loss function (Eq. 26) and observes changes in the four
evaluations metrics from Section III to determine the optimal
values for the weights. The weight w is sampled with a step
size of 0.1 within the range of 0 to 1. For each weight, the
FGSM-Bi-LSTM model is trained on a subset of 208 data
samples from the dataset of T-I, with 48 data samples used
as a validation set. The model is optimized for 50 iterations,
and the average values of the evaluation metrics are obtained.
The changes in the evaluation metrics for different weights
are shown in Fig. 8.

FIGURE 8. Evaluation indicators under different w .

As shown in Fig. 8, the RMSE and MAE of the predicted
results generally exhibit an upward trend as the weight w for
MSE increases. This is because a smaller adversarial loss
indicates higher accuracy on the original data. To enhance
robustness against adversarial examples, a higher weight
should be assigned to the adversarial loss. And to achieve a

balance between robustness and accuracy, w is set to 0.1 in
the experiments. This choice of weight aims to ensure that
the model maintains good robustness while still achieving
satisfactory accuracy.

D. COMPARISON OF PREDICTION RESULTS
In this subsection, we compare the FGSM-BI-LSTM network
with several other models commonly used for power load
forecasting. Since excessively long data sequences could hin-
der the visualization of algorithmic performance differences,
we randomly select a sequence consisting of 208 data points
from the dataset as input and use 48 data points as output.
This subset of data provides a more manageable and repre-
sentative sample for comparing the performance of different
models. For reliable experimental results, each model was
run 30 times independently and averaged to obtain the per-
formance metrics for each algorithm.

The results are shown in Table 4. Fig. 9 and Fig. 10
show the comparison of the prediction performance of the six
models in three transformers dataset.

FIGURE 9. Electricity load forecasting curves.
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The difference in performance of the different models
can be found in Fig. 9. The ARIMA model is more poorly
predicted and is only able to follow the general trend of
the net load series, which makes it difficult to adapt to the
dramatic fluctuations of the series. The overall trend of LSTM
prediction is consistent with the actual data, but there is a
certain delay, resulting in a decrease in prediction accuracy.
This may be due to the fact that LSTM processes time series
sequentially, captures historical information gradually, and is
also affected by data noise. The QR-GRU model performs
poorly on T-II and T-III predictions, mainly due to the strong
randomness of the dataset, while the model performs poorly
in capturing short-term trends and resisting noise. In contrast,
the Transformer and XGBoost models performed relatively
well on all three transformers, but neither of them predicted
accurately enough at the moment when the data fluctuated
sharply. Both models perform well when dealing with long
sequences, but there may be problems with overfitting or
difficulty capturing valid information on short sequences.
In contrast, the prediction of FGSM-Bi-LSTM is the closest
to the actual value and can effectively track the actual load
trend. This is due to the fact that the FGSMmodule enhances
the noise resistance of the model, the EWT decomposition
reduces the data noise, and the Bi-LSTM captures both
past and future information, which improves the prediction
accuracy.

TABLE 4. Performance indicators for each algorithm.

Analyzing the specific experimental results in Table 4
and Fig. 10, it is evident that the FGSM-Bi-LSTM model,
proposed in this study, outperforms the Transformer, LSTM,
QR-GRU, ARIMA, and XGBoost models across vari-
ous performance metrics. The proposed FGSM-Bi-LSTM
model reduces MAE by 41.44%, 53.95%, 47.43%, 84.27%
and 26.55% compared to Transformer, LSTM, QR-GRU,
ARIMA and XGBoost models, respectively. Similarly,
it reduces RMSE by 61.08%, 66.45%, 55.38%, 87.54%
and 42.54%, and MSE by 85.58%, 94.22%, 82.47%,

FIGURE 10. Predictive performance of five models in three regions.

98.68% and 65.13%. The Pearson correlation coefficient r is
improved by 0.0173, 0.0190, 0.0410, 0.4053 and 0.0073.

The designed FGSM-Bi-LSTM model excels in perfor-
mance across all evaluation metrics. The ARIMA model,
although capable of predicting the general trend of the data,
struggles with short-term transformer loading data charac-
terized by nonlinearity, leading to less accurate predictions.
This limitation becomes more pronounced when dealing
with drastic fluctuations in the data. In short-term trans-
former load prediction, the load tends to fluctuate with the
time of day, introducing noise that hampers model accuracy.
On the other hand, XGBoost, Transformer, and QR-GRU
algorithms manage to capture data changes to some extent,
but they struggle to accurately predict peaks. Among deep
learning algorithms, LSTM performs the poorest, despite its
general trend prediction being relatively close to the actual
sequence. However, its MSE, RMSE, and MAE values are
larger.

In summary, the model proposed in this study employs
signal processing techniques to reduce noise in the original
data. FGSM improves model robustness against adversarial
samples, while Bi-LSTM captures time series neighborhood
information, enhancing peak and overall accuracy.
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E. ANALYSIS OF MODEL STABILITY
In this subsection, we analyze the stability of the proposed
FGSM-Bi-LSTMmodel. The stability of the model is judged
by setting the input step size of the model to 208 and by
changing the prediction step size to 48 (12h), 96 (24h),
144 (36h), 192 (48h), 240 (60h). The experimental results
are shown in Table 5 and the visualization results are shown
in Fig. 11.

As shown in Table 5, RMSE, MAE, and MSE gradually
increase with longer prediction steps. However, the corre-
lation coefficient r remains near 0.998, indicating strong
agreement between predictions and actual data. Even when
the prediction length exceeds the input length, RMSE and
MAE remain low at 0.929, 0.974, 0.767 and 0.561, 0.771,
0.546 for the three datasets respectively. In summary, the
results show that the designedmodel is still valid and accurate
in making longer predictions.

From Fig. 11, it can be observed that with the increase of
the prediction length, the change trend of the three evaluation
indexes is smooth. This indicates that the proposed model has
good stability and is capable of predicting different ranges
of short-term loads. When the prediction length is increased
from 48 to 240, the model error is maintained in a small
range, which indicates that the model can effectively extract
the trend and periodicity features in the data. The EWT noise
reduction for data preprocessing also helps the model to cap-
ture the information better.Meanwhile, the FGSMadversarial
training enhances the anti-interference ability of the model
and improves the prediction accuracy.

TABLE 5. Comparison of results for different predicted lengths.

In summary, the joint preprocessing of EWT and time
window is used to effectively reduce the data noise and
provide clearer input for the model. The deep network based
on Bi-LSTM improves the extraction of data features and
enhances the predictive stability of the model by capturing
the contextual information in the time dimension. In addi-
tion, the FGSM module enhances the ability of the model to
resist perturbations and makes it more robust. Finally, Early
Stopping algorithm is applied to avoid model overfitting
and improve the generalization ability of the model to new
data. The methods can work synergistically to enhance model
inputs, architectures, training, and generalization for superior
forecasting capabilities compared to existing models.

FIGURE 11. Prediction accuracy at different time lengths.

V. CONCLUSION
This study discusses the short-term load forecasting prob-
lem in smart grids and proposes a short-term transformer
load forecasting model based on Bi-LSTM. We use EWT
to decompose the time series data of transformer loads
and train the model using a deep neural network based
on Bi-LSTM. We also introduce the FGSM algorithm for
data augmentation. Finally, we combine cross-entropy and
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mean squared error and determine their respective weights
to construct a new loss function for retraining the model.
In order to verify the superiority and robustness of the
proposed model, we compare the FGSM-Bi-LSTM model
proposed in this paper with five models, namely, LSTM,
QR-GRU, ARIMA, XGBoost, and Transformer, on three
datasets. Example experimental results show that the FGSM-
Bi-LSTM model proposed in this paper has the following
advantages:

1. By combining the signal processing algorithm EWT
with time windows, the algorithm effectively reduces noise in
the data and significantly improves the prediction accuracy.

2. The FGSM algorithm and the retraining step enhance the
model’s defense against perturbations.

3. The deep neural network based on Bi-LSTM can capture
local features and trends in the data, resulting in high predic-
tion accuracy.

The proposed algorithm exhibits good stability and high
prediction accuracy, making it suitable for short-term and
ultra-short-term load forecasting tasks for transformers.
In future research, we will consider the relationships between
features, as well as the relationships between features and tar-
gets, to improve the network structure. We will also compare
the proposed model with other advanced techniques.

REFERENCES
[1] A. Heydari, M. M. Nezhad, E. Pirshayan, D. A. Garcia, F. Keynia,

and L. De Santoli, ‘‘Short-term electricity price and load forecasting in
isolated power grids based on composite neural network and gravita-
tional search optimization algorithm,’’ Appl. Energy, vol. 277, Nov. 2020,
Art. no. 115503, doi: 10.1016/j.apenergy.2020.115503.

[2] N. Jha, D. Prashar, M. Rashid, S. K. Gupta, and R. K. Saket, ‘‘Electricity
load forecasting and feature extraction in smart grid using neural net-
works,’’ Comput. Electr. Eng., vol. 96, Dec. 2021, Art. no. 107479, doi:
10.1016/j.compeleceng.2021.107479.

[3] K. Ni, J. Wang, G. Tang, and D. Wei, ‘‘Research and application of a
novel hybrid model based on a deep neural network for electricity load
forecasting: A case study in Australia,’’ Energies, vol. 12, no. 13, p. 2467,
Jun. 2019, doi: 10.3390/en12132467.

[4] E.Mocanu, P. H. Nguyen,M. Gibescu, andW. L. Kling, ‘‘Deep learning for
estimating building energy consumption,’’ Sustain. Energy, Grids Netw.,
vol. 6, pp. 91–99, Jun. 2016, doi: 10.1016/j.segan.2016.02.005.

[5] E. Erdogdu, ‘‘Electricity demand analysis using cointegration and ARIMA
modelling: A case study of Turkey,’’ Energy Policy, vol. 35, no. 2,
pp. 1129–1146, Feb. 2007, doi: 10.1016/j.enpol.2006.02.013.

[6] H. Liu, ‘‘The forecast of household power load based on genetic algorithm
optimizing BP neural network,’’ J. Phys., Conf. Ser., vol. 1871, no. 1,
Apr. 2021, Art. no. 012110, doi: 10.1088/1742-6596/1871/1/012110.

[7] C. Sun, Q. Lv, S. Zhu, W. Zheng, Y. Cao, and J. Wang, ‘‘Ultra-short-term
power load forecasting based on two-layer XGBoost algorithm consid-
ering the influence of multiple features,’’ High Voltage Eng., vol. 47,
pp. 2885–2898, Aug. 2021.

[8] Y. Chen and H. Tan, ‘‘Short-term prediction of electric demand in building
sector via hybrid support vector regression,’’ Appl. Energy, vol. 204,
pp. 1363–1374, Oct. 2017, doi: 10.1016/j.apenergy.2017.03.070.

[9] H. Shi, M. Xu, and R. Li, ‘‘Deep learning for household load forecasting—
A novel pooling deep RNN,’’ IEEE Trans. Smart Grid, vol. 9, no. 5,
pp. 5271–5280, Sep. 2018, doi: 10.1109/TSG.2017.2686012.

[10] Z. Niu, Z. Yu,W. Tang, Q.Wu, andM. Reformat, ‘‘Wind power forecasting
using attention-based gated recurrent unit network,’’ Energy, vol. 196,
Apr. 2020, Art. no. 117081, doi: 10.1016/j.energy.2020.117081.

[11] D. Ageng, C.-Y. Huang, and R.-G. Cheng, ‘‘A short-term household load
forecasting framework using LSTM and data preparation,’’ IEEE Access,
vol. 9, pp. 167911–167919, 2021, doi: 10.1109/ACCESS.2021.3133702.

[12] S. Atef, K. Nakata, and A. B. Eltawil, ‘‘A deep bi-directional long-
short term memory neural network-based methodology to enhance
short-term electricity load forecasting for residential applications,’’
Comput. Ind. Eng., vol. 170, Aug. 2022, Art. no. 108364, doi:
10.1016/j.cie.2022.108364.

[13] K. Li,W.Huang, G. Hu, and J. Li, ‘‘Ultra-short term power load forecasting
based on CEEMDAN-SE and LSTM neural network,’’ Energy Buildings,
vol. 279, Jan. 2023, Art. no. 112666, doi: 10.1016/j.enbuild.2022.112666.

[14] N. Jha, P. Deepak, M. Rashid, S. K. Gupta, and R. K. Saket, ‘‘Electricity
load forecasting and feature extraction in smart grid using neural net-
works,’’ Comput. Electr. Eng., vol. 99, Dec. 2021, Art. no. 107479, doi:
10.1016/j.compeleceng.2021.107479.

[15] Q. Zhang, J. Chen, G. Xiao, S. He, and K. Deng, ‘‘Transform-
Graph: A novel short-term electricity net load forecasting model,’’ Energy
Rep., vol. 9, pp. 2705–2717, Dec. 2023, doi: 10.1016/j.egyr.2023.01.050.

[16] B. Vidakovic and C. B. Lozoya, ‘‘On time-dependent wavelet denoising,’’
IEEE Trans. Signal Process., vol. 46, no. 9, pp. 2549–2554, Sep. 1998, doi:
10.1109/78.709544.

[17] M. Last, Y. Klein, and A. Kandel, ‘‘Knowledge discovery in time series
databases,’’ IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 31, no. 1,
pp. 160–169, Feb. 2001, doi: 10.1109/3477.907576.

[18] S. Li, L. Goel, and P. Wang, ‘‘An ensemble approach for short-term
load forecasting by extreme learning machine,’’ Appl. Energy, vol. 170,
pp. 22–29, May 2016, doi: 10.1016/j.apenergy.2016.02.114.

[19] A. Laouafi, M. Mordjaoui, F. Laouafi, and T. E. Boukelia, ‘‘Daily peak
electricity demand forecasting based on an adaptive hybrid two-stage
methodology,’’ Int. J. Electr. Power Energy Syst., vol. 77, pp. 136–144,
May 2016, doi: 10.1016/j.ijepes.2015.11.046.

[20] Y. Luo, Q. Cheng, S. Yan, and D. Yang, ‘‘Situation awareness method
of the distribution network based on EMD-SVD and Elman neu-
ral network,’’ Energy Rep., vol. 8, pp. 632–639, Nov. 2022, doi:
10.1016/j.egyr.2022.05.212.

[21] D. Pan, B. Xu, J. Ma, Q. Ding, J. Ding, J. Zhang, and Q. Zhang, ‘‘Short-
term load forecasting based on EEMD-approximate entropy and ELM,’’ in
Proc. IEEE Sustain. Power Energy Conf. (iSPEC). Beijing, China: IEEE,
Nov. 2019, pp. 1772–1775, doi: 10.1109/iSPEC48194.2019.8974925.

[22] D. Deng, J. Li, Z. Zhang, Y. Teng, and Q. Huang, ‘‘Short-term electric load
forecasting based on EEMD-GRU-MLR,’’ Power Syst. Technol., vol. 44,
no. 2, pp. 593–602, 2020, doi: 10.13335/j.1000-3673.pst.2019.0113.

[23] I. Niazazari and H. Livani, ‘‘Attack on grid event cause analysis: An adver-
sarial machine learning approach,’’ in Proc. IEEE Power Energy Soc.
Innov. Smart Grid Technol. Conf. (ISGT)., Washington, DC, USA: IEEE,
Feb. 2020, pp. 1–5, doi: 10.1109/ISGT45199.2020.9087649.

[24] Y. Chen, Y. Tan, and D. Deka, ‘‘Is machine learning in power systems
vulnerable?’’ in Proc. IEEE Int. Conf. Commun., Control, Comput. Tech-
nol. Smart Grids (SmartGridComm). Aalborg, Denmark: IEEE, Oct. 2018,
pp. 1–6, doi: 10.1109/SmartGridComm.2018.8587547.

[25] J. Li, Y. Liu, T. Chen, Z. Xiao, Z. Li, and J. Wang, ‘‘Adversarial attacks and
defenses on cyber–physical systems: A survey,’’ IEEE Internet Things J.,
vol. 7, no. 6, pp. 5103–5115, Jun. 2020, doi: 10.1109/JIOT.2020.2975654.

[26] A. Sayghe, J. Zhao, andC. Konstantinou, ‘‘Evasion attackswith adversarial
deep learning against power system state estimation,’’ in Proc. IEEE Power
Energy Soc. General Meeting (PESGM). Montreal, QC, Canada: IEEE,
Aug. 2020, pp. 1–5, doi: 10.1109/PESGM41954.2020.9281719.

[27] J. Tian, B. Wang, Z. Wang, K. Cao, J. Li, and M. Ozay, ‘‘Joint adversarial
example and false data injection attacks for state estimation in power sys-
tems,’’ IEEE Trans. Cybern., vol. 52, no. 12, pp. 13699–13713, Dec. 2022,
doi: 10.1109/TCYB.2021.3125345.

[28] Y. Chen, Y. Tan, and B. Zhang, ‘‘Exploiting vulnerabilities of load
forecasting through adversarial attacks,’’ in Proc. 10th ACM Int. Conf.
Future Energy Syst. Phoenix AZ USA: ACM, Jun. 2019, pp. 1–11, doi:
10.1145/3307772.3328314.

[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, ‘‘Towards
deep learning models resistant to adversarial attacks,’’ Sep. 2017,
arXiv:1706.06083. Accessed: Jul. 10, 2023.

[30] M. Gallagher, N. Pitropakis, C. Chrysoulas, P. Papadopoulos, A. Mylonas,
and S. Katsikas, ‘‘Investigating machine learning attacks on financial time
series models,’’ Comput. Secur., vol. 123, Dec. 2022, Art. no. 102933, doi:
10.1016/j.cose.2022.102933.

[31] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Müller,
‘‘Adversarial attacks on deep neural networks for time series classifica-
tion,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Budapest, Hungary,
2019, pp. 1–8, doi: 10.1109/IJCNN.2019.8851936.

VOLUME 11, 2023 105067

http://dx.doi.org/10.1016/j.apenergy.2020.115503
http://dx.doi.org/10.1016/j.compeleceng.2021.107479
http://dx.doi.org/10.3390/en12132467
http://dx.doi.org/10.1016/j.segan.2016.02.005
http://dx.doi.org/10.1016/j.enpol.2006.02.013
http://dx.doi.org/10.1088/1742-6596/1871/1/012110
http://dx.doi.org/10.1016/j.apenergy.2017.03.070
http://dx.doi.org/10.1109/TSG.2017.2686012
http://dx.doi.org/10.1016/j.energy.2020.117081
http://dx.doi.org/10.1109/ACCESS.2021.3133702
http://dx.doi.org/10.1016/j.cie.2022.108364
http://dx.doi.org/10.1016/j.enbuild.2022.112666
http://dx.doi.org/10.1016/j.compeleceng.2021.107479
http://dx.doi.org/10.1016/j.egyr.2023.01.050
http://dx.doi.org/10.1109/78.709544
http://dx.doi.org/10.1109/3477.907576
http://dx.doi.org/10.1016/j.apenergy.2016.02.114
http://dx.doi.org/10.1016/j.ijepes.2015.11.046
http://dx.doi.org/10.1016/j.egyr.2022.05.212
http://dx.doi.org/10.1109/iSPEC48194.2019.8974925
http://dx.doi.org/10.13335/j.1000-3673.pst.2019.0113
http://dx.doi.org/10.1109/ISGT45199.2020.9087649
http://dx.doi.org/10.1109/SmartGridComm.2018.8587547
http://dx.doi.org/10.1109/JIOT.2020.2975654
http://dx.doi.org/10.1109/PESGM41954.2020.9281719
http://dx.doi.org/10.1109/TCYB.2021.3125345
http://dx.doi.org/10.1145/3307772.3328314
http://dx.doi.org/10.1016/j.cose.2022.102933
http://dx.doi.org/10.1109/IJCNN.2019.8851936


Q. Liu et al.: Short-Term Power Load Forecasting in FGSM-Bi-LSTM Networks Based on EWT

[32] R. Gao, L. Du, P. N. Suganthan, Q. Zhou, and K. F. Yuen, ‘‘Random vector
functional link neural network based ensemble deep learning for short-term
load forecasting,’’ Expert Syst. Appl., vol. 206, Nov. 2022, Art. no. 117784,
doi: 10.1016/j.eswa.2022.117784.

[33] Z. Yu, Y. Sun, J. Zhang, Y. Zhang, and Z. Liu, ‘‘Gated recurrent unit
neural network (GRU) based on quantile regression (QR) predicts reservoir
parameters through well logging data,’’ Frontiers Earth Sci., vol. 11,
Jan. 2023, Art. no. 1087385, doi: 10.3389/feart.2023.1087385.

QINGCHAN LIU was born in Cuiping, Sichuan,
in August 1982. He received the degree in electri-
cal engineering from North China Electric Power
University. He is currently a Technical Expert
and a Senior Engineer with the Measurement
Center, Yunnan Power Grid Company Ltd. His
research interests include electricity measurement
and intelligent energy measurement technology,
and online monitoring of measuring equipment
operation status.

JIANING CAO was born in Taiyuan, Shanxi,
China. He is currently pursuing the bachelor’s
degree in mechanical engineering with the Faculty
of Civil Aviation and Aeronautics, Kunming Uni-
versity of Science and Technology, Kunming,
China. His main research interests include oper-
ations research, decision-making, and machine
learning.

JINGCHENG ZHANG was born in Qujing,
Yunnan, China. He is currently pursuing the
bachelor’s degree in data science and big data
technology with the Faculty of Science, Kunming
University of Science and Technology, Kunming,
China. His main research interests include swarm
intelligence, data mining, and in-depth learning.

YAO ZHONG received the master’s degree in test
and measurement technology and instrumentation
from the Wuhan University of Technology. He is
currently a Senior Engineer with the Metering
Center, Yunnan Power Grid Company Ltd. His
research interests include power measurement and
intelligent operation and maintenance.

TINGJIE BA received the master’s degree from the
Kunming University of Science and Technology,
in July 2016. Since 2019, he has been the Senior
Manager with the Marketing Department, Yunnan
Power Grid Company Ltd. Hismain research inter-
ests include demand side response of new energy
access, and optimization of electric interaction
between vehicle and pile networks.

YIMING ZHANG received the degree in electrical
engineering and automation from the Kunming
University of Science and Technology, in 2014.
He is currently an Engineer with the Metering
Center (Power Load Control Technology Center),
Yunnan Power Grid Company Ltd. His main
research interests include power grid digitaliza-
tion, power metering automation, and power mon-
itoring system network security.

105068 VOLUME 11, 2023

http://dx.doi.org/10.1016/j.eswa.2022.117784
http://dx.doi.org/10.3389/feart.2023.1087385

