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ABSTRACT The increasing use of ontologies requires their quality assurance. Ontology quality assurance
consists of a set of activities that allow analyzing the ontology, identifying strengths and weaknesses, and
proposing improvement actions. Human readability is a quality aspect that improves the use and reuse of
ontologies. Human readable content refers to the natural language content consumed by humans and by the
growing number of embedding methods applied to ontologies. The ontology community has proposed best
practices for human readability, but there is no standardized framework for its evaluation.We aim to provide a
framework for analyzing the human readability based on quantitativemetrics to support ontology developers’
decisions.We present the HURON framework, which consists of the specification of five quantitativemetrics
related to the human readability of ontology content and a software tool to implement them. The metrics take
into account the number of names, descriptions, or synonyms, and also assess the application of systematic
naming conventions and the ‘lexically suggest, logically define’ principle. Target values are provided for each
metric to help to interpret them. HURON can also be used to assess compliance with best practices. We have
applied HURON to a representative set of biomedical ontologies, the OBO Foundry repository. The results
showed that, in general, the OBO Foundry ontologies comply with the expected number of descriptions and
names in their classes, and both lexical and semantically formalized contents are aligned. However, most of
the ontologies did not follow a systematic naming convention. In general, the ontologies in this repository
show adherence to some of the best practices, although areas for improvement were identified. A number of
recommendations are made for ontology developers and users.

INDEX TERMS Knowledge engineering, ontologies, quality assurance, readability metrics, semantic web.

I. INTRODUCTION
Ontologies play a key role in knowledge engineering
by providing a common conceptualization of a domain.
They have been successfully applied in various domains,
but especially in biology and biomedicine, with different
purposes [1], [2], [3], [4], [5].

At the time of writing, repositories such as BioPortal
[6] had more than 1,000 ontologies and both the Open
Biological and Biomedical Ontology (OBO) Foundry [7]
and the Ontology Lookup Service (OLS) [8] had more
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than 250 ontologies. The number of ontologies in these
repositories continues to grow, demonstrating their relevance
and impact.

Unlike other artifacts used in data management systems,
such as relational databases, which are developed specifically
for particular applications, ontologies should be created in a
standardized way to facilitate their reuse. The sharing and
reuse orientation of ontologies has also made them funda-
mental for achieving Findable, Accessible, Interoperable, and
Reusable (FAIR) datasets [9]. As a result, ensuring the quality
of ontologies has become an important need.

Ontology quality assurance consists of a set of activities
that allow analyzing the ontology, identifying strengths and
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weaknesses, and proposing and implementing improvement
actions. It should be noted that the quality of the ontology has
to be analyzed in terms of its requirements. In recent years,
several approaches have been proposed to study the quality
of ontologies. For example, Vrandečić [10] proposed to
evaluate the accuracy, the completeness, the conciseness, the
consistency, the computational efficiency, the adaptability,
and the clarity. Later, our research group proposed the
OQuaRE framework [11], [12], [13], which classifies these
characteristics in aspects related to the ontology structure, its
functional adequacy, compatibility, transferability, operabil-
ity, and its quality in use. The evaluation of these aspects is a
time-consuming task that usually needs of domain experts.
Fortunately, the community is evolving towards the use of
metrics for measuring the quality of ontologies [14], [15],
[16]. This is in line with the increasing use of metrics for
supporting the development of methods for the analysis of
data repositories or software systems [17], [18], [19], [20].
It should be noted that the content of ontologies must be

understandable by both humans and machines. In the context
of software applications, the content of ontologies must be
processed and used by the machine to perform automated
tasks, but it may also be displayed through the user interface,
so it must be understandable by humans. This means that
ontology evaluation should consider both human-readable
and machine-readable content. In Web Ontology Language
(OWL) ontologies, annotation properties typically provide
human-readable information (also known as lexical content)
for describing entities. These annotation properties allow
the definition of labels, synonyms, descriptions, etc., which
are not used in Description Logic (DL) reasoning [21],
but provide relevant information for using the ontology.
These annotation properties were used in [22] to define
metrics for assessing structural accuracy and readability in
the Systematized Nomenclature of Medicine - Clinical Terms
(SNOMED CT) [23].

Previous works (see, for example [24]) have shown
that ontologies contain human-readable content that is not
expressed in a logical form for the machines, this is the
so-called ‘hidden semantics’, which is knowledge captured
in the content for humans but not expressed in a machine-
processable way. The consistency between both the lexical
and the axiomatic content of the ontology can be checked
by applying the principle ‘lexically suggest, logically define’
[25]. An example is the name of the concept ‘left atrium
endocardium’, which can suggest a semantic relationship
with the concepts ‘left’ and ‘endocardium’. This principle
has been used for ontology analysis and axiom discovery
[26], [27].

