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ABSTRACT The convergence of networking and cloud computing leads to an increasing number of cloud
based services and applications, which require to be processed by network nodes with enough resources.
There are multiple available nodes in the network and network operators need to find paths to forward the
traffic to these nodes for processing. In addition, services and application may have diversified requirements
on the paths in terms of bandwidth, delay, jitter, etc. Therefore, network operators need to determine the
optimal paths considering multiple criteria. However, single-criterion based shortest path algorithms are
often used to compute paths from a source node to one target node, which may result in uneven traffic
distribution and low resource utilization. Furthermore, the paths obtained are only optimal to this criterion
and may not satisfy the Service Level Agreement (SLA) requirements. Therefore, in this paper, we propose
a multi-criteria path finding method to obtain all the Pareto-optimal paths from a source node to multiple
target nodes (destinations). We extend an existing effective multi-criteria routing algorithm (ParetoBFS), and
integrate a multi-queues based bidirectional search mechanism. Additionally, we use a topology sampling
technique to accelerate path computation. We evaluate the performance of these path finding methods
using various topologies with multiple criteria including bottleneck and additive types. Experimental results
demonstrate that our approach can reduce the running time by 54%− 89% in different topologies compared
to the ParetoBFS algorithm. By employing topology sampling, we further improve our algorithm’s speed
while still finding most of the Pareto-optimal paths.

INDEX TERMS Bidirectional search, multi-criteria, path finding, path selection, routing.

I. INTRODUCTION
Network technologies and cloud computing have been
developing fast, driving cloud-network convergence to be a
trend. As a result, many cloud based services (e.g., immersive
VR/AR, live broadcasting, and interactive cloud games) have
emerged and they require to be processed by appropriate
nodes with resources in the network. At the same time, these
services require multiple SLAs guarantees on the path they
traverse by. For example, a cloud VR service requires paths
with large bandwidth and low latency, while also needing
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access to a network node (e.g., a cloud data center, or an edge
cloud node) with sufficient resources to complete associated
processes such as encoding and rendering. Since there are
multiple nodes able to provide processing resources, it is
necessary for operators to consider the appropriate nodes to
process the services in order to improve network resource
utilization. On the other hand, when considering multiple
criteria in path finding, the multi-criteria shortest paths are
Pareto-optimal paths, which means no other paths are better
than they in all the criteria. With multi-criteria optimal path
finding, network operators can provide the services with
higher SLA guarantee or offer they with more flexibility to
achieve trade-off between multiple criteria.
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However, many traditional routing protocols (e.g.,
OSPF [1], RIP [2]) only use single-criterion shortest
path algorithms (e.g., Dijkstra algorithm, Bellman-Ford
algorithm) which may not be able to find a path fulfilling
the SLA requirements. For example, if a path is shortest
regarding the latency for a service from a source node to
a target node, its bandwidth may not be able to satisfy the
requirement. To consider multiple criteria comprehensively
without preference and then to obtain multi-criteria optimal
paths, all Pareto-optimal paths needs to be found. A path is
Pareto-optimal if there is no other path that is better in all
metrics.

Some multi-criteria path selection or finding algorithms
and Quality of Service (QoS) routing methods have been
proposed [3], [4], [5]. However, most of them either address
additive criteria only or combine multiple metrics into a
single composite one, e.g. weigh sum method. In addition,
they usually consider one target node and neglect one to many
scenarios. Chen et al. [6] proposed ParetoBFS, an approach
based on BFS that enumerates all paths while applying
Pareto optimality constraints to prune the traversal tree during
path finding. As a result, it can identify all Pareto-optimal
paths for a demand with specified source and destination.
Chen et al. demonstrated that ParetoBFS offers numerous
advantages over traditional multi-criteria path finding meth-
ods, such as the ability to tackle bottleneck-type criteria and
faster execution speed. However, it primarily considers a
single target (destination) node, i.e., it focuses on finding
Pareto-optimal paths from a source node to target node
without accounting for scenarios involving multiple target
nodes. While it is possible to introduce certain modification
to account for scenarios involving multiple target nodes,
this may lead to a reduction in efficiency and an increase
in computational time. In a network with multiple resource
nodes, a service may be served by any of the available nodes;
hence, in this scenario the service could have multiple target
nodes. For a service, it is also possible to establish multiple
connections between the source node and multiple target
nodes. Additionally, there may be multiple services or users
originating from the same node who require connections to
different target nodes. Therefore, when multiple criteria exist
in the topology, to find out optimal paths, it is necessary
to compute the Pareto-optimal paths regarding these target
nodes. By considering multiple target nodes rather than
one, it becomes possible to select better paths or avoid
choosing suboptimal paths. Moreover, it enables achieving
resource load balancing across multiple target nodes. Since
the ParetoBFS works well for multi-criteria path finding
between a source node and a target node, one simple solution
would be invoking the ParetoBFS multiple times to obtain
all the Pareto-optimal paths between the source node and
each target node and then determine the final Pareto-optimal
paths among these found paths. However, simply applying
this naive approach tends to be time-consuming. The reason
is that it does not consider potential optimizations during the
path finding process when there are multiple target nodes.

In the scenario with multiple target nodes, some paths from a
source node to these nodesmight be pruned in advance during
the path finding process, eliminating the need for further
exploration.

On the other hand, a bidirectional search mechanism can
be used to improve the speed of path finding method [7].
However, only additive criteria and single target node are
considered in this method. The stopping condition for
bidirectional search in multi-criteria scenarios differs from
that in traditional single-criterion scenarios. Even forward
search and backward search encounter at the intermediate
state, it is insufficient to halt the path finding process in multi-
criteria contexts. This is because in multi-criteria scenarios,
it is still possible to find other Pareto-optimal paths when two
search processes meet.

In this paper, we consider multi-criteria path finding for a
service which can be processed by one of the multiple target
nodes with resources in the network. We extend the previous
BFS-based method ParetoBFS and use a bidirectional search
to find out the full Pareto-optimal path set for the considered
service to multiple target nodes. When using bidirectional
search, we extend the stopping condition idea proposed
by Demeyer et al. [7] We use multiple criteria queues to
determine whether there is a need for further path finding,
taking into account the optimal criteria values of the paths
formed by forward and backward searches. Additionally,
we use topology sampling technique with k shortest method
to obtain the sub-topology and further increase the algorithm
speed without comprising too much path quality.

Our contributions are listed as follows:
• We formulate the multi-criteria path finding problem
for multiple target nodes scenario, wherein a given
demand can be served by multiple nodes, necessitating
the identification of Pareto-optimal paths from a specific
source node to these targets.

• We propose a multi-criteria path finding method based
on the ParetoBFS algorithm and bidirectional search
mechanism, capable of handling the problem with
multiple target nodes.

• We employ a topology sampling method to further
accelerate our algorithm. By computing the k shortest
paths for each criterion from the source to multiple
targets, we construct a sub-topology consisting of the
edges included in these paths. Subsequently, our multi-
criteria Pareto-optimal path finding method is then
performed using this sub-topology.

The remainder of the paper is organized as follows:
Section II discusses related works on multi-criteria path
finding in networks. Section III describes the modeling
of the multi-criteria path finding scenario involving a
network with multi-criteria links and multiple target nodes.
Section IV introduces the Bidirectional Multi-Targets Pareto
BFS algorithm (BMT-ParetoBFS) and a topology sampling
method for algorithm acceleration. Section V presents
experimental results and discussions. Section VI concludes
the paper.
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II. RELATED WORKS
Multi-criteria path selection or finding is important in many
areas, e.g., transportation and communications. In transporta-
tion area, Kurbanov et al. [8] proposed a one to many version
of Pareto path set finding method, which is similar to our
considered multi-targets scenario. However, the criteria used
are different, and the path computation in their work is based
on the multicriteria label-setting algorithm, which can only
deal with additive-type criteria. With the network technology
development, multi-criteria path finding plays a crucial
role in network operation and management. As services
and applications increasingly demand more stringent and
diversified QoS requirements, single-metric based shortest
path algorithms become inadequate. QoS routing [9], [10],
[11] has been extensively researched, but most approaches
focus on dealing with additive types of criteria such as cost
and delay, and bottleneck-type criteria such as bandwidth
are treated as constraints rather than optimization objectives.
It is proven that multi-criteria path finding accounting for
more than two criteria constitutes an NP-hard problem [12],
[13]. However, for medium-sized real-world topologies,
it is possible to obtain Pareto-optimal paths in reasonable
time [6]. Chen et al. proposed ParetoBFS [6], an efficient
BFS-based algorithm with pruning technique to achieve the
Pareto-optimal path set for a demand given a source node
and a target node. ParetoBFS presents advances compared to
those traditional multi-criteria routing algorithms but focuses
on single-target scenario. In reality, there are multiple nodes
in the network available to provide resources or perform
relevant processing operations for services and applications.
Therefore, multi-targets and multi-criteria path finding is
needed in order to provide users or services better paths.
We extend the ParetoBFS by introducing bidirectional search
with multi-queues to accommodate the multi-targets scenario
and use the original ParetoBFS as a baseline for comparing
the performance of the proposed algorithm.

On the other hand, path finding is also important in
traffic engineering (TE). In TE algorithms of B4 [14] and
SWAN [15], k shortest path algorithm is used to compute
paths form a data center to the other data centers in their
wide area networks. Also, in other TE schemes [16], [17],
[18], [19], k shortest path algorithm is used to find paths for
given source-destination pairs. These TE algorithms concern
the network flows optimization without considering whether
the paths can satisfy the SLA requirements of the services.
Also, they do not consider the scenario where a source node
can be routed to multiple target nodes. Our work can be a
complementary to TE, using our proposed method to obtain
Pareto-optimal paths for some demands rather than using
k shortest path. Therefore, better paths can be provided to
TE. With differentiating the path selection in TE, it will
better guarantee SLA of related services while optimizing the
overall objectives of network flows.

The aforementioned path finding methods focus on the
network operators’ perspective. Recently, a user-centric path
selection method has been proposed [20]. In this method,

both cost and throughput of data transfer in cloud networks
are taken into account to identify suitable paths that balance
performance and cost. However, this method only considers
two criteria and a single destination. Our path finding
approach, can be provided to users to help determine
optimal paths to multiple destinations while achieving a
trade-off between various criteria, facilitating the user to
select appropriate paths to connect to target nodes.

III. PROBLEM FORMULATION
A communication network with cloud resources, which can
be abstracted as an undirected graph G, with V nodes and E
links, where among V nodes there is N nodes with resources,
e.g., GPU, CPU, and storage. Assume that there are multiple
criteria for each edge, e.g., delay, cost, and bandwidth.
Thus, for each edge {e(u, v)|u, v ∈ V } ∈ E , there exists
an associated edge criteria w(u, v) = (w1,w2, · · · ,wK ),
where K represents the number of criteria. Basically, there
exists two types of criterion, additive-type (e.g., delay) and
bottleneck-type (e.g., bandwidth). For additive-type criterion,
a path’s criterion is calculated as the sum of criterion of
each link in the path. For bottleneck-type criterion, a path’s
criterion is determined by the minimum criterion value of
the links in the path. In some studies, the bottleneck-type
criterion is alternatively referred to as the concave type
criterion. Multiplicative criteria (e.g. link reliability) may be
classified as another type of criterion, however, they can be
transformed into additive-type criteria by using a logarithm
transformation. In a network with multiple resource nodes,
a service may be severed by one of these nodes. Therefore,
for a service flow originated at a source node and need
to reach one of the target nodes, in order to find optimal
paths in the multi-criteria scenario, we need to find Pareto
optimal paths. A path p from a source node s to a target
node t is constituted by a sequence of edges that connects a
sequence of vertices (s, v1, v2, · · · , t). Since multiple criteria
exist within the links, a path can be associated with a path
criteria vector w(p) = {w(p1),w(p2), · · · ,w(pK )}, where
w(pi) =

∑
eu,v∈pwi(u, v) if wi(u, v) belongs to the additive-

type criterion, where w(pi) = min(wi(u, v),∀eu,v∈p) if
wi(u, v) belongs to the bottleneck-type criterion.
Multiple criteria of links result in multiple criteria of

paths. Since a path contains multiple criteria, it is required
to use Pareto-optimality to compare paths.That is, a path is
Pareto-optimal if it is not be dominated by any other paths.
Here, ‘‘dominate’’ indicates that a path’s criteria are superior
to those of another path when considering all criteria for
comparison. To elaborate, a path p dominates another path
q if and only if wi(p) ⪰ wi(q),∀i ∈ {1, 2, · · · ,K }, where the
notation ⪰ represents optimal or equal, and strict inequality
should holds at least once. Thus, a path p is Pareto-optimal
if and only if it is not dominated by any path q. All not
dominated paths constitutes the Pareto-optimal path set.

In this paper, the objective is to identify the Pareto-optimal
path set from a source node to multiple target nodes
within a given multi-criteria graph G. This differs from
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FIGURE 1. Example of Pareto-optimal path finding from the source node A to target nodes (G and E).

the conventional Pareto-optimal path-finding problem, which
considers only a single target node.

To better illustrate this problem, an example is provided in
Fig. 1. The edges of the graph are labeled with three metrics,
bandwidth (w1), delay (w2), cost (w3). Node G and node
E are the nodes with resources in the graph. A demand f
originating from source node Amust be routed to either node
G or node E in order to access resources. There are 8 paths
(p1, p2, · · · , p8) from node A to node G or node E . Among
those Pareto-optimal paths, no paths are strictly more optimal
than the others. For instance, p1 exhibits lower delay and
cost compared to p2, while p2 possesses a larger bandwidth.
However, any non Pareto-optimal path is dominated by at
least one of the Pareto-optimal paths. As an illustration, p3 is
more optimal than p5 since w2(p3) < w2(p5) and w3(p3) <

w3(p5) while w1(p3) = w1(p5). Ultimately, we identify the
Pareto-optimal paths p1 − p3, taking multiple targets into
consideration. Note that here is different from previous work,
where only one target is take into account. In our case, the
final optimal paths need to be determined by paths of multiple
target nodes. For instance, if only Target 2 exists, p7 would be
a Pareto-optimal path, as it is not dominated by p2. However,
when two targets are present, p7 becomes dominated by
both p1 and p3, thus rendering it a non-Pareto-optimal
path.

In the illustrated example involving two destinationsG and
E , if ParetoBFS is applied, the Pareto-optimal path set from
A to G: p1 : (‘A′,′ B′,′ G′); p3 : (‘A′,′ H ′,′ G′) and that from
A to E : p2 : (‘A′,′ C ′,′ D′,′ E ′); p7 : (‘A′,′ H ′,′ F ′,′ E ′) need
to be computed separately. Once these Pareto-optimal paths
are obtained during individual path finding processes, they
are utilized for comparison with paths awaiting expansion,
determining whether pruning operations are performed on the
latter. Ultimately, the two Pareto-optimal path sets are merged
and non-Pareto-optimal paths are filtered out, leading to the
ultimate Pareto-optimal path set for both destinations: p1 :
(‘A′,′ B′,′G′); p2 : (‘A′,′ C ′,′ D′,′ E ′); p3 : (‘A′,′H ′,′ G′).

In contrast, our approach employs a multi-queues based
bidirectional path finding strategy, simultaneously conduct-
ing path finding from source node A towards target nodes
G and E (as depicted in Fig. 2). This bidirectional strategy
accelerates the path finding process. Additionally, we utilize
an overall Pareto-optimal path set for both G and E instead
of separate sets to facilitate path pruning, which might lead
to the early identification that p7 is not Pareto-optimal.
Consequently, this path is discarded in advance, eliminating
the need to compare it with other paths during the path finding
process, thus reducing comparative operations and saving
time.

There may exist many Pareto-optimal paths for multiple
target nodes. Network operators can further consider each
service’s SLA requirements, each target node’s resource
status and overall network state, and use traffic engineering
techniques with these paths as one of the input to achieve
holistic network level optimization such as minimizing
maximal link utilization and maximizing throughput, and
guarantee the SLAs of services.

IV. PROPOSED METHOD
In this section, we first illustrate the original Pareto-optimal
path finding algorithmParetoBFS, which is based onBFS and
pruning technique to effectively traverse all the paths between
the source and the target. ParetoBFS is proven to have many
advantages compared to traditional multi-criteria path com-
putation algorithm, such as handling both bottleneck-type
and additive-type criterion, and identifying all Pareto-optimal
paths between the source and target. Then we extend
the path finding scenario to accommodate multiple target
nodes and proposed a new algorithm based on ParetoBFS
that incorporates bidirectional search to accelerate the path
finding process. In the multi-criteria path finding problem,
the stopping condition for the bidirectional search is different
from that in the single criterion scenario. In the single
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criterion case, when forward search and backward search
reach the same node during path finding, then the whole
path find process can be considered complete. However,
due to multi-criteria nature of paths, it remains possible to
discover other Pareto-optimal paths even forward search and
backward search converge at the same node. We use a similar
stopping condition presented in [7], which can guarantee
that there is no need to further explore the remaining
unvisited paths. For the stopping condition for bidirectional
search, we design a multi-queues method to determine
the optimal value of the potential paths from source node
to target nodes extending from the remaining unexplored
paths.

A. ORIGINAL PARETOBFS ALGORITHM
The original ParetoBFS is present in [6]. Here we briefly
introduce the basic process. The ParetoBFS optimal path
finding algorithm employs the BFS traversal concept, using a
first-in-first-out (FIFO) queue to enqueue and dequeue paths
while continuously expanding paths from the source node to
the target node. The execution process of the algorithm is
based on path pruning, path extension, and Pareto-optimal
path sets updating for each node. Path pruning uses two
conditions to check if a path is Pareto-optimal for Pareto-
optimal path set of the current node (the tail node of the
path) and target node: (i) Whether this path is dominated
by the Pareto-optimal path set of the current node and
(ii) Whether this path is dominated by the Pareto-optimal
path set of the target node. If this path is not dominated
in these two conditions, consider it as temporarily Pareto-
optimal, add it to the current node’s Pareto-optimal path set,
and extend it with its connected nodes to form new paths
to be enqueued; otherwise, prune the path (remove it from
the queue and do not expand further). By enqueueing and
dequeueing paths, expand paths, assess optimality, and prune,
traversing all paths from the source to the target. When
there are no more paths in the queue, the algorithm stops,
and the Pareto-optimal path set of the target node is found.
Note that,Pareto-optimal path set of the target node contains
all Pareto-optimal paths from the source node to the target
node.

B. BIDIRECTIONAL MULTIPLE TARGETS-PARETOBFS
ALGORITHM
The original ParetoBFS is primarily designed to handle
one target node. However, in networks, multiple nodes are
capable of serving the demand originated at a source node.
To obtain Pareto-optimal paths concerning all target nodes,
we could execute ParetoBFS N times, where N is equal to
the number of target nodes. After calculation of each target
node’s Pareto-optimal path set, the elimination of dominated
paths in these sets is also needed in order to identify the final
Pareto-optimal paths for all target nodes. Therefore, in the
scenario of multiple target nodes, using ParetoBFS would
be time-consuming and less efficient. Thus, we extend the
ParetoBFS and incorporate bidirectional search to find all

Algorithm 1 Bidirectional Multi Targets ParetoBFS
Input: G, Source, Targets
Output: target_pareto_set;
1: target_pareto_set ← ∅;
2: for v ∈ G(V ) do
3: forward_pareto_set[v]← ∅;
4: for target ∈ targets do
5: multi_backward_pareto_set[target][v]← ∅;
6: end for
7: end for
8: forward_path_queue← ∅
9: Multi_backward_path_queue← ∅
10: forward_pareto_set[v].add(path(source))
11: forward_path_queue.push(path(source))
12: for target ∈ targets do
13: multi_backward_pareto_set[target][v].add(path(target))
14: multi_backward_path_queue[target].push(path(target))
15: end for
16: while optimal{forward_path_queue} +

optimal{multi_backward_path_queue} is Pareto-optimal
for target_path_set do

17: next_search← get_next_search();
18: if next_search = 0 then
19: ForwardSearching(G, targets);
20: else if next_search > 0 then
21: Backward_Searching(G, source, targets[nextsearch]);
22: else
23: Break
24: end if
25: end while
26: return target_pareto_set

Pareto-optimal paths from a source node to multiple target
nodes. Our approach is termed as Bidirectional Multiple
Targets-ParetoBFS algorithm (BMT-ParetoBFS).

The complete BMT-ParetoBFS algorithm is depicted in
Algorithm 1, which requires the invocation of Algorithm 2, 3,
4, and 5. Both Algorithm 2 and Algorithm 3 are extensions of
ParetoBFS that account for multiple target nodes; these cor-
respond to forward search and backward search, respectively.
The main idea is to execute forward search and backward
search in sequence to extend and find the Pareto-optimal
paths regarding multiple target nodes.

First, we introduce algorithm 1, the main path finding
process. The whole pseudo code is shown in algorithm 1,
where the input is the graph (with multi-criteria links), the
source node and multiple target nodes, while the output
is target_pareto_set , the Pareto-optimal path set which
contains all Pareto-optimal paths from the source node
to these target nodes. Some temporary paths need to be
stored for extension and comparison during path finding.
forward_pareto_set stores the Pareto-optimal path sets of
each node, and these sets contains Pareto-optimal paths
from the source node to the corresponding node dur-
ing forward search. Multi_backward_pareto_sets contains
multiple Pareto-optimal path sets of each node for each
backward search, which contains Pareto-optimal paths from
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a target node to corresponding nodes. Forward_path_queue
is a queue to store the temporary path waiting to be
explored in forward search while backward_path_queues
are queues performing same function in backward searches.
Multi_backward_path_queues is comprised of these back-
ward path queues of which the amount is equal to the
number of the target nodes. Note that target_pareto_set ,
forward_pareto_set ,multi_backward_pareto_sets, forward_
path_queue, and multi_backward_path_queues initially are
set as empty (line 1-9 in algorithm 1). Then the source node
is pushed into forward_path_queue and each target nodes are
pushed into each backward_path_queue.Also, source node
and target nodes are added into forward_pareto_set and
multi_backward_pareto_set , respectively. These operations
are to finish the related initialization. Then the main progress
are executed. When the stopping condition is not met, the
forward and backward search are executed alternately in a
specific order using a get next search function. This function
identifies the subsequent search to execute by sequentially
and iteratively generating numbers between 0 and N − 1.
The number 0 is corresponding to the forward search and
number between 1 and N − 1 is corresponding to backward
search from different target nodes. If a specific search has
been completed or halted, then it will be bypassed. Supposed
there are N target nodes, first a forward search (algorithm
2) is executed and following the N times backward search
(algorithm 3). ForN times backward search, first, a backward
search is from the first target node, sequentially, another
backward search is from the second target node, and so
on. Each search extends paths by enqueueing, dequeueing,
and pruning paths. During the path finding, each search
updates the relevant nodes’ Pareto-optimal path set using
pareto_add function in Algorithm 4 and combine path from
other searches using combine_path function in Algorithm 4.
Some of the searches may be stopped in advance when
the corresponding path queue is empty. When the stopping
conditions are met or there are no more paths to explore
in each path queue, the algorithm terminates, resulting
in the final Pareto-optimal path set regarding all target
nodes.

Algorithm 2 describes the specific process of forward
search. First, the forward_path_queue dequeues the path
from the path queue by pop operation and the last node (s1)
of the path is determined (dequeue process). Then the path
is checked whether it is Pareto-optimal to target_pareto_set
and to forward_pareto_set[s1]. If not, it means that
there exists at least a better path in target_pareto_set or
forward_pareto_set[s1], leading to no need to further expand
the current path, because extension cannot make a suboptimal
path optimal. If so, then we find out all the connected nodes
(s2) of s1 according to the topology information, and extend
the path with a new edge (s1, s2). The out_edges means
finding all the connected edges of s1 and dest_node means
identifying the end node of the edge. Then new path can be
formed by appending the new edge to the original path. The
number of connected next nodes determines the number of

Algorithm 2 Forward Search
1: path← forward_path_queue.pop();
2: s1← path.end();
3: if path is Pareto-optimal for target_pareto_set and
path ∈ forward_pareto_set[s1] then

4: for edge ∈ s1.out_edges() do
5: s2← edge.dest_node()
6: if s2 /∈ path then
7: new_path← path.append(edge)
8: if new_path is Pareto-optimal to
target_pareto_set and forward_pareto_set[s2] then

9: if s2 not in targets then
10: forward_pareto_set[s2]←

pareto_add(forward_pareto_set[s2], new_path)
11: forward_path_queue.push(new_path)
12: for target ∈ targets do
13: if

multi_backward_pareto_sets[target][s2] ̸= ∅ then
14: target_pareto_set ←

combine_path(target_pareto_set ,
multi_backward_path_queue[target][s2], new_path)

15: end if
16: end for
17: else
18: target_pareto_set ←

pareto_add(target_pareto_set, new_path)
19: end if
20: end if
21: end if
22: end for
23: end if
24: return target_pareto_set

new paths created. Therefore, for each new path we need
to repeat the following operations (The loop in line 4 in
Algorithm 2). Note that before adding the new edge, we check
whether s2 is in the path in order to prevent path loops (line 6
in Algorithm 2). If the original path contains s2, it then
will form a loop when adding the new edge, thus this new
edge will not be considered. Once a new path is formed,
we again check its Pareto optimality to target_pareto_set and
forward_pareto_set[s2]. The reason is the same as before:
extending suboptimal paths is unnecessary, as they will not
be transformed into optimal ones in the future. After Pareto-
optimality check, the new path is temporally Pareto optimal
and if s2 is one of the targets, we add the new path in
to target_pareto_set[s2]. Otherwise, we add the new path
in to forward_pareto_set[s2] using pareto_add function in
Algorithm 4. Meanwhile, we enqueue the new path into the
forward_path_queue. Then we loop all targets to see whether
the backward search from each target executed by algorithm 4
has reached s2. If so, then we can combine the new path and
the path from the target to s2 to get a complete path from the
source node to one target node, using combine_path function
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Algorithm 3 Backward Search
1: backward_pareto_set ←
multi_backward_pareto_sets[target]

2: backward_path_queue←
multi_backward_path_queues[target]

3: path← backward_path_queue.pop()
4: s1← path.end()
5: if path is Pareto-optimal for target_pareto_set and path ∈
backward_pareto_set[s1] then

6: for edge ∈ s1.out_edges() do
7: s2← edge.dest_node()
8: if s2 /∈ path then
9: new_path← path.append(edge)
10: if new_path is Pareto-optimal to target_pareto_set

and backward_pareto_set[s2] then
11: if s2 ̸= source then
12: backward_pareto_set[s2]←

pareto_add(backward_pareto_set[s2], new_path)
13: backward_path_queue.push(new_path)
14: if forward_pareto_set[s2] ̸= ∅ then
15: target_pareto_set ←

combine_path(target_pareto_set ,
forward_pareto_set[s2], new_path)

16: end if
17: else
18: target_pareto_set ←

pareto_add(target_pareto_set, new_path.reverse())
19: end if
20: end if
21: end if
22: end for
23: end if

in Algorithm 5. Then this full new path from source node to
one target node is added into target_pareto_set if it is Pareto
optimal to this path set. Here, a forward search has been
completed, and the Pareto-optimal path sets of the relevant
nodes has been updated.

The Algorithm 3 describes the backward search of optimal
paths form target nodes to the source node, sharing the
similar logic of forward search in Algorithm 2, which
also use a path queue to dequeue paths and enqueue new
extending paths, combine new paths and the paths formed by
forward searching to obtain full new paths and updates the
multi_backward_pareto_sets and target_pareto_set .
Pareto_add function in Algorithm 4 is used to add new

path into related Pareto path set and remove the existing
path dominated by the new path. Combine_path function
in Algorithm 5 is used to combine the path formed by
forward and backward search. The path found by forward
(or backward) search from the source node (or target
nodes) to the intermediate node are combined with the
found Pareto-optimal paths in backward (or forward) Pareto-
optimal set of this node to form a full new path from the
source node to one target node. It may also remove some
exiting paths in the target_pareto_set if these paths are
dominated by the new path.

Algorithm 4 pareto_add
1: if new_path ∈ pareto_set then
2: return pareto_set
3: end if
4: result_pareto_set ← ∅
5: for path in pareto_set do
6: if path dominates new_path then return pareto_set
7: else if new_path does not dominate path then
8: result_pareto_set.append(path)
9: end if
10: end for
11: result_pareto_set.append(new_path)
12: return result_pareto_set

Algorithm 5 combine_path
1: new_path_set ← ∅
2: for another_temp_path ∈ temp_pareto_set do
3: new_path_set.add

(combine(temp_path, another_temp_path))
4: end for
5: result_pareto_set ← target_pareto_set
6: for new_path in new_path_set do
7: result_pareto_set ←
pareto_add(result_pareto_set, path)

8: end for
9: return result_pareto_set

Note that in the multi-criteria path finding scenario,
stopping condition for bidirectional search is not when two
search process reach at the same node. It requires to calculate
the potential optimal path value of forward search and
backward search regarding all the criteria. Then the values
of a virtual optimal path can be obtained by combine the
optimal values of remaining paths in forward search queue
and backward search queues. If such a virtual optimal path
is dominated by any paths in target_pareto_set , then it is no
need to explore the remaining paths.

In order to effectively determine whether the stopping
condition is met (the line 16 in Algorithm 1), we design a
structure of multiple queues to achieve the potential optimal
path value of the remaining paths in the path queues. The
structure is shown in Fig. 2, for each search there are a path
queue (FIFO) and K monotonic queues (K is the number of
criteria) to obtain the potential optimal value of the remaining
paths in this path queue. When a path is enqueued, it is
added to the end of the FIFO path queue. At the same time,
the K criteria of this path are added to the corresponding
monotonic queues. When a path is dequeued from the path
queue, its corresponding criteria elements are removed from
themonotonic queues. The enqueue and dequeue processes of
a monotonic queue differ from those of a FIFO queue and the
monotonic queues can facilitate to obtain the optimal values
for each criteria of the paths in the FIFO path queue.
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FIGURE 2. The illustration of path queues and K monotonic queues in
forward and backward search to obtain the virtual optimal values for
remaining unexplored paths.

In a monotonic queue, elements are arranged monotoni-
cally from the tail to the head, while in a FIFO queue, they are
organized according to their enqueue order. Monotonicity is
achieved in amonotonic queue as follows: Assume that, in the
queue, the tail element is the maximum, the head element is
the minimum, and the minimum value represents the optimal
value. When a new element is enqueued, compare it with the
tail element; if the new element is larger, then add it into the
monotonic queue as the new tail element; otherwise, remove
the tail element, and continue removing elements until the
new element is larger, then the new element becomes the
tail element. Consequently, the optimal criterion values of
each monotonic queue can be fast obtained from their head
elements. By integrating these optimal values, one can derive
the potential optimal values of unexplored paths from source
node to target nodes. Since these potential value are inferred
from the remaining paths in path queues, we assume there is a
virtual path with these potential optimal values. Specifically,
the path values of the virtual optimal path are constructed by
point-wise operation on the optimal values of forward search
queue and backward search queues. For additive criteria, the
optimal value is the sum of optimal value of forward search
and backward search queues. For bottleneck-type criteria, the
optimal value is determined by theminimum value of forward
search and backward search queues. Therefore, combing the
FIFO path queues and their corresponding K monotonic
queues of forward search and backward searches, the optimal
values of the virtual optimal paths from source node to target
nodes are obtained. Then the virtual optimal path is used to
compare to the paths in target_pareoto_set and determine
whether the algorithm 1 can be stopped. Once the virtual
optimal path is dominated by one of the Pareto-optimal paths
of target_pareoto_set , there is no need to continue the path
searching, and all Pareto-optimal paths from source node to
target nodes are obtained.

Multi-criteria path finding has been proven to be an
NP hard problem [12], [13]. The complexity of original
ParetoBFS is O(nmkp∗) [6], where n,m are the amount of
nodes and links in the topology, respectively, and p∗ is

the amount of Pareto-optimal paths from the source node
to the target nodes. Therefore, for multiple target nodes
scenario, the complexity of invoking N time ParetoBFS
would be O(Nnmkp∗) and now p∗ is determined by the
largest Pareto-optimal path set of these target nodes. Since the
forward search and backward searches of BMT-ParetoBFS
are extensions of ParetoBFS, in the worst case, BMT-
ParetoBFS will have the same complexity as simply using
N times ParetoBFS. However, in BMT-ParetoBFS, some non
Pareto-optimal paths may be eliminated in advance during
path finding or some Pareto-optimal paths can be obtained
faster by combine the paths found by forward search and
backward search. Therefore, BMT-ParetoBFS can reduce
running time compared to PareotBFS in the scenario of
multiple target nodes.

C. BMT-PARETOBFS WITH SAMPLING ON THE TOPOLOGY
BMT-ParetoBFS can find all Pareto-optimal paths from a
source node to multiple target nodes. With the increase in
the number of criteria or the expansion of the topology, the
running time of BMT-ParetoBFS also increases. As a result,
even faster than the ParetoBFS, it still becomes somehow too
slow to find all the Pareto-optimal paths when the topology is
large or with many criteria. In [6], some sampling techniques
are proposed to sample some Pareto-optimal paths to compare
with the new path during path finding rather than using the
whole Pareto-optimal path set. Here, we consider another
type of sampling technique, constructing a sub-topology from
the original topology with k-shortest algorithm for each
criterion, instead of sampling the Pareto-optimal path set.
The sub-topology construction is based on the observation
that during a Pareto-optimal path fining it may not need to
traverse all the intermediate nodes. Or in other words, it has a
good chance to find out most of Pareto-optimal paths on the
sub-topology constructed from original topology. First, from
the source node to each target node, we use k shortest path
algorithm to find out k shortest path regarding each criterion.
Therefore, for N target nodes and K criteria, we can obtain
k ∗ K ∗ N paths. These paths may have duplicate edges and
from these path a sub-topology can be formed. Comparing
to the original topology, the sub-topology is significant
smaller, leading to a running speed improvement when using
BMT-ParetoBFS.

Supposed that BMT-ParetoBFS finds the Pareto-optimal
path set P = {p1, · · · , pm} in the original topology and
the Pareto-optimal set path Q = {q1, · · · , qn} in the sub-
topology. We use three metric, Running Time Ratio (RT),
Path Count Ratio (PC) and Path Quality (PQ) that are defined
in [6] to compare these two path sets. Their definitions are
explained in Table 1. T1 is running time of BMT-ParetoBFS
performed on the sub-topology while T2 is that performed
on the entire topology. n and m are the size of path set
Q and P, respectively. RT and PC can be easily obtained
according to the definitions. The PQ is more complicated
and the following process describes how to calculate the PQ:
(i) normalize the path criterion value of each path for each
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TABLE 1. The explanation of RT, PC, and PQ.

criterion, (ii) for every path in Q, calculate the distances of
all criteria between it and each path in P, then select the
minimum distance as the path distance for this path in Q and
the most approximate path from P (iii) average these n path
distances to obtain PQ. RT indicates acceleration efficiency
by introducing the sampling method, PC indicates the extent
to which the complete Pareto path set is found using the
sampling method, and PQ indicates the difference between
optimal paths found with and without sampling method.

D. THE APPLICATION OF THE PROPOSED METHOD
We have described the algorithm aspect to achieve
Pareto-optimal paths in the previous sections. Here we
describe how to how to apply the proposed method in
production level networks. First we need a SDN controller
and some network telemetry mechanism to collect the overall
network status information, such as delay, jitter, and available
bandwidth. Cost criterion of links is determined by actual link
construction cost and operation cost, and may not be able to
be collected from the link status directly. Therefore, it may
require some prior information from the network operators
or from other related network operation and management
systems. We also need to select a few nodes as candidate
target nodes. With all the criteria of network links are
collected and target nodes are determined, the Pareto-optimal
path from a source node to multiple target nodes can be
calculated with the proposed method. After path calculation,
the Pareto-optimal paths can be obtained. The network
operators can further consider the whole network status and
the SLA requirements of the services and then select the
most appropriate paths accordingly from the Pareto-optimal
path set. Then the selected paths can be installed by the
SDN controller on the related routers. Since production level
networks are dynamic changing, it is required to periodically
to inform the SDN controller with the newest network status
information, then re-execute path computation and path
installation to deal with the network dynamics.

V. EXPERIMENTS AND DISCUSSIONS
A. EXPERIMENTAL SETUP AND DATASET
We use the real-world backbone network topology dataset:
Rocketfuel [21], which is measured by University of
Washington. In the experiment, we use 5 topologies, the size
of which ranging from 79 nodes to 353 nodes. The details
of these topology are shown in Table 2. Note that since some
nodes and links are isolated in the original topologies, we only
use the largest connected components of these topologies.

As some of original topology data only contain edges and
nodes without any criteria such as bandwidth or latency,
we randomly generate values for the criteria using a uniform
distribution. In the experiments, the values of the criteria
are established as follows: For the bandwidth criterion, the
range was set between 100 and 2500, with a granularity
of 10; For the delay criterion, the range is set between
1 and 35, with a granularity of 1; For the cost criterion,
the range is set between 0.1 and 1, with a granularity of
0.1; For all other criteria utilized in the experiment, the
range is set between 0.1 and 1, with a granularity of 0.1.
In order to reduce the impact of specific source and target
node configurations, decrease random errors, and improve
the reliability of our experiments, we implement 100 tests for
each topology. In each test, one node is randomly selected
as the source, while 5 or 10 nodes are randomly designated
as target nodes, respectively. The final algorithm execution
time is determined by averaging the running time of these
100 tests. We use Python to implement the algorithms on a
laptop which has a CPU (AMD Ryzen 7 4800H).

To verify the effectiveness of our method, we compare
it with the original ParetoBFS algorithm, which has been
proven to be effective in finding Pareto-optimal paths in a
multi-criteria topology. Since both methods can find out the
entire Pareto-optimal path set, here we only compare the
running time. Note that compared to the original ParetoBFS
algorithm, our algorithm incorporates a bidirectional search
mechanism. It performs searches from both the source node
and multiple target nodes. For each search, we introduce
multiple monotonic queues to obtain potential optimal values
for the remaining paths in the path queue. By merging
the potential path optimal values from both forward and
backward searches, it is possible to reach the termination
condition and complete the search earlier. Additionally,
we maintain an overall Pareto-optimal path set for the mul-
tiple target nodes, which allows us to eliminate non-Pareto-
optimal paths associated with these target nodes in advance.
This helps reduce some unnecessary path comparison
operations.

In addition, we use a topology sampling method to
accelerate the BMT-ParetoBFS and we also compare our
method with the k-shortest path algorithm [22]. The
k-shortest path algorithm is single criteria-based, and we use
it to find the first k shortest paths for each criterion. In a K
criteria topology, k ∗N ∗K paths are obtained when N targets
are considered. Besides comparing the running time in this
scenario, we also calculate difference between the obtained
path sets in the sub-topology and the full Pareto-optimal path
set in the original topology.

B. PARETOBFS AND BMT-PARETOBFS COMPARISON
In this section, we present the experimental results of the
BMT-ParetoBFS. Original ParetoBFS primarily deal with
one target node and thus to deal with multi-targets scenario
we need to invoke it multiple times accordingly. Running
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TABLE 2. The parameters of the used topologies.

FIGURE 3. The running time of BMT-ParetoBFS and ParetoBFS using with
different topologies (5 target nodes).

FIGURE 4. The running time of BMT-ParetoBFS and ParetoBFS using with
different topologies (10 target nodes).

time here is recorded only about the execution time of core
functions without considering the execution time of some
input and output procedure. First, we present the running
time of the ParetoBFS and BMT-ParetoBFS on topologies
with 5 target nodes and 10 target nodes, shown in Fig. 3 and
Fig. 4, respectively. In this experiment, we consider 3 criteria,
which corresponds to bandwidth, latency and cost. It can
be seen from the Fig. 3 and Fig. 4, for all the topologies,

FIGURE 5. The running time of BMT-ParetoBFS and ParetoBFS with
different criteria (topology AS 3967 with 79 nodes, 5 target nodes).

BMT-ParetoBFS outperforms ParetoBFS in terms of the
running time. As the topology size increases, our algorithm
exhibits lower increase in time consumption compared to
the ParetoBFS algorithm. In these topologies, the ParetoBFS
algorithm’s running time is approximately 2 to 9 times
longer than that of our algorithm. Therefore, our approach
reduces running time by 54% − 89% in these cases. Our
algorithm is faster than invoking ParetoBFS multiple times
because it employs a bidirectional search method, which
may expedite the finding of Pareto optimal paths. Moreover,
we concurrently take into account the Pareto-optimal paths
of multiple target nodes. Throughout the search process,
we discard paths that are Pareto optimal solely for a single
target node but not for all target nodes, thus avoiding
comparisons with them in subsequent comparison processes
and further accelerating the path finding. Consequently,
as the number of target nodes increases, the running time of
BMT-ParetoBFS may not necessarily increase; however, the
running time of ParetoBFS will consistently increase. This is
due to the requirement of invoking the ParetoBFS algorithm
once for every individual target node.

To investigate the influence of the number of criteria,
we fix a topology with 79 nodes and compare the running
time of the two algorithms under different criterion conditions
by increasing the number of criteria. The result is shown
in Fig. 5. From Fig. 5, it can be observed that the running
time of both algorithms increases as the number of criteria
grows. This is because a higher number of criteria produces
more Pareto-optimal paths, leading to longer running time.
Besides, these paths need to be compared with other paths
during the path finding, resulting in increased execution
time. However, the running time of ParetoBFS increases
more rapidly than that of the BMT-ParetoBFS algorithm.
When the number of criteria increases from 3 to 7, the
ParetoBFS’s running time is about 2 to 9 times greater than
the BMT-Pareto’s running time, a conclusion similar to that
drawn from Fig. 3 and Fig. 4. The reason is also the same,
our method can combine forward search and backward search

101808 VOLUME 11, 2023



X. Xu et al.: Multi-Criteria Path Finding Using Multi-Queues Based Bidirectional Search

FIGURE 6. The number of optimal paths found on different Topologies
(3 criteria, 5 target nodes).

to obtain paths faster and discard some non-optimal paths
earlier.

We also investigate the number of Pareto-optimal paths
in different scenarios. In the case of 3 criteria and 5 tar-
get nodes, basically, as the topology grows, the number
of Pareto-optimal paths increases, as shown in Fig. 6.
However, there is a special case. Although topology AS
1221 (318 nodes, 763 links) is larger than topology AS
1775-r0 (175 nodes, 382 links), it ends up having fewer
Pareto-optimal paths, which may be related to the specific
structure of the topology. On the other hand, we select
topology AS 3967 specified with 5 target nodes and study
the changes in the number of Pareto-optimal paths with the
increase in the number of criteria. As can be seen from
Fig. 7, as the number of criteria increases, the number
of Pareto-optimal paths also increases, which consequently
leads to an increase in the algorithm running time, as shown in
Fig. 5.

The multi-criteria path finding problem is NP-hard. As the
scale of the problem increases, the computational effort
required for path finding does not increase linearly but
exponentially, therefore simply allocating more comput-
ing resources may not be an efficient approach. Hence,
developing a more efficient multi-criteria path finding
algorithm holds significant value. Our algorithm can com-
pute Pareto-optimal paths for multiple target nodes faster
under the same computing resource constraints. In other
words, our algorithm enables us to provide path finding
for a larger number of users within the given computing
resources.

C. BMT-PARETOBFS ACCELERATION WITH SAMPLING
To investigate the acceleration effect, we test different topolo-
gies, and run BMT-ParetoBFS on these whole topologies
and their sampled topologies (sub-topologies), respectively.
First, we compare the BMT-ParetoBFS with and without

FIGURE 7. The number of optimal paths found on Topology AS 3967
(79 nodes, 5 target nodes) with different number of criteria.

FIGURE 8. Running Time Ratio (RT) on 5 topologies with different
sampling scale k .

sampling on different topologies and calculate the three
metrics in Table 2. By constructing sub-topologies through
spatial sampling on the original topology, our algorithm can
achieve effective acceleration, with the speed improvement
being related to the spatial sampling scale (i.e., the value
of k in k-shortest path algorithm). Meanwhile, the spatial
sampling scale also affects the final path quality. As shown
in Fig. 8, Fig. 9, and Fig. 10, as the spatial sampling scale
increases, the algorithm acceleration efficiency decreases
(higher RT) while the path quality improves (higher PC and
lower PQ). Only a special case exists in Fig. 10, for the curve
of topology AS 1755, the PQ value at k = 1 is smaller than
other values at different k . It may be attributed to that in this
case the algorithm finds less Pareto-optimal paths and less
non Pareto-optimal paths and thus achieve a high average PQ.
However, its corresponding PC in Fig. 9 is increasing with
sampling scale k , whichmeansmore Pareto-optimal paths are
found, therefore, overall path quality still can be considered
as improving.

Spatial topology sampling can reduce the scale of the
original topology, so even if the number of criteria in
the topology increases, the sub-topology remains relatively
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FIGURE 9. Path Count Ratio (PC) on 5 topologies with different sampling
scale k .

small, resulting in less running time compared to that when
applying the BMT-ParetoBFS algorithm on the original
topology. However, it should be noted that for small
topologies, an overly large spatial sampling scale may
actually result in a slower overall algorithm speed. This
is because the algorithm itself computes relatively quickly
for small topologies; at this point, introducing the spatial
sampling to construct sub-topologies adds extra running time.
In this case, the algorithm’s acceleration on the sub-topology
does not effectively exceed the additional time, leading to no
improvement or even a decrease in overall performance. It is
demonstrated in the curve for topology AS 3967 in Fig. 8,
when k is at 14, 18, and 20, the corresponding RT is larger
than 1, which means with spatial sampling the algorithm
becomes slower. In the experiments, the value of k ranges
from 1 to 20. For most topologies, when the number of
Pareto-optimal paths is approximately 90% of the complete
Pareto-optimal path set, the algorithm only needs 30%-40%
of the original running time, resulting in an acceleration of
approximately 2.5 - 3.3 times. For instance, for the topology
AS 1221, when PC is about 0.9 in Fig. 9, the corresponding
RT is about 0.3 in Fig. 8. Hence, by employing topology
sampling, a trade-off can be achieved between running
time and path quality. That is, in the case of increasing
criteria numbers, to ensure path quality, it is necessary to
correspondingly increase topology sampling, i.e., increase
the k value used in constructing the sub-topology with the
k-shortest path algorithm.

On the other hand, since we adopt the k-shortest path
method to construct sub-topologies, we obtain the k-shortest
paths in this process at first. Therefore, we compare
our proposed algorithm with the direct k-shortest path
algorithm and further demonstrate the effectiveness of our
approach. Similarly, we use different topologies and values
of k , applying both BMT-ParetoBFS algorithm combined
with spatial topology sampling and the direct k-shortest
path algorithm for path finding. We then compare their
execution time and path quality, and the results are shown in
Table 3.

FIGURE 10. Path Quality (PQ) on 5 topologies with different sampling
scale k .

As can be seen from Table 3, the time consumed by
the k-shortest path algorithm is significantly less than that
of our approach (since our method requires not only the
k-shortest path computation but also the Pareto-optimal path
calculation). However, our method yields better path quality.
Basically, when our approach can obtain about more than
90% of the complete Pareto-optimal paths, the k-shortest
path algorithm in most cases can only achieve less than 80%
of that. At the same time, the distance between the paths
obtained by the k-shortest path algorithm and the paths of the
complete Pareto-optimal path set is much larger than that of
the paths calculated by our algorithm. This indicates that the
paths found by our algorithm with spatial sampling are closer
to the full Pareto-optimal paths in the original topology while
the paths found by k-shortest path algorithm is significantly
different from those paths.

Through these experiments, we demonstrate that the
advantages of our method to the k-shortest path algorithm.
By constructing sub-topologies using the k-shortest path
method and applying the BMT-ParetoBFS algorithm, we can
effectively reduce the algorithm running time while finding
most of the Pareto-optimal paths.

VI. CONCLUSION
We investigate the multi-criteria optimal path finding prob-
lem, which aims to find the Pareto-optimal paths from a given
source node to multiple target nodes in a network with multi-
ple criteria. We extend the ParetoBFS algorithm, introduce a
multi-queues based bidirectional search method, and propose
a multi-criteria path finding algorithm (BMT-ParetoBFS).
A large number of experiments are conducted in the publicly
real backbone dataset. Compared to the original ParetoBFS
algorithm, our algorithm significantly reduces the running
time and thus obtains the entire Pareto-optimal path set in a
shorter time.

Furthermore, we accelerate BMT-PareotoBFS with spatial
topology sampling. We propose using the k-shortest path
algorithm to obtain the k-shortest paths from source node to
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TABLE 3. Comparison BMT-ParetoBFS algorithm with sampling and
k shortest paths algorithm on different topologies.

target nodes for each criterion, constructing sub-topologies
with these single-criterion shortest paths, and performing
BMT-ParetoBFS on the sub-topologies. This method further
reduces the running time and is possible to balance the
sampling degree to ensure that the calculated path set contains
most paths of the complete Pareto-optimal path set obtained
without topology sampling.

In this paper, we do not consider the differences in target
nodes and only consider themulti-criteria for the links. Future
research will take into account the impact of different types of
target nodes. By considering target nodes with various levels
of resource, we can better utilize network resources. Also,
if the service characteristics are considered, we could further
select the more appropriate paths from the Pareto-optimal
path set.

As the development of 5G and cloud computing technolo-
gies progresses, the integration between cloud and network
deepens. With the growing number of services that can be
served by multiple resource nodes in networks, it is crucial
to identify comprehensive optimal paths for these services
to reach their target nodes. Consequently, our work holds
substantial significance for network operators and cloud
service providers. By identifying all Pareto-optimal paths,
we can better ensure compliance with SLA requirements
of services and improve resource utilization, ultimately
benefiting both service providers and users.
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