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ABSTRACT Stress has a significant negative impact on people, which has made it a primary social concern.
Early stress detection is essential for effective stress management. This study proposes a Deep Learning (DL)
method for effective stress detection using multimodal physiological signals - Electrocardiogram (ECG)
and Electrodermal activity (EDA) . The extensive latent feature representation of DL models has yet to be
fully explored. Hence, this paper proposes a hierarchical AutoEncoder (AE) feature fusion on the frequency
domain. The latent representations from different layers of the autoencoder are combined and given as input
to the classifier - Convolutional Recurrent Neural Network with Squeeze and Excitation (CRNN-SE) model.
A two-set performance comparison is performed (i) performance on frequency band features, and raw data
are compared. (ii) autoencoders trained on three cost functions - Mean Squared Error (MSE), Kullback-
Leibler (KL) divergence, and Cosine similarity performance are compared on frequency band features and
raw data. To verify the generalizability of our approach, we tested it on four benchmark datasets- WAUC,
CLAS, MAUS and ASCERTAIN. Results show that frequency band features showed better results than
raw data by 4-8%, respectively. MSE loss produced better results than other losses for both frequency band
features and raw data by 3-7%, respectively. The proposed approach considerably outperforms existing stress

detection models that are subject-independent by 1-2%, respectively.

INDEX TERMS Frequency band, EDA, ECG, stress detection, autoencoders, hierarchical features.

I. INTRODUCTION

Stress is a feeling when a threat is detected. During stress,
the “fight or flight” reaction is triggered by the Autonomic
Nerve System (ANS). At this phase, the body switches its
focus from sustaining regulatory processes to more crucial
processes engaged in reducing the threat. One of the elements
affecting decision-making is stress [1]. Acute stress and
chronic stress are the two types of stress. Chronic stress
lasts a longer time than acute stress. Depending on how an
individual responds to a stressful event, the effects of stress
can be either acute or chronic. Acute stress is a common
occurrence in daily life and keeps the stress response system
active. However, if we are exposed to stressors over an
extended time, we will suffer from the adverse effects of
chronic stress [2]. It will affect the immunological system,
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endocrine system, and brain. Chronic stress contributes to or
influences the majority of health issues. Depression, anxiety,
heart disease, excessive blood pressure, etc., are among these.
Identifying stress as fast as possible is crucial because stress
can harm an individual’s life [3].

Questionnaires were used to detect stress but are rarely
used nowadays because of constraints, including time
commitment, reliability, etc. Therefore, to overcome these
limitations, stress is quantified using the various components
of the stress response, such as behaviour, physiology, and
psychology [4]. Among these, physiological signals are
regarded as reliable for detecting stress since deliberate
human actions cannot influence them. Physiological mea-
sures such as electromyography (EMG), blood pressure,
ECG, EDA, temperature, breathing frequency, respiration
rate, electroencephalogram (EEG), etc., can be used to
measure stress. A number of stress detection studies have
demonstrated that, among these physiological signals, ECG
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and EDA are strong, reliable stress indicators when used
independently and in combination [5], [6], [7], [8], [9].
EDA indicates the skin’s electrical characteristics. Skin
containing blood vessels and glands that sweat are exclusively
controlled through the sympathetic branch. EDA is thus
a perfect, unaffected way to quantify sympathetic activity
[10]. ECG has been regularly used to detect stress. Human
stress can precisely be detected by monitoring an increase
in heart rate and variations in Heart Rate Variability (HRV)
measures, which can actively react to the buildup of mental
pressure [11]. Hence, studies have also concluded that ECG
and EDA signals are sufficient to detect stress [9].Stress
detection using physiological signals can be combined
with time-frequency, frequency and time-domain approaches.
Most of the earlier studies prioritized preferring temporal
domain over frequency domain analysis [12]. Time-domain
characteristics support physiological data that is subject-
dependent, whereas frequency-domain features are good at
differentiating between various levels of physical effort [13].
Therefore, frequency domain features are more important
than time domain features for subject-independent studies.
DL algorithms are being used in recent studies to detect
stress [14]. An autoencoder for deep feature retrieval from
vocal vectors for Parkinson’s disease (PD) is proposed by
Xiong and Lu [15]. For successful differentiation among PD
infected and control instances, the latent representation of
the relevant features is retrieved using sparse autoencoders.
Six supervised machine-learning methods were used for
classification. The Irvine Machine Learning and University
of California (UCI) repositories were accessed to obtain the
PD dataset for the experimental study. The results demon-
strated that the proposed methodology outperformed the
benchmarked models. These studies have shown that feature
extraction using AE improves the classifier’s efficiency.
Recent investigations into the fusing of hierarchical fea-
tures have achieved notable outcomes [16]. Du et al. [17] pro-
posed a method for connecting specific features to combine
Convolutional Neural Network (CNN) features from different
layers. Low-level features are linked to high-level features by
a high-level feature selector. On numerous complex computer
vision tasks, the proposed technique demonstrated general
acceptability, superiority, and effectiveness. Ma et al. [18]
suggests a CNN-based feature fusion on a multi-layer for
classifying scenes in satellite images. As it is difficult to
join feature maps of different scales, Each feature map is
first adjusted in the proposed approach to conform to its
specifications. Two approaches for fusion were developed
to integrate feature maps of different layers rather than just
the final convolution layer. The following layer or classifier
received these features. Experimental results demonstrated
that the suggested strategies operate effectively on benchmark
datasets. Ji et al. [19] proposed an Interactive In-Memory
Computing (IMC) system hierarchical for video sentimental
analysis. The text, image and audio features were collected
using the three unimodal extraction modules that have
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been trained in various representation spaces. To address
the cross-modal semantic gap, an interaction module of
the hierarchical design was proposed to capture the two
interaction levels (low and high-level interactions) involving
text, image, and audio. Fang et al. [20] proposed a hierar-
chical Vision Transformer (ViT) called TRANSLINEAR that
has hierarchical Multi-Layer Perceptron like architectures.
Mukherje et al. [21] applied structured hierarchical learning
to deal with the shift in the sub-populations for vision-related
tasks. A method of structured learning was proposed that uses
labels to conditionally incorporate hierarchical information.
In addition, the idea of hierarchical distance to model the
disastrous consequences of inaccurate forecasts was intro-
duced. The proposed method outperformed standard models
by up to 3% in accuracy. Wang et al. [22] benefited from the
associations between categories in the label hierarchy. They
proposed a Deep Hierarchical Multimodal metric learning
(DHMML) and applied it to the benchmark fashion datasets-
FashionVC and Ssense. Zhou, Kanglei et al. [23] proposed a
hierarchical Graph Convolutional Network (GCN) to handle
inter-clip inconsistency and intra-clip inconsistencies of
video in Action Quality Assessment (AQA). A clip refine-
ment module was created to address semantic ambiguity,
and it provided a solid framework for more hierarchical
action analysis. The shot reduction was then employed to
identify score action and significant sequence. The video-
level representation was aggregated by the action aggregation
module, enhancing the scoring performance among scenes
and allowing for improved score distribution regression.
The proposed approach outperforms the state-of-the-art,
based on evaluations of the datasets AQA-7, MTL-AQA,
and JIGSAWS. Liu et al. [24] proposed a hierarchical
model termed TranSkeleton for skeleton-based action recog-
nition. A topology-aware spatial transformer for spatial
modelling and a partition-aggregation temporal transformer
for temporal modelling was developed. Hierarchical temporal
partition and aggregation were executed, where the number
of segments gradually decreased to one. Evaluation on two
benchmark datasets showed that TranSkeleton significantly
beats the state-of-the-art. Guo, Jie et al. [25] proposed
a novel Hierarchical Graph Alignment Network (HGAN)
for image-text retrieval. They created feature graphs for
the text and image modalities in order to fully capture
the multimodal properties. The Multi-granularity Feature
Aggregation and Rearrangement (MFAR) module created
a multi-granularity shared space, enhanced the semantic
correspondences between global and local information,
and produced more accurate feature representations for
text and image modalities. Finally, three-level similarity
algorithms were used to further refine the final image
and text features to achieve hierarchical alignment. On the
Flickr30K and MS-COCO datasets, experimental results
showed that the proposed HGAN outperforms state-of-
the-art approaches. Li et al. [26] proposed a model that
employs hierarchical convolutional networks and multi-task
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learning to predict road agent trajectories by addressing
breakthroughs in trajectory prediction technology. The model
initially renders diverse world states in a top-down multi-
channel raster map to produce an efficient and uniform
representation of the agent and scene context. Based on
this representation, a hierarchical convolutional network was
proposed to extract all agent’s global interaction and local
features concurrently. This allowed the model to forecast
the real-time trajectory of numerous agents in a single
forward inference. Various tests using nuScenes and Lyft
datasets showed excellent model performance. Gu et al. [27]
proposed Weight Averaging (WA) on Stochastic Gradient
Descent (SGD) based training in Deep Neural Networks
(DNNs5). Online WA and offline WA are the two categories
of WA. Despite having a similar structure, online and
offline WA are not frequently combined. Furthermore, these
techniques typically only do either averaging parameters
online or averaging parameters offline. In this research,
they made an effort to combine offline and online WA
into a comprehensive framework known as Hierarchical WA
(HWA). HWA was able to achieve both a faster convergence
speed and better generalization performance by utilizing the
offline and online averaging methods. Several examinations
on ImagenNet, CalTech256, Tiny-ImageNet, CUB200-2011
and CIFAR showed that HWA significantly outperforms
state-of-the-art techniques. Zogan et al. [28] studied the
impact of COVID-19 on people’s depression using social
media data. To assess depression, they have builta COVID-19
dataset. They developed models from the tweets of depressive
and non-depressive persons before and after the COVID-19
outbreak. They created a Hierarchical Convolutional Neural
Network (HCN) that examines prior user posts for precise and
pertinent content. HCN looks at the hierarchical organization
of tweets posted by users and provides an approach for
focusing attention that can locate the essential tweets and
words in an individual’s text, noting the relevant information.
On benchmark datasets, within the COVID-19 time range,
the proposed method effectively identified depressed users.
Lu et al. [29] proposed HRegNet,- a hierarchically extracted
key point and descriptor network for large-scale outdoor
LiDAR point cloud registration. The system achieves robust
and accurate registration by combining the exact location data
in shallower levels with reliable features in deeper layers
(very close to our architecture). The network was validated
on three large-scale outdoor LiDAR point cloud datasets.
Wang et al. [30] proposed a hierarchical architecture termed
HiMoReNet consisting of several modules of residual blocks
for the task of 3D human pose estimation. A global temporal
module captured the long-term temporal dependencies. Local
spatial modules captured intra-group spatial relationships.
Local temporal modules captured the characteristic motion
patterns. All the outcomes of these spatial and temporal mod-
ules were hierarchically integrated to yield the final refined
poses. He et al. [31] proposed a hierarchical hybrid vision
Transformer (H2Former) for medical image segmentation.
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The encoder consists of four hybrid Transformer blocks to
extract local features and Multi-Scale Channel Attention
(MSCA) features through the convolutional block and
MSCA blocks. Rich features were obtained by hierarchically
aggregating the outcomes of the four blocks to achieve
the benefits of CNNs, MSCAs and token-wise features of
Transformers simultaneously. Mukherjee et al. [32] proposed
a hierarchically designed deep learning framework for
classifying the different heating needs of different electricity
users. Feature extraction was performed using a two-layer
hierarchical LSTM. For each LSTM layer, the configurations
of the LSTM units are shared across all time steps and
segments. The proposed technique performed well in hourly
measurement data from one and two-family homes acquired
over four years. Liu et al. [33] proposed a multiscale-atlases-
based hierarchical graph convolutional network (MAHGCN)
for the diagnosis of brain disorders. Firstly, multiscale Func-
tional connectivity networks (FCNs) were computed using
a set of well-defined multiscale atlases. Then, hierarchical
relationships among the regions in multiscale atlases were
pooled across multiple spatial scales for a comprehensive
extraction of diagnostic information from multiscale FCNs.
Li et al. [34] proposed hierarchical coupled discriminative
dictionary learning (HCDDL) to recognize images of novel
classes. Firstly, a coarse-grained embedding between visual
space and semantic space is utilized to learn the class-level
coupled dictionary. Secondly, the generated image attributes
are utilized to learn the image-level coupled dictionary.
From these two stages, the hierarchically coupled dictionaries
were learned. Liu et al. [35] developed a technique for
grasp identification where point clouds were used to train
a deep network with hierarchical feature learning to better
capture the gripped point’s features. In order to remove the
uncertainty that the geometric transformation of point sets
creates, all input points are aligned into the grab coordinate.
The evaluation network uses n points as its input, to aggregate
the point features fully connected layers, deep hierarchical
feature learning was used.

In an earlier work [36], the performance of ECG and EDA
standalone and their combination were analyzed extensively.
The study reported that combining ECG and EDA frequency
domain features enhanced the performance of the model
over the individual modalities. This support motivated
us to directly investigate the hierarchical combination of
EDA and ECG. Inspired by the above-mentioned facts,
we propose a hierarchical autoencoder feature fusion on the
frequency domain using ECG and EDA multimodal signals
for stress detection. We use a CRNN-SE model to classify
the hierarchical features obtained from various layers of
autoencoders. Four baseline datasets are used to test the
proposed approach- WAUC [37], CLAS [38], MAUS [39] and
ASCERTAIN [40]. Overall, the following points summarize
the main contributions of this study.

1) Hierarchical features — Examine the effect of hierar-

chical frequency features for stress detection.
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2) Cost functions — The proposed approach performance
will be compared by training the autoencoder on three
different cost functions- MSE, KL divergence, and
cosine similarity.

3) Frequency band features and raw data — From the
EDA and ECG signals, analyze the performance of
band features and raw frequency domain data on the
proposed model.

4) Generalizability - Analyze the generalizability of the
proposed model by validating on four benchmark
datasets - WAUC, CLAS, MAUS and ASCERTAIN.

The remainder of this paper is organized as follows.

Section II gives insights into the proposed methodology. In
Section III, the findings and analysis are contrasted with prior
studies. The paper is wrapped up in Section IV.

il. PROPOSED METHODOLOGY

Figure 1 depicts the proposed approach to the frequency
band and raw data. The Discrete Cosine Transform (DCT)
is used to translate the ECG and EDA dataset’s raw data
into the frequency domain. EDA and ECG signals are
separated into respective frequency bands for the frequency
band, and features are extracted from each EDA and ECG
frequency band. The autoencoder is trained with EDA and
ECG datasets for raw data and frequency band and extracted
hierarchical frequency features. The CRNN-SE model is
then trained with the hierarchical frequency features for
stress classification. Below is a detailed explanation of each
module.

A. DATASETS
The following four benchmark datasets, which incorporate
EDA and ECG physiological signals, are used in this study.

1) ASCERTAIN

58 subject’s facial activity records and physiological markers
are included in the collection. While watching affective video
clips, the subjects’ physiological responses were recorded.
The study was performed by using 36 affective videos
from [41]. In the valence arousal plane of 2-D, high arousal
and low valence values are emphasized as stressed, while
other values are characterized as unstressed. Stress level (high
or low) is determined by the average valence and arousal
scores [40].

2) CLAS

62 subject’s physiological data are included in the dataset.
While watching affective video clips, the subjects’ physio-
logical responses were recorded. The study was performed
by using 16 affective videos from [42]. We were left with
59 participants after excluding the subjects that lacked all
the essential information about ECG and EDA signals. Using
the described stimulus annotations, stress labels have been
assigned [38].
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3) MAUS

Under various cognitive conditions, the dataset has captured
physiological data. 22 volunteers underwent a cognitive effort
through the N-back task. There was a five-minute break
period before the trial began. The volunteers were asked to
remember the last single number from a quickly changing set
of digits. The N-back assignment with testing cases of six was
finished after a brief break. Ground truth is provided based on
the task’s difficulty [39].

4) WAUC

48 participants in the study engaged in three different
intensities of exercise. A rowing machine’s or non-rotating
cycle’s speed was altered to influence physiological response.
Sensory signals from the workout were recorded. Answers to
the NASA Task Load Index questionnaire from the individual
were binary-coded. Applied the mean score as a criterion
to categorize mental workload as high or low. 45 subjects
remained after we eliminated those subjects that lacked the
relevant information of ECG and EDA signals [37].

B. FEATURE ENGINEERING

The frequency band features of EDA, ECG, and raw
frequency domain data are described in the following
subsections.

1) DCT- RAW DATA

To extract the key information from ECG and EDA signals
in the frequency domain, we employ DCT algorithms. We
can decompose a signal into its fundamental frequency
components using the DCT technique [35]. DCT’s primary
benefit is that it uses less DCT coefficients to accurately
approximate a typical signal. The DCT is given to the
autoencoder as input.

2) FEATURES FROM FREQUENCY BAND

Based on prior studies, three critical frequency spectrum
bands for ECG are selected [43]. The details of the bands
are as follows: 0.0-0.04 Hz, 0.04—0.15 Hz and 0.15-0.40 Hz,
namely Very-low-Frequency (VLF), Low-Frequency (LF)
and High-Frequency (HF) bands. We also found five
significant frequency bands of EDA from the following
literature [44], and the details of the bands are as follows:
0.05-0.15 Hz, 0.15-0.25, 0.25-0.35 Hz, 0.35-0.45 Hz and
0.45-0.50 Hz namely a, b, c, d and e bands.

The LF band is influenced in the frequency domain
by sympathetic and parasympathetic activity, whereas the
HF band only correlates to parasympathetic activity [43],
[44]. Frequency domain techniques are frequently used
for Power Spectral Density (PSD) estimation. Welch’s
method is used to compute the PSD of the Heart Rate
Variability (HRV) produced from ECG’s each band. This
is accomplished using the library of Python pyHRV [45]
frequency module. 51 frequency-domain measurements,
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FIGURE 1. An outline of the proposed framework for raw data and the frequency band is shown in a and b. a - the raw ECG and EDA dataset is converted
into the frequency domain using the DCT. b - ECG and EDA signals were split into their corresponding frequency bands, and each band’s features were
then extracted. The autoencoder takes the combined EDA and ECG dataset as input and then extracts hierarchical frequency features. The autoencoder’s
hierarchical frequency features are used to detect stress using the classifier - CRNN-SE model.

including relative, absolute, peak, etc., were gathered from
these PSDs. Document [45] includes a complete list of
all metrics. Using Welch’s method, the PSD for each
EDA band is calculated. Using these PSDs, we extracted
40 statistical properties, including mean, median, variance,
standard deviation, min, kurtosis, max and skewness.

C. PROPOSED MODEL

Figure 2 depicts an overview of the proposed model.
It consists of an autoencoder and a CRNN-SE model.
The hierarchical frequency features are extracted using an
autoencoder, and stress classification is performed using the
CRNN-SE model. The architecture details of the autoencoder
and CRNN-SE model are given below.

1) AUTOENCODER

The DCT dataset of ECG and EDA (Xgpa_rcc)is given
as input to the autoencoder for raw data experiments. The
EDA and ECG band features (Xgpa rcc) - 40 EDA and 51
ECG band features are given as input to the autoencoder
for frequency band experiments as shown in Figure 2. The
e1(.), ea(.), c(.), e3(.), ea(.) are fully connected layers. The
output Xz, pcc is the last layer, which is the reconstruction
of the input Xgpa rcg. By reducing the reconstruction
loss, it is possible to learn the parameter vector theta(.)
from the hidden layers. The hidden layers ej(.), ex(.)
are of length 95 and 100 respectively. The autoencoder
hierarchical frequency features are obtained by concatenating
representations of e1(.), e2(.). So the c(.) hidden layer is of
length 195. The hidden layers e3(.), e4(.) are of length 100 and
95 respectively.
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To learn the optimal set of parameters of the proposed
autoencoder, we treat it as an optimization problem minimiz-
ing a cost function. Based on [36], we investigated exten-
sively the three reconstruction losses — Mean Square Error,
KL divergence, and cosine similarity. The reconstruction
loss represents the variation between the inputXgpa rcc and
the reconstructed X’EDA_ECG. Utilizing the default Adam
optimizer learning rate and 64-mini batch size, the proposed
model is trained. Algorithm 1 provides the pseudocode to
train AE with the same notations as explained. The details
of the three reconstuction losses are given below.

2) MSE

According to the Eqn.1, the MSE is calculated between the
estimated - X ]/SD 4 £cc and the actual -Xgpa_gce values. 0 to
oo- the reconstruction loss value range. If the MSE score is
close to 0, the estimated X éDA_ECG value is greater identical
to actual -Xgpa_rcc values, otherwise they are distinct.

1 n
MSE (act, pred) = ~ Z(aCti — pred;)? (D
n i=1

3) COSINE SIMILARITY

It’s calculated among the estimated - X I/:"D A_ECG (act;) and the
actual -Xgpa_rccg (pred;) values, as in Eqn.2. Reconstruction
loss value ranges from 0 and 1. The value close to 0 indicates
that the estimated X, A ecc Vvalue is greater identical to
actual -Xgpa_rcc values, otherwise they are distinct.

z;’z_ol act; - pred;
-1 2 —1 2
\/ >, act; \/ > o pred:
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FIGURE 2. An outline of the proposed model: hierarchical frequency feature extraction using
autoencoders and classification of stress using CRNN-SE model. The latent representation of e;(.) and
e,(.) is combined - ¢(.) and given as input to CRNN-SE model.

4) KL DIVERGENCE

It is a distance measure that calculates the similarity of two
points act;, the actual - Xgpa_rcc and the pred; - estimated
values, as shown in Eqn.3. The reconstruction loss varies
between 0 to oo. In the two distributions (Xgpa rcc and
X,’SDAiECG), if the value is close to 0O, the data points are
similar; otherwise, the data points are different.

act;

pred;

KL(act, pred) = z actilog

i

3

5) CRNN-SE MODEL

For classification, two convolutional layers, two SE modules,
and one LSTM layer make up the CRNN-SE model, as shown
in Figure 2. The SE module increased its acceptance in the
ImageNet challenge by emphasizing crucial traits and reduc-
ing unimportant ones with the use of feature recalibration
[46]. Max Pool (MP) layers and Batch Normalization (BN)
are consistently implemented after each convolutional layer,
as illustrated in Figure 2. The final layers consist of fully
connected layers two and a sigmoid output layer. Utilizing
the default optimizer Adam learning rate and 64-mini batch
size, the proposed model is trained. The loss function is taken
to be binary cross-entropy. The performance of the model is
evaluated using the F1 score and accuracy.

IIl. RESULTS AND DISCUSSION

The results from using the proposed framework on the four
standard datasets are presented in this section. The results are
summarized in Table 1.
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A. HIERARCHICAL FREQUENCY FEATURES

The hierarchical frequency features of EDA and ECG
modalities in the frequency domain enhanced the model
performance. This work aims to maximize the utilization
of all the features discovered by autoencoders on various
encoder layers through hierarchical feature fusion. The
results show that we succeeded in attaining our goal, i.e., the
suggested hierarchical feature fusion produces information
fusion. It fully exploits the benefits of different features of
ECG and EDA. We proposed a stress detection model based
on higher-dimensional feature fusion based on autoencoders,
which proves that the performance of the stress detection
model based on higher-dimensional feature fusion based on
autoencoders is better than that of the end-to-end models.
This was done in order to develop positive aspects, avoid
weak points, and fully exploit the relevant benefits of end-
to-end networks. When we view a signal in the frequency
domain, we can see some features that are either difficult
to see or not apparent when we view the signals in the
temporal domain. Along with hierarchical features, the
frequency features have helped enhance the models’ overall
performance.

B. COST FUNCTIONS

The AE were trained with different cost functions. The
results show that the high dimensional hierarchical features
obtained from the AE trained with MSE loss produced better
results than KL divergence and cosine similarity losses for
frequency band features and raw data by 3-7%, respectively.
This indicates that the MSE loss was able to train the

103237



IEEE Access

R. Kuttala et al.: Hierarchical Autoencoder Frequency Features for Stress Detection

Individual modalities (x_gpa_gca)

ASCERTAIN

Hierarchical features learnt (c)

MAUS

FIGURE 3. Four datasets frequency band feature visualization using t-SNE. A small feature separation on EDA and ECG frequency band feature before
(Xepa_gcc) hierarchical learning is visible. After hierarchical feature learning (c) it is visible that the distance between the EDA and ECG frequency band

feature reduced and came to a joint space.

TABLE 1. Classification results of frequency band features and raw
frequency domain data on different cost function.

S.No  Cost function Accuracy F1-Score Accuracy F1-Score
Raw data Band features
ASCERTAIN
1 MSE 90.17 % 0.90 97.38% 0.97
2 Cosine 89.45% 0.88 95.73% 0.94
similarity
3 di KL 87.08% 0.87 92.97% 0.93
ivergence
CLAS
4 MSE 88.72% 0.89 96.51% 0.95
5 Cosine 86.24% 0.86 93.82% 0.93
similarity
6 . KL 84.57% 0.83 91.76% 0.92
divergence
MAUS
7 MSE 83.68 % 0.82 87.96 % 0.87
8 Cosine 80.30% 0.80 84.43% 0.83
similarity
9 . KL 77.86% 0.77 81.24% 0.81
divergence
WAUC
10 MSE 80.19% 0.80 84.75% 0.85
11 Cosine 78.93% 0.79 82.92% 0.82
similarity
12 . KL 76.61% 0.75 79.48% 0.79
divergence

autoencoder to obtain the best high-dimensional hierarchical
features for stress detection when compared to the other
two losses. Squaring in MSE enhances the effects of greater
errors. Larger errors are unfairly punished more severely
than smaller inaccuracies in these calculations. The proposed
model may have produced better results when trained using
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MSE because of this feature, which is crucial if you want the
model to have a lesser error rate. Compared to KL divergence,
cosine similarity produced better results by 2-3%. Compared
to all three losses, autoencoders trained with KL divergence
produced the lowest accuracy and F1 score.

C. FREQUENCY BAND FEATURES AND RAW DATA

The entire study found that performance enhancement was
influenced by the frequency band features extracted from
the ECG and EDA. For all the datasets, the frequency band
features performed better than raw frequency domain data by
4-8% respectively, for MSE loss. For cosine similarity and KL
divergence, frequency band features performed better than
raw frequency domain data by 4-7% and 2-7% respectively.
The full frequency band features of range 0-0.4Hz of ECG
and 0-0.50Hz of EDA helped to enhance the model’s
efficiency. This signifies that the frequency band features
have had a greater impact on enhancing the efficiency of
the proposed stress detection model. For stress detection,
frequency bands ranging from low frequency to high
frequency play an important role. The true ECG and EDA
events can be analyzed using features from frequency bands.

D. VISUALIZATION

We examine the results of the proposed framework with
t-distributed Stochastic Neighbour Embedding (tSNE). The
t-SNE technique brings two points close if they share similar
distributions by projecting multi-dimensional features into
2D or 3D regions. Correspondingly, distant points remain
far apart in the t-SNE projections. We project the feature

VOLUME 11, 2023



R. Kuttala et al.: Hierarchical Autoencoder Frequency Features for Stress Detection

IEEE Access

Algorithm 1 Hierarchical Autoencoder Pseudocode

1: procedure Input: Xgpa rcc (The combined features
of EDA and ECG are given as input, notations with
reference to Figure 2 )

2: PARAMETER wgt: Hidden layers weights - eq(.),
e2(.), (), e3(.), e4(.)

3: Wgte,, W8te,y, W8lc, Wgtes, W8le, <— random // initial-
ization of hidden layers weights

4: Xppa gcc < null /] Reconstructed output of
XEDA_ECG

5: b < Batch Number

6: k<0

7: while k <= b do

8: /I ' The input Xgpa Ecc is converted to a hidden

representation /,(.) using encoder function:

9: Xy = felXepa_pcc,wete,) !/ first hidden layer

10: X ;o= fe2(Xgpa_gcc,wete,) !/ second hidden layer

11: c=X/, + X/, // Concatenation layer

12: X;3= fe2(Xgpa_gcc,wete,) !/ third hidden layer

13: X,4=fe\Xgpa_gcc,wer.,) !/ fourth hidden layer

14: /* The decoder returns X'n from the hidden
representation e;,(.)

15: Xipa_pcc =fx(Xgy, wgtx) // reconstructed out-
put

16: Reconstruction Loss = RL(XEpA_Eca,
X'EDA_ECG)

17: ming (Reconstruction Loss)

18: k<—k+1

19: end while

20: return 6

21: 6 < Parameters

22: ReconstructionLoss <— 1) MSE, 2) KL divergence
and 3) Cosine similarity
23: end procedure

learning onto a 2-D space using tSNE. Figure 3 shows the
XEepA_Ecc feature visualization and c (hierarchical features
learned) on training the model with cost function as MSE for
frequency band features. The green and red dots indicate EDA
and ECG features. A small feature separation on EDA and
ECG frequency band feature before (Xgpa_rcg) hierarchical
learning is visible. After hierarchical feature learning (c) it is
visible that the distance between the EDA and ECG frequency
band feature reduced and came to a joint space. It reveals
that there is a notable reduction in the modality gap across
the distributions of EDA and ECG modalities. The highest
overlapping of hierarchical features can be observed for the
ASCERTAIN dataset.

E. GENERALIZABILITY

The crucial concept of ‘““generalizability” of study results
is receiving more emphasis in clinical studies. Applying
a deep learning (DL) model developed on one dataset to
another raises questions about generalizability. Before using
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a DL model in clinical practice, it is important to prove
its generalizability effectively and appropriately. A model’s
generalizability depends on the task. One way to test the
generalizability of the proposed approach is by validating
the proposed approach on different task-specific datasets. So,
we have chosen four datasets and tested the generalizability
of the provided approach. We have selected four datasets
collected on four different locations, scenarios, ages, etc.,
to verify generalizability completely. The outcome analysis
for the four datasets demonstrates that the proposed method
doesn’t overfit a particular dataset’s specification settings.
Throughout the studies, all the datasets have shown the same
trend.

F. COMPARISON WITH EXISTING WORKS

This section compares the findings of our proposed method
with existing stress detection works on the four datasets
(WAUC, CLAS, MAUS and ASCERTAIN). Table 2 provides
an overview of the performance metrics.

TABLE 2. Comparison with competing works.

S.No Method Accuracy F1-Score AUC
ASCERTAIN

1 Proposed 97.4% 0.97 0.97

2 [47]1 2018 68.7%* - -

3 [48] 2021 85.0% 0.85 0.85

4 [36] 2022 96.2% 0.95 0.96
CLAS

5 Proposed 96.5% 0.95 0.95

6 [49] 2019 94.8%* - -

7 [50] 2021 97.6%* - -

8 [36] 2022 94.1% 0.93 0.93

9 [51]2023 95.9% 0.94 0.94
MAUS

10 Proposed 88.0% 0.87 0.87

11 [39]12021  71.6x11.1%  0.71 £0.10 -

12 [36] 2022 86.5% 0.86 0.85

13 [52] 2021 75.3+8.9 75.4+8.9 -
WAUC

14 Proposed 84.8% 0.85 0.84

EDA- 0.66 = 0.01

15 (3712020 - - ECG- 0.74 + 0.01

16 [36] 2022 82.6% 0.83 0.82

17 [51]2023 83.8% 0.84 0.83

*Subject-dependent

Previous works demonstrate that the most of the work is
done on time-frequency domain [37], [38], [39], [47], [49],
[50], [51], [53], [54], [55], [56], [57], subject-dependent [38],
[471, [49], [501, [53], [54], [55], [56], [58] and using machine
learning models [38], [47], [49], [50], [53], [54], [57], [58].
Few researchers used traditional deep learning techniques
[36], [48], [51], [55], [56], [59]. Except for the CLAS
dataset, the proposed frequency band method outperforms all
the subject-dependent and subject-independent state-of-the-
art (SOA) studies that have been presented. The proposed
method considerably outperforms subject-independent stress
detection models by 1-2% respectively.

Numerous physiological facts are revealed by the time-
domain analysis, and these facts vary from subject to subject,
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since they depend on how differently each person reacts to
the same stimulus. These variations in signal behaviour might
result from the subject’s intrinsic and extrinsic physiological
traits, which would alter how much effort the subject would
perceive as being required to accomplish the physical activity.
These factors might be captured in the generated features
and might be applied to subject-dependent classification
techniques. However, frequency domain analysis showed
relevance in the ability to distinguish between various
activity levels and link these variations to a particular signal
component as compared to another. Hence, frequency domain
analysis is more important for subject-independent analysis.

IV. CONCLUSION AND FUTURE WORKS

For detecting stress, this paper presented hierarchical
autoencoder frequency features. EDA and ECG modalities
frequency features were used in this study. The proposed
method was evaluated using the WAUC, CLAS, MAUS
and ASCERTAIN datasets. The CRNN-SE model was
trained for the classification using the hierarchical frequency
features retrieved from the autoencoders. Regarding subject-
independent stress detection, the proposed approach performs
better than previous works. Results show that frequency
band features showed better results than raw data by 4-8%,
respectively, and MSE loss produced better results than other
cost functions for both frequency band features and raw
frequency domain data by 3-7%, respectively. The proposed
method considerably outperforms SOA subject-independent
stress detection models by 1-2%, respectively. This study
reveals that hierarchical features have an influence that can
lead to performance enhancement.

In the current work, only reconstruction error is considered
as the optimization function. Other constraints or objectives
can also be investigated into the optimization problem. For
example, if sparsity in the latent representation is desired,
an additional term penalizing the activation of hidden units
can be added to the loss function.

REFERENCES

[11 A. P. Cruz, A. Pradeep, K. R. Sivasankar, and K. S. Krishnaveni,
“A decision tree optimised SVM model for stress detection using
biosignals,” in Proc. Int. Conf. Commun. Signal Process. (ICCSP),
Jul. 2020, pp. 0841-0845.

S. S. Machiraju, N. Konijeti, A. Batchu, and N. Tata, “Stress detection
using adaptive threshold methodology,” in Proc. 5th Int. Conf. Commun.
Electron. Syst. (ICCES), Jun. 2020, pp. 889-894.

S. Gedam and S. Paul, “A review on mental stress detection using
wearable sensors and machine learning techniques,” IEEE Access, vol. 9,
pp. 84045-84066, 2021.

S. Aristizabal, K. Byun, N. Wood, A. F. Mullan, P. M. Porter,
C. Campanella, A. Jamrozik, I. Z. Nenadic, and B. A. Bauer, “The
feasibility of wearable and self-report stress detection measures in a semi-
controlled lab environment,” IEEE Access, vol. 9, pp. 102053-102068,
2021.

G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki,
A. Roniotis, and M. Tsiknakis, ‘“Review on psychological stress
detection using biosignals,” IEEE Trans. Affect. Comput., vol. 13, no. 1,
pp. 440-460, Jan. 2022.

Y. S. Can, B. Arnrich, and C. Ersoy, ““Stress detection in daily life scenarios
using smart phones and wearable sensors: A survey,” J. Biomed. Informat.,
vol. 92, Apr. 2019, Art. no. 103139.

[2]

[3]

[4]

[51

[6]

103240

[7]

[8]

[9]

(10]

[11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

P. Zontone, A. Affanni, R. Bernardini, A. Piras, and R. Rinaldo, ‘““Stress
detection through electrodermal activity (EDA) and electrocardiogram
(ECG) analysis in car drivers,” in Proc. 27th Eur. Signal Process. Conf.
(EUSIPCO), Sep. 2019, pp. 1-5.

A. Affanni, “Wireless sensors system for stress detection by means of ECG
and EDA acquisition,” Sensors, vol. 20, no. 7, p. 2026, Apr. 2020.

A. Mohammadi, M. Fakharzadeh, and B. Baraeinejad, “An integrated
human stress detection sensor using supervised algorithms,” IEEE Sensors
J., vol. 22, no. 8, pp. 8216-8223, Apr. 2022.

A. S. Anusha, “Electrodermal activity based pre-surgery stress detection
using a wrist wearable,” IEEE J. Biomed. Health Informat., vol. 24, no. 1,
pp. 92-100, Jan. 2020.

D. Cardone, D. Perpetuini, C. Filippini, E. Spadolini, L. Mancini,
A. M. Chiarelli, and A. Merla, “Driver stress state evaluation by means of
thermal imaging: A supervised machine learning approach based on ECG
signal,” Appl. Sci., vol. 10, no. 16, p. 5673, Aug. 2020.

R. Borchini, G. Veronesi, M. Bonzini, F. Gianfagna, O. Dashi, and
M. Ferrario, “‘Heart rate variability frequency domain alterations among
healthy nurses exposed to prolonged work stress,” Int. J. Environ. Res.
Public Health, vol. 15, no. 1, p. 113, Jan. 2018.

S. Cecchi, A. Piersanti, A. Poli, and S. Spinsante, “Physical stimuli
and emotions: EDA features analysis from a wrist-Worn measurement
sensor,” in Proc. IEEE 25th Int. Workshop Comput. Aided Modeling
Design Commun. Links Netw. (CAMAD), Sep. 2020, pp. 1-6.

C.-Y. Liao, R.-C. Chen, and S.-K. Tai, “Emotion stress detection using
EEG signal and deep learning technologies,” in Proc. IEEE Int. Conf. Appl.
Syst. Invention (ICASI), Apr. 2018, pp. 90-93.

Y. Xiong and Y. Lu, “Deep feature extraction from the vocal vectors using
sparse autoencoders for Parkinson’s classification,” IEEE Access, vol. 8,
pp. 2782127830, 2020.

K. Xu, P. Deng, and H. Huang, ““Mining hierarchical information of CNNs
for scene classification of VHR remote sensing images,” IEEE Trans. Big
Data, vol. 9, no. 2, pp. 542-554, Apr. 2023.

C. Du, Y. Wang, C. Wang, C. Shi, and B. Xiao, “Selective feature
connection mechanism: Concatenating multi-layer CNN features with a
feature selector,” Pattern Recognit. Lett., vol. 129, pp. 108—114, Jan. 2020.
C. Ma, X. Mu, and D. Sha, “Multi-layers feature fusion of convolutional
neural network for scene classification of remote sensing,” IEEE Access,
vol. 7, pp. 121685-121694, 2019.

X.Ji,Z.Dong, Y. Han, C. S. Lai, and D. Qi, ““A brain-inspired hierarchical
interactive in-memory computing system and its application in video
sentiment analysis,” IEEE Trans. Circuits Syst. Video Technol., early
access, May 12, 2023, doi: 10.1109/TCSVT.2023.3275708.

Y. Fang, X. Wang, R. Wu, and W. Liu, ““What makes for hierarchical vision
transformer?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 10,
pp. 12714-12720, Oct. 2023.

A. Mukherjee, I. Garg, and K. Roy, “Encoding hierarchical information in
neural networks helps in subpopulation shift,” IEEE Trans. Artif. Intell.,
early access, Mar. 27, 2023, doi: 10.1109/TAL.2023.3261861.

D. Wang, A. Ding, Y. Tian, Q. Wang, L. He, and X. Gao, “Deep hierarchi-
cal multimodal metric learning,” IEEE Trans. Neural Netw. Learn. Syst.,
early access, Jul. 4, 2023, doi: 10.1109/TNNLS.2023.3289971.

K. Zhou, Y. Ma, H. P. H. Shum, and X. Liang, ‘“Hierarchical
graph convolutional networks for action quality assessment,” IEEE
Trans. Circuits Syst. Video Technol., early access, May 30, 2023, doi:
10.1109/TCSVT.2023.3281413.

H. Liu, Y. Liu, Y. Chen, C. Yuan, B. Li, and W. Hu, “TranSkele-
ton: Hierarchical spatial-temporal transformer for skeleton-based action
recognition,” [EEE Trans. Circuits Syst. Video Technol., vol. 33, no. 8,
pp. 4137-4148, Aug. 2023.

J. Guo, M. Wang, Y. Zhou, B. Song, Y. Chi, W. Fan, and J. Chang,
“HGAN: Hierarchical graph alignment network for image-text
retrieval,” IEEE Trans. Multimedia, early access, Feb. 23, 2023, doi:
10.1109/TMM.2023.3248160.

L. Li, X. Wang, D. Yang, Y. Ju, Z. Zhang, and J. Lian, “Real-
time heterogeneous road-agents trajectory prediction using hierarchical
convolutional networks and multi-task learning,” IEEE Trans. Intell.
Vehicles, early access, May 11, 2023, doi: 10.1109/TIV.2023.3275164.

X. Gu, Z. Zhang, Y. Jiang, T. Luo, R. Zhang, S. Cui, and Z.Li,
“Hierarchical weight averaging for deep neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Apr. 27, 2023, doi:
10.1109/TNNLS.2023.3255540.

VOLUME 11, 2023


http://dx.doi.org/10.1109/TCSVT.2023.3275708
http://dx.doi.org/10.1109/TAI.2023.3261861
http://dx.doi.org/10.1109/TNNLS.2023.3289971
http://dx.doi.org/10.1109/TCSVT.2023.3281413
http://dx.doi.org/10.1109/TMM.2023.3248160
http://dx.doi.org/10.1109/TIV.2023.3275164
http://dx.doi.org/10.1109/TNNLS.2023.3255540

R. Kuttala et al.: Hierarchical Autoencoder Frequency Features for Stress Detection

IEEE Access

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

H. Zogan, 1. Razzak, S. Jameel, and G. Xu, “Hierarchical convolutional
attention network for depression detection on social media and its impact
during pandemic,” IEEE J. Biomed. Health Informat., early access,
Feb. 9, 2023, doi: 10.1109/JBHI.2023.3243249.

F. Lu, G. Chen, Y. Liu, L. Zhang, S. Qu, S. Liu, R. Gu, and C. Jiang,
“HRegNet: A hierarchical network for efficient and accurate outdoor
LiDAR point cloud registration,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 45, no. 10, pp. 11884-11897, Oct. 2023.

Z. Wang, J. Wang, N. Ge, and J. Lu, “HiMoReNet: A hierarchical
model for human motion refinement,” IEEE Signal Process. Lett., vol. 30,
pp. 868-872, 2023.

A. He, K. Wang, T. Li, C. Du, S. Xia, and H. Fu, “H2Former: An efficient
hierarchical hybrid transformer for medical image segmentation,” IEEE
Trans. Med. Imag., vol. 42, no. 9, pp. 2763-2775, Sep. 2023.

K. Fiirst, P. Chen, and I. Y.-H. Gu, “Hierarchical LSTM-based classifi-
cation of household heating types using measurement data,” [EEE Trans.
Smart Grid, early access, Jul. 18, 2023, doi: 10.1109/TSG.2023.3296020.
M. Liu, H. Zhang, F. Shi, and D. Shen, “Hierarchical graph convolutional
network built by multiscale atlases for brain disorder diagnosis using
functional connectivity,” IEEE Trans. Neural Netw. Learn. Syst., early
access, Jun. 20, 2023, doi: 10.1109/TNNLS.2023.3282961.

S. Li, L. Wang, S. Wang, D. Kong, and B. Yin, “Hierarchical coupled
discriminative dictionary learning for zero-shot learning,” IEEE Trans.
Circuits Syst. Video Technol., vol. 33, no. 9, pp. 4973—4984, Sep. 2023.

S. Banerjee and G. K. Singh, “A new approach of ECG steganography and
prediction using deep learning,” Biomed. Signal Process. Control, vol. 64,
Feb. 2021, Art. no. 102151.

K. Radhika, R. Subramanian, and V. R. M. Oruganti, “Joint modality
features in frequency domain for stress detection,” IEEE Access, vol. 10,
pp. 57201-57211, 2022.

1. Albuquerque, A. Tiwari, M. Parent, R. Cassani, J.-F. Gagnon, D. Lafond,
S. Tremblay, and T. H. Falk, “WAUC: A multi-modal database for mental
workload assessment under physical activity,” Frontiers Neurosci., vol. 14,
Dec. 2020, Art. no. 549524.

V. Markova, T. Ganchev, and K. Kalinkov, “CLAS: A database for
cognitive load, affect and stress recognition,” in Proc. Int. Conf. Biomed.
Innov. Appl. (BIA), Nov. 2019, pp. 1-4.

W.-K. Beh, Y.-H. Wu, An-Yeu, and Wu, “MAUS: A dataset for mental
workload assessmenton N-back task using wearable sensor,” 2021,
arXiv:2111.02561.

R. Subramanian, J. Wache, M. K. Abadi, R. L. Vieriu, S. Winkler,
and N. Sebe, “ASCERTAIN: Emotion and personality recognition using

commercial sensors,” IEEE Trans. Affect. Comput., vol. 9, no. 2,
pp. 147-160, Apr. 2018.
M. K. Abadi, R. Subramanian, S. M. Kia, P. Avesani, I. Patras,

and N. Sebe, “DECAF: MEG-based multimodal database for decoding
affective physiological responses,” IEEE Trans. Affect. Comput., vol. 6,
no. 3, pp. 209-222, Jul. 2015.

S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Patras, “DEAP: A database for emotion analysis;
using physiological signals,” IEEE Trans. Affect. Comput., vol. 3, no. 1,
pp. 18-31, Jan. 2012.

O. Kwon, J. Jeong, H. B. Kim, I. H. Kwon, S. Y. Park, J. E. Kim, and
Y. Choi, “Electrocardiogram sampling frequency range acceptable for
heart rate variability analysis,” Healthcare Informat. Res., vol. 24, no. 3,
pp. 198-206, Jul. 2018.

J. Shukla, M. Barreda—Angeles, J. Oliver, G. C. Nandi, and D. Puig,
“Feature extraction and selection for emotion recognition from electro-
dermal activity,” IEEE Trans. Affect. Comput., vol. 12, no. 4, pp. 857-869,
Oct. 2021.

P. Gomes, P. Margaritoff, and H. Silva, “pyHRV: Development and
evaluation of an open-source Python toolbox for heart rate variability
(HRV),” in Proc. Int. Conf. Electr., Electron. Comput. Eng. (ICETRAN),
2019, pp. 822-828.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132-7141.

V. Markova and T. Ganchev, “Constrained attribute selection for stress
detection based on physiological signals,” in Proc. Int. Conf. Sensors,
Signal Image Process., Oct. 2018, pp. 41-45.

K. Radhika and V. R. M. Oruganti, ““Stress detection using CNN fusion,”
in Proc. IEEE Region Conf. (TENCON), Dec. 2021, pp. 492-497.

VOLUME 11, 2023

(49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

K. Kalinkov, T. Ganchev, and V. Markova, “Adaptive feature selection
through Fisher discriminant ratio,” in Proc. Int. Conf. Biomed. Innov. Appl.
(BIA), Nov. 2019, pp. 1-4.

M. Kang, S. Shin, G. Zhang, J. Jung, and Y. T. Kim, “Mental stress
classification based on a support vector machine and naive Bayes using
electrocardiogram signals,” Sensors, vol. 21, no. 23, p. 7916, Nov. 2021.
R. Kuttala, R. Subramanian, and V. R. M. Oruganti, ‘“Multimodal
hierarchical CNN feature fusion for stress detection,” IEEE Access,
vol. 11, pp. 6867-6878, 2023.

W.-K. Beh, Y.-H. Wu, and A.-Y. Wu, “Robust PPG-based mental workload
assessment system using wearable devices,” IEEE J. Biomed. Health
Informat., vol. 27, no. 5, pp. 2323-2333, May 2023.

V. Markova and T. Ganchev, “Three-step attribute selection for stress
detection based on physiological signals,” in Proc. IEEE 27 Int. Sci. Conf.
Electron. (ET), Sep. 2018, pp. 1-4.

V. Markova and T. Ganchev, ‘“‘Automated recognition of affect and stress
evoked by audio-visual stimuli,” in Proc. 7th Balkan Conf. Lighting
(BalkanLight), Sep. 2018, pp. 1-4.

K. Radhika and V. R. M. Oruganti, “Transfer learning for subject-
independent stress detection using physiological signals,” in Proc. IEEE
17th India Council Int. Conf. (INDICON), Dec. 2020, pp. 1-6.

K. Radhika and V. R. M. Oruganti, “‘Deep multimodal fusion for subject-
independent stress detection,” in Proc. 11th Int. Conf. Cloud Comput.,
Data Sci. Eng. (Confluence), Jan. 2021, pp. 105-109.

L. Zhu, P. Spachos, P. C. Ng, Y. Yu, Y. Wang, K. Plataniotis,
and D. Hatzinakos, ““Stress detection through wrist-based electrodermal
activity monitoring and machine learning,” IEEE J. Biomed. Health
Informat., vol. 27, no. 5, pp. 2155-2165, May 2023.

L. Zhu, P. Spachos, and S. Gregori, ‘‘Multimodal physiological signals and
machine learning for stress detection by wearable devices,” in Proc. IEEE
Int. Symp. Med. Meas. Appl. (MeMeA ), Jun. 2022, pp. 1-6.

K. Radhika and V. R. M. Oruganti, “Cross domain features for subject-
independent stress detection,” in Proc. IEEE Region Symp. (TENSYMP),
Jul. 2022, pp. 1-6.

RADHIKA KUTTALA received the master’s
degree in computer science from Amrita Vishwa
Vidyapeetham, India, in 2018, where she is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Electrical and Electronics Engineering.
Her research interests include multi-modal interac-
tions and deep learning for applications in affective
computing.

RAMANATHAN SUBRAMANIAN (Senior
Member, IEEE) received the Ph.D. degree in
electrical and computer engineering from NUS,
in 2008. He is currently an Associate Professor
with the University of Canberra, Australia. His
past affiliations include IHPC, Singapore, Univer-
sity of Glasgow, Singapore, IIIT Hyderabad, India,
IIT Ropar, India, and UIUC-ADSC, Singapore.
His research interests include human-centered
computing, interactive analytics, and explainable

machine leammg He is a Senior Member of ACM and AAAC.

VENKATA RAMANA MURTHY ORUGANTI
(Senior Member, IEEE) received the master’s
and Ph.D. degrees in electrical engineering from
IIT Delhi, India. He is currently an Asso-
ciate Professor with the Department of Electri-
cal and Electronics Engineering, Amrita Vishwa
Vidyapeetham, India. His past affiliations include
NUS, Singapore, NTU, Singapore, University of
Canberra, Australia, and Carnegie Mellon Univer-
sity, USA. His research interests include medical

image processing and affective computing. He is a member of the ACM.

103241


http://dx.doi.org/10.1109/JBHI.2023.3243249
http://dx.doi.org/10.1109/TSG.2023.3296020
http://dx.doi.org/10.1109/TNNLS.2023.3282961