Both lexical and semantic ontology content is used by
algorithms derived from Natural Language Processing (NLP)
techniques such as Word2Vec [28], OWL2Vec* [29] or
RDF2vec [30], to represent ontology entities as numerical
vectors. These vectors can be further used for measuring
similarity between entities [31], [32], or for predictive tasks

[33], [34], [35]. In this sense, the human-readable content of
the ontologies is a key factor to improve the performance
of these techniques, since most of them use this content to
create a corpus of text to be used as input for pure NLP-based
techniques, obtaining the vectors from this text.

In the literature, best practices related to the human-
readable content of ontologies have been proposed (see
e.g. [25], [36]). However, to the best of our knowledge,
existing ontology evaluation frameworks have not proposed a
systematic way to evaluate these best practices or the human
readability of ontology content. Consequently, there is a lack
of systematic methods for detecting ontologies and specific
entities with readability problems. Making this information
available would allow developers to improve their ontologies
based on informed decisions. In addition, this information
would also be helpful to users when deciding which ontology
to reuse.

Our hypothesis is that we can define quantitative metrics
that capture information that supports the assessment of
human readability of ontologies and adherence to best
practices. The availability of a set of standardized human
readabilitymetrics would contribute to amore comprehensive
evaluation of biomedical ontologies. It would also provide
the basis for developing a fundamental understanding of the
human readability of ontologies, which could be relevant to
related areas such as natural language processing. To this end,
we propose a set of metrics to capture a set of best practices
related to the human-readable content of ontologies.

The main research question (RQ1) is to what extent
quantitative metrics are useful for assessing the human
readability of ontologies and the adherence to related
best practices. For this purpose, we will use the OBO
Foundry repository as a use case. The OBO Foundry [7]
is a bioontology community pursuing the development of
an orthogonal, interoperable collection of bioontologies.
The OBO Foundry has defined a set of principles to be
followed by ontologies developed by the community. These
principles are the closest thing we know to an evaluation
of these best practices. The principles deal with aspects
such as the openness of the ontologies, the format, the
construction of the Uniform Resource Identifier (URI), the
versioning of the ontologies, the use of formal relations, the
need for maintenance and collaboration, or how to define
definitions and names, the latter two being directly related
to human readability. The second research question (RQ2)
is what recommendations can be derived from our study to
help ontology developers improve the human readability of
ontologies. The third research question (RQ3) is to what
extent the OBO Foundry ontologies show compliance with
the best practices. Regarding RQ3, the OBO Foundry has
recentlymade an effort to encode the principles as operational
rules that can be tested by validation checks [37], which is a
step forward in ontology quality assurance, and will serve to
compare the information about the ontologies generated by
both approaches.

101834 VOLUME 11, 2023



F. Abad-Navarro et al.: HURON: A Quantitative Framework for Assessing Human Readability in Ontologies

Therefore, our work will make the following contributions:
(1) we will provide a framework consisting of a set of
metrics for systematically evaluating the human-readable
content of biomedical ontologies; (2) we will provide a tool
for systematically evaluating the human-readable content
of biomedical ontologies; (3) we will generate knowledge
about the human-readable content of biomedical ontologies
in a well-known repository; and (4) we will provide some
recommendations on how ontology developers could improve
the human-readability of ontologies. Finally, although the
framework has been applied to biomedical ontologies in this
work, it could be useful for other domains and also for other
types of semantic resources.

II. BEST PRACTICES ON HUMAN READABLE CONTENT
In this section we describe some best practices related
to human-readable content of ontologies proposed by the
community. In this study, we assume OWL2 ontologies.1

OWL2 ontologies consist of a set of axioms that describe
entities (e.g., classes, individuals) and relationships between
entities (via properties). Classes are described by three
types of properties: data type properties, object properties,
and annotation properties. Annotation properties are the
ones used to provide human-readable content, so they are
the relevant ones for this work. Annotation properties are
not used to reason with OWL2 content. OWL2 provides
some built-in annotation properties, such as rdfs:label for
assigning names to classes, rdfs:comment for providing
descriptions, but none specific to synonyms. The content of
the annotation properties can have a language associated with
it, allowing multilingual ontologies to be defined. There is
no cardinality limit on the number of instances of the same
annotation property associated with the same class, allowing
the definition of multiple labels or comments associated with
the same language. In addition, OWL2 ontology developers
can create their own annotation properties.

A. CLASS NAMES
In this section we address three best practices related to the
naming of classes:

• Number of names in classes: each class must have one
name.

• Naming style: class names must define the concept
represented as well as possible, using a systematic
nomenclature [36].

• Lexically suggest, logically define: the information that
can be inferred from class names must be reflected by
ontology axioms [25].

Each ontology class is expected to have a standardized
canonical name consisting of a comprehensive textual
representation that is easily understood by users from
different backgrounds. This is usually provided by adding
annotation properties such as rdfs:label, skos:prefLabel,

1https://www.w3.org/TR/owl2-overview/

or foaf:name to the class. In some ontologies, classes may
have more than one name due to multilingualism or the
use of multiple properties derived from design choices. For
example, the SNOMED CT OWL version [38] uses the
annotation property skos:prefLabel to represent the class
name, e.g. ‘genetic disease’, and the property rdfs:label to
concatenate the semantic type to the class name, e.g. ‘genetic
disease (disorder)’.

This canonical name must follow a systematic naming
convention that defines the concept as well as possible.
For example, the class name ‘juvenile osteochondrosis of
the foot’ may be used to indicate that this is a type
of osteochondrosis of the foot that affects young people.
However, this class is also known as ‘Kohler’s disease’, from
which it can only be inferred that it is a disease discovered by
Kohler, which is less meaningful to non-experts in the field.

The OBO Foundry Principle 12 (Naming Conventions)
[36] provides a set of rules and tips for good class naming.
These include:

• Use explicit and concise names: Keep names short and
memorable, but precise enough to capture the intended
meaning. For example, the aforementioned class name
‘juvenile osteochondrosis of the foot’ captures the
meaning of the concept better than the name ‘Kohler’s
disease’.

• Use names that are self-explanatory and understandable
when viewed outside the immediate context of the
ontology. An example of this can be seen in the
Disease Ontology excerpt in Figure 1, where classes
are shown as blue circles, human-readable content as
green squares, and the annotation properties used to
link them as arrows. Here, the class labeled disease by
infectious agent satisfies the rule because its name is
understandable by itself without knowing the context
of the class. Conversely, if the class had been named
‘by infectious disease’, the context provided by the
parent class (disease) would be required to know that
the class is related to diseases, which is against the
rule.

• Recycle strings: Word compositions should be con-
structed in a consistent manner, rather than using
parasynonymous strings interchangeably. In the pre-
vious example, both the disease by infectious agent
and disease classes contain the string ‘disease’ in their
names, which follows the rule. Using synonymous
words like ‘disease’ and ‘disorder’ interchangeably
would be bad practice.

• Use genus-differentia style names: Class names should
reflect the differentiation that distinguishes the class
from its parent class. This rule suggests that the
name of a class should follow the name of its parent
classes, lexically indicating that the subclasses are
specializations of the parent class. The class disease by
infectious agent is a subclass of disease, so its name
indicates that it is a special type of disease caused by
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FIGURE 1. Excerpt of the disease ontology.

infectious agents, thus satisfying the rule. The class
syndrome is also a subclass of disease, but it does not
contain the word ‘disease’ in its name, which violates
the rule.

In addition to the previous recommendations, in [25] the
principle ‘lexically suggest, logically define’ suggests that
the name of the class should be aligned with the logical
axioms associated with the class. In the example of the class
name juvenile osteochondrosis of foot, this means that this
class must be semantically related to the ontology classes
osteochondrosis and foot, if they exist.

B. CLASS DESCRIPTIONS
Human readable descriptions facilitate the understanding
and reuse of the ontology. The OBO Foundry Principle
62 states that ‘The ontology has textual definitions for
most of its classes and especially for top-level terms’.
These descriptions are more informative than a simple
name, since a name may lead to misunderstandings due
to polysemy. Descriptions are incorporated into ontology
classes using annotation properties such as skos:definition,
rdfs:comment, or dc:description. Ideally, each class should
have a description. For multilingual ontologies, the number

2https://obofoundry.org/principles/fp-006-textual-definitions.html

of descriptions in classes should be equal to the number of
languages supported by the ontology.

C. CLASS SYNONYMS
Ontology classes need to be enriched with synonyms
whenever possible, which would facilitate the understanding
of the meaning of the class by human users from different
backgrounds and improve the use of the ontology for NLP
processes, as suggested in [39]. Synonyms are alternative
names to the canonical name that are widely accepted by
the community and used in certain domains. As previously
mentioned in Section II-A, the canonical name ‘juvenile
osteochondrosis of foot’ is a good name because it defines
the concept with a high level of detail. Nonetheless, in the
medical field, this concept is also widely known as ‘Kohler
disease’. Therefore, ‘Kohler disease’ can be included as
a synonym. Synonyms are included in OWL ontologies
by using annotation properties such as skos:altLabel or
oboInOwl:hasExactSynonym.

III. METHODS
In this section, we define the HURON framework, which
consists of a set of quantitative metrics and the software
tool that implements them. The framework also defines
associations between the metrics and best practices.
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A. THE HURON METRICS FOR HUMAN READABLE
CONTENT
We propose a set of quantitative metrics that provide useful
information for assessing the degree of implementation of the
previous best practices. We will use the annotation properties
resulting from our previous analysis of the most commonly
used annotation properties in the BioPortal repository [22],
plus some additional ones.

1) NAMES PER CLASS
This metric accounts for the number of names associated
with classes, and uses the list of annotation properties from
the ontology community for names (see Table 1). Then, the
metric names per class is calculated as the number of names
associated with ontology classes divided by the total number
of classes in the ontology.

The value range of this metric is the set of real positive
numbers. Values less than one indicate that there are classes
without names in the ontology. Conversely, a value greater
than 1 indicates that there are classes with multiple names,
possibly caused by the inclusion of multilingual names or
by some design decision, such as the one commented on
previously for SNOMED CT in Section II-A.
To illustrate how this metric is calculated, we will use

the Disease Ontology excerpt shown in Figure 1. The figure
contains three classes with several annotation properties
describing them, the name being provided by the rdfs:label
property. Since there are 3 classes and 3 rdfs:label properties
associated with classes, the value of the metric names per
class is 3

3 = 1.

2) DESCRIPTIONS PER CLASS
This metric takes into account the number of descriptions
associated with classes that can also be provided using
different annotation properties. Specifically, Table 2 provides
the identified list of annotation properties used by the
community to encode descriptions. The metric descriptions
per class is calculated as the total number of descriptions
associated with ontology classes divided by the total number
of classes in the ontology.

As an example for the calculation of the metric, the disease
ontology excerpt (see Figure 1) contains three classes, and
each of them has a description provided by the property
iao:0000115 (‘definition’, from the Information Artifact
Ontology). So the metric would give a result of 3 descriptions
over 3 classes, i.e. 1 description per class, which is in line
with the recommendation.

3) SYNONYMS PER CLASS
Similarly, the metric synonyms per class takes into account
the number of synonyms associated with classes, which can
also be provided using different annotation properties. Table 3
contains the identified list of annotation properties used by
the community to add synonyms. The metric synonyms per

class is calculated as the number of synonyms associated with
classes divided by the total number of classes in the ontology.

In the example from Figure 1, only one of the three
classes is annotated with synonyms. Specifically, the class
doid:0050117 is annotated with two synonyms using the
properties obi:9991118 (alternative term used by the IEDB)
and oboInOwl:hasExactSynonym. Thus, the ontology con-
tains 2 synonyms and 3 classes, giving 2

3 = 0.67 synonyms
per class. Note that the metric does not check the textual
content of the synonym, which in this case is the same.

4) METRICS BASED ON LEXICAL REGULARITIES
In this section, we describe metrics that exploit the lexical
structure and content of the names of the ontology classes.
These metrics use the concept of lexical regularity (LR)
[27], [40], which is a consecutive list of words that appear
recurrently in a set of class names.

When a lexical regularity exhibited by a class is equal to its
full canonical name, the class is called lexical regularity class
(LR class). For example, the class process from the Basic
Formal Ontology (BFO) (see Figure 2) is an LR class because
the text ‘process’ is a lexical regularity that is also exhibited
by the classes process profile and process boundary.

FIGURE 2. Extract from the class hierarchy of the BFO ontology, version
dated 2019-08-26.

In this work, we use the following two metrics based on
lexical regularities:

• Systematic naming: This is related to the ontology design
principle that classes in the same taxonomy should share
part of their name, since subclasses are specializations
of the parent class. In other words, class names should
follow a genus-differentia style. This metric is calculated
as the ratio of subclasses of an LR class that share
the lexical regularity of the parent class. This requires
calculating how many subclasses of a given LR class
have the lexical regularity in their name (positive cases)
and how many do not (negative cases). The value of
the metric is calculated by dividing the positive cases
by the total number of cases and is done for each LR
class. An example of the metric focusing on the process
taxonomy from the BFO ontology (see Figure 2) results
in a value of 0.5. In this case, the LR class process has
two subclasses: history, which is a negative case because
it does not have the lexical regularity of the parent, and
process profile, which is a positive case.
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TABLE 1. Annotation properties used to encode names.

TABLE 2. Annotation properties used to encode descriptions.

TABLE 3. Annotation properties used to encode synonyms.

• Lexically suggest, logically define (LSLD): It is related
to the design principle of the same name [25], which
we interpret as follows: what is expressed in natural
language for humans should be expressed as logical
axioms for the machine. It is calculated as the ratio
in which an LR class is semantically related to other
classes that exhibit its lexical regularity. Here, two
classes are semantically related if there exists a path of
arbitrary length between them through the axioms in the
ontology (i.e., subclass of, equivalence, or domain/range
property). Disjoint axioms are not considered for
this ontology traversal. For computational reasons,
we limited the length of the path between classes to 5;
thus, classes that are semantically related by longer
paths are considered to be not semantically related.
In this case, positive cases are classes that exhibit a
lexical regularity and are semantically related to the
corresponding LR class. Negative cases are classes that
exhibit lexical regularity and are not semantically related
to the corresponding LR class. The value of the metric
is calculated by dividing the positive cases by the total
number of cases. This metric is calculated for each LR
class. In our BFO example (Figure 2), the LSLD metric
would check if the classes with the lexical regularity

‘process’ are semantically related to the class process. In
this case, process profile is a positive case because it is a
subclass of process, but process boundary is a negative
case because it is not semantically related to process.
Consequently, the value of the metric for the LR class
process is also 0.5.

Finally, the value of the systematic naming and LSLD
metrics for an ontology is calculated as the sum of all
positive cases divided by the sum of all positive and negative
cases obtained by each LR class in the ontology. The values
of both metrics are in the range [0, 1], where the highest
values represent the best values for the metric. In this work,
the implementation of both metrics assumes the annotation
property rdfs:label as the canonical name, since it is the most
frequently used by the analyzed ontologies.

B. ASSOCIATION BETWEEN BEST PRACTICES AND
METRICS
Table 4 summarizes the associations between best practices
and metrics, showing which metrics are used to evaluate
each best practice. We also provide the target values for
the metrics, which represent the threshold for estimating the
ontology’s compliance with the best practice associated with
each metric:
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• The target value for the metrics names per class and
descriptions per class is 1 for monolingual ontologies.
For multilingual ontologies, the optimal value for these
metrics is equal to the number of languages supported
by the ontology.

• The target number of synonyms per class depends on
the concept represented by that class, since there are
classes with a higher number of synonyms than others.
Nevertheless, we have set a target value of 1 synonym
per class based on the study of the OBO Foundry
repository, which is shown in Section IV-E.

• The target value for the systematic naming and the LSLD
metrics is their maximum possible value, 1.

C. CLUSTERING-BASED ANALYSIS
We performed a metric-by-metric clustering analysis to
obtain information about how each metric partitions the
corpus of ontologies. We used Evaluome [41], [42] to
perform a k-means based clustering of ontologies, using each
metric separately as a unique feature. Evaluome performs
clusterings for a range of values of k and returns the value of
two statistical properties of the clusterings, namely stability
and goodness. The stability measures the effect of small
variations on the data, and its values are in the range
[0, 1], whose interpretation is described in Table 5. Goodness
measures how closely the instances in a category are related
and how well a category is separated from the rest of the
categories, and returns values in the range [−1, 1] (see Table 6
for the interpretation of the values).

In this work, we have used the interval [2,11] as the range
for the values of k . Given a value of k , the method requires at
least k different values for the metric used for the clustering to
be able to provide a result. This method suggests the optimal
number of ontology clusters (k) for each metric by analyzing
the values of stability and goodness. The clustering using the
optimal value of clustering k will be described, although we
have also manually inspected the results of other values of k .

D. THE HURON SOFTWARE TOOL
We have developed a software tool that provides a command
line interface to compute the metrics of any set of ontolo-
gies (see https://github.com/fanavarro/huron). This tool was
implemented in Java and uses the OWLAPI [43] for ontology
parsing, the ELK reasoner [44] for axiom discovery, and
the OntoEnrich framework for lexical regularity extraction
[26]. For ontologies that could not be processed by ELK, the
structural reasoner provided by the OWL API was used.

A web version of the tool is available at https://semantics.
inf.um.es/huron. In this web version, the user can enter a set
of ontologies by specifying their IRI, which should redirect
to an OWL file, and select the set of metrics to be calculated.
Optionally, the user can choose to perform the analysis of the
metrics based on Evaluome [41], [42] described in this work.
This analysis generates several plots showing (1) the global
distribution of each metric, shown as violin plots; (2) the
correlation between the metrics, shown as a heatmap; and

(3) a clustering analysis, whose output is a plot per metric
showing the distribution and the range of values of each group
of ontologies found, together with the stability and the quality
of the resulting clustering. The results of the request are sent
by email in a zip file containing a CSV file with the metric
values for each ontology and the plots resulting from the
analysis, if requested by the user.

IV. RESULTS
In this section, we describe the results of applying our metrics
to a corpus of biomedical ontologies extracted from the OBO
Foundry repository [7]. The full results are available in our
GitHub repository.3 The OBO Foundry aims to provide a set
of orthogonal biomedical ontologies and is therefore a good
candidate for providing a wide variety of ontologies in the
biomedical domain. The content of this repository is expected
to follow the OBO principles. First, we describe how the
content of the OBO Foundry repository was processed. We
then present the results in terms of the distribution of metric
values and the metrics for names, descriptions and synonyms.

A. DATA PROCESSING
At the time of our work (March 2022), the repository
contained 182 active ontologies considered for this study,
10 of which were classified as OBO Foundry member
ontologies, while the remaining 172 were candidates. They
are available at https://doi.org/10.5281/zenodo.4701571. In
addition, we provide a CSV file containing the acronyms
and full names of the ontologies considered in this work in
our GitHub repository3. The 182 OBO Foundry ontologies
were downloaded using the scripts available in our GitHub
repository3. The metrics were then calculated using HURON
release v0.0.2, presented in Section III-D.

A timeout of 12 hours was applied to the OBO Foundry
candidate ontologies. This restriction was not applied to the
OBO Foundry member ontologies due to their relevance and
smaller number of ontologies. The final corpus contained
142 ontologies for the following reasons

• A total of 38 ontologies could not be parsed due to
incompatibilities with the OWLAPI version, includ-
ing the member ontologies Human Disease Ontology
(DOID) and the Plant Ontology (PO).

• The 12 hours timeout expired for the NCBI Taxon
ontology.

• TheMathematical Modeling Ontology (MAMO) did not
use the rdfs:label property for the ontology class names.
This was required to calculate the systematic naming and
the LSLD metrics.

B. DISTRIBUTION OF VALUES OF THE METRICS
The values of the metrics considered in this work (i.e., names,
synonyms, and descriptions per class, and LSLD and system-
atic naming) did not fit a normal distribution in this corpus.
Figure 3 contains violin and box plots summarizing the

3https://github.com/fanavarro/lexical-analysis-obo-foundry
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TABLE 4. Association between the best practices and the metrics that measure them.

TABLE 5. Interpretation of cluster stability values.

TABLE 6. Interpretation of cluster goodness values.

distribution of each metric and its values obtained from the
ontology corpus, including the p-values resulting from the
Shapiro-Wilk normality test [45]. The Shapiro-Wilk test tests
the null hypothesis that a sample comes from a normally
distributed population.

C. NAMES
1) NUMBER OF NAMES
The metric names per class has a median of 1, a mean
of 1.015, and a standard deviation of 0.077. This fact is
consistent with the best practice described in Section II-A,
which states that each ontology class must have a unique
canonical name. Thus, the evaluated ontologies were gener-
ally compliant with this recommendation.

There were some outlier ontologies with values slightly
higher than 1, such as the Prescription of Drugs Ontology
(PDRO), the Biological Imaging Methods Ontology (FBBI),
and the Compositional Dietary Nutrition Ontology (CDNO),
which had 1.4 names per class. Upon closer inspection,
we found that PDRO and CDNO use the annotation property
rdfs:labelwith different language tags to include multilingual
names in some classes. Also, FBBI included an OBO
Foundry unique label in several ontology classes through
the IAO:0000589 property from the Information Artifact
Ontology (IAO), in addition to the rdfs:label.

Conversely, there were 15 ontologies, such as the Units
of Measurement Ontology (UO) and the Food Interactions
with Drugs Evidence Ontology (FIDEO), that did not reach
1 names per class, although this value was close to 1 in
all cases. This was mainly caused by reusing classes from
other ontologies without including the corresponding anno-
tations. For example, FIDEO reuses several Basic Formal

Ontology (BFO) classes that do not contain annotations. This
could be mitigated by including these annotations manually,
or by importing the external ontology using an ‘import’
statement.

Using Evaluome, the optimal number of clusters obtained
for the names per class metric was 2, reaching a stability
of 0.922 and a goodness of 0.972, indicating highly stable
clusters with a strong structure. Cluster 1 was formed by
only 4 ontologies, with values ranging from 1.436 to 1.472
names per class, while cluster 2 was formed by the remaining
129 ontologies, with values ranging from 0.921 to 1.152 (see
Figure 4A).
Here, cluster 1 represents the ontologies with more than

1 names per class in general, due to multilingual names
or the use of more than one property to contain names,
as commented before. On the other hand, cluster 2 includes
the ontologies whose values for the metric name per class
were around 1. The optimal clustering did not suggest a
cluster to represent ontologies with values significantly lower
than 1 for this metric, which would be contrary to the best
practice commented in Section II-A. In summary, the results
support that the ontologies in this corpus follow this best
practice.

Finally, we explored different k partitions for this metric
in addition to the optimal one, and found k = 4 to be
the most informative. These results are shown in Figure 5.
Here we found cluster 1 to be the most representative, with
123 ontologies having almost 1 name per class. Cluster 2 was
formed by 2 ontologies (not shown in the figure due to their
low density) with a names per class slightly higher than 1;
while this value was slightly lower than 1 for cluster 4, since
4 ontologies belong to this cluster. Finally, cluster 3 was
formed by 4 ontologies with more than one name per class.

2) SYSTEMATIC NAMING
The value obtained for the systematic naming metric is
often low, with a mean of 0.2, a median of 0.14, and a
standard deviation of 0.173. In general, this means that
ontology classes do not follow a systematic naming along the
hierarchies, so the genus-differentia naming style is not used.

However, some ontologies received values close to one for
themetric, which is the highest possible value. This is the case
of the Teleost Taxonomy Ontology (TTO), which received
a value of 0.998. This ontology represents a taxonomy of
organisms that uses scientific notation for naming them, thus
presenting a genus-differentia style. For example, the fact that
‘Eudontomyzon danfordi’, ‘Eudontomyzon hellenicus’, and
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FIGURE 3. Violin plots showing the distribution of each metric along the ontology corpus. The p-values of the Shapiro
normality test are shown.

FIGURE 4. Distribution of the metrics, separated by each cluster of ontologies found by Evaluome.

‘Eudontomyzon lanceolata’ are specializations of ‘Eudon-
tomyzon’ is represented semantically by defining them as
subclasses of Eudontomyzon, and also lexically by including
the word ‘Eudontomyzon’ in their names.

Evaluome found that the optimal number of clusters for the
systematic naming metric was 2. This cluster configuration
achieved a stability of 0.8937970 and a goodness of
0.6487532, indicating a highly stable clustering with a
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FIGURE 5. Distribution of the names per class metric, separated by each
cluster of ontologies for that metric by using k = 4.

reasonable structure. Cluster 1 contained 33 ontologies with
systematic naming values between 0.285 and 0.998, while
cluster 2 contained 100 ontologies with values between
0.001 and 0.276 for the metric (see Figure 4B). Here, cluster
1 represents the ontologies with a higher value for the
systematic naming metric, which includes only the 24.8%
of the considered ontologies and has even a wider range
of values than cluster 2. For its part, cluster 2 grouped the
ontologies with lower values, which was the majority of them
(75.2%). This fact supports that, in general, the ontologies in
the corpus do not follow a stable systematic naming.

3) LEXICALLY SUGGEST LOGICALLY DEFINE
The value obtained for the LSLD metric is generally high,
with a median of 0.794 and a mean of 0.756 with a
standard deviation of 0.198. This indicates that LR classes are
usually semantically related by ontology axioms with classes
showing their lexical regularity in the name, as recommended
by the ‘lexically suggest, logically define’ principle.

The Confidence Information Ontology (CIO), the Glycan
Naming and Subsumption Ontology (GNO), the Human
Developmental Stages Ontology (HSAPDV), and the Mouse
Developmental Stages Ontology (MMUSDV) obtained the
maximum LSLD metric value. However, these ontologies
have a small number of LR classes (see Table 7), so the
metric was calculated using a small fraction of the ontology.
This may indicate that the human-readable content of these
ontologies does not provide much information about the

semantics, although the information provided is consistent
with the semantic definitions. For example, GNO contained
112, 377 classes, of which only GNO:00000001 (glycan)
was an LR class. The lexical regularity ‘glycan’ is exhibited
by 13, 729 classes in the ontology, and all of them were
semantically related to the class ‘glycan’, thus having a LSLD
metric of 1. Note that this value was calculated from a single
LR class in the ontology, so it is not very informative.

TABLE 7. Top-5 ontologies according to the LSLD metric, along with the
number of LR classes detected in each one.

A representative example of the ontology corpus for
the LSLD metric was the Informed Consent Ontology
(ICO), which received the median of the repository (0.794).
A number of 184 LR classes were detected in this ontology,
and most of the classes that included the lexical regularity in
their names were semantically related to the corresponding
LR class. For example, 77 classes included the lexical
regularity ‘specimen’ in their names, and 76 of them were
semantically related to the LR class ‘specimen’.

Evaluome found 2 ontology clusters as the best clustering
configuration, achieving a stability of 0.8387104 and a qual-
ity of 0.6092190, indicating stable clusters with a reasonable
cluster structure. Cluster 1 grouped 102 ontologies with
the highest values for the metric, ranging from 0.656 to 1.
On the other hand, cluster 2 contained 31 ontologies with
lower values for this metric, ranging from 0.015 to 0.650
(see Figure 4C). In this case, most of the ontologies (77%)
belonged to the cluster with the highest values for the metric.
This indicates that the lexical information contained in class
names is generally consistent with the semantic definitions
declared in the corresponding ontology, thus following the
principle of ‘lexically suggest, logically define’.

4) JOINT ANALYSIS OF SYSTEMATIC NAMING AND LSLD
Although both systematic naming and LSLD were evaluated
independently, we found interesting to perform a cluster
analysis by using both of them as features for ontology
classification. Here we used the silhouette method [46] to
identify the optimal number of clusters resulting from the
application of the k-means algorithm and the Euclidean
distance, since Evaluome only works with single variables.
The optimal number of clusters identified by the silhouette
method was 3 (see Figure 6). The resulting clusters are shown
in Figure 7, where cluster 1 was the largest, formed by
82 ontologies with high values for the LSLD metric (mean
of 0.83) and low values for the systematic naming metric
(mean of 0.15). Cluster 2 was formed by 31 ontologies with
low values for both metrics (LSLD mean = 0.47; systematic
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namingmean = 0.11). Cluster 3 was formed by 20 ontologies
with high values for both metrics (LSLD mean = 0.88;
systematic naming mean = 0.52). Thus, cluster 3 represents
the ontologies that follow the class naming recommendations
to a higher degree, i.e. the LR classes follow a systematic
naming, and most of the classes showing lexical regularities
are linked to the corresponding LR classes. Cluster 2, on the
other hand, represents the ontologies that should improve
this aspect. Here, the LR classes do not follow a systematic
naming and the classes exhibiting lexical regularities are
related to the corresponding LR class in a lower degree. On
a middle ground, cluster 1, which is the most representative
of the OBO Foundry repository due to its size, was formed
by ontologies that follow the principle of ‘lexically suggest,
logically define’, but do not follow a systematic naming.
More precisely, the LR classes of these ontologies follow a
systematic naming to a low degree, but they are linked to
those classes that show their lexical regularities to a high
degree.

FIGURE 6. Silhouette plot to identify the optimal number of ontology
clusters by using the LSLD and the systematic naming metric together as
features.

In addition, we found a positive correlation between the
values of the systematic naming and the LSLD metrics. In
other words, ontologies with high values for the systematic
naming metric are likely to have high values for the LSLD
metric as well. Specifically, the Spearman correlation test
yielded ρ = 0.37; p < 0.05. This makes sense because any
subclass of an LR class that exhibits the corresponding lexical
regularity is counted as a positive case for both metrics.

D. DESCRIPTIONS
As noted in Section II-B, all classes would contain at least
one description in the best case scenario. The distribution of
values for this metric has a median of 0.943, a mean of 0.845,
and a standard deviation of 0.39. This is close to theminimum
acceptable value for the metric. In particular, 52 ontologies
met this rule, and 90 had less than 1 description per class.
In addition, there were 48 ontologies with more than one
description per class on average, such as the Gene Ontology
or the Protein Ontology.

The Systems Biology Ontology (SBO) obtained a value
of 0.999 descriptions per class, which is very close to
the target value. Like SBO, many ontologies obtained
a value for this metric very close to 1, such as the
Zebrafish Phenotype Ontology (ZP) (0.998 descriptions per
class, 1, 114 of 55, 186 classes without description), the
Ontology of Arthropod Circulatory Systems (OARCS) (0. 997
descriptions per class, 1 of 308 classes without description),
or the C. elegans developmental ontology (WBLS) (0.997
descriptions per class, 12 of 794 classes without description).
These ontologies lack descriptions for a small fraction of
their classes, so they can be improved with relatively little
effort. Conversely, some ontologies obtained a lower number
of descriptions per class, such as MCO (0.528 descriptions
per class, 1, 607 out of 3, 383 classes without description) or
FIDEO (0.565 descriptions per class, 180 out of 402 classes
without description). In addition, 3 ontologies, namely the
Mouse adult gross anatomy ontology (MA), the Teleost
taxonomy ontology (TTO), and the Zebrafish developmental
stages ontology (ZFS), did not contain any description in
classes, demonstrating that this aspect is not considered in
their development.

Finally, Evaluome proposed 2 clusters according to
the description per class metric, reaching a stability of
0.9375347 and a goodness of 0.7186178, indicating a
highly stable clustering with a strong structure. On the one
hand, cluster 1 contained 108 ontologies whose values for
the metric ranged from 0.601 to 1.991, representing the
ontologies with a higher number of descriptions per class.
On the other hand, cluster 2 had only 25 ontologies with a
lower value for the metric, specifically between 0 and 0.565
descriptions per class (see Figure 4D).

E. SYNONYMS
The value obtained for the synonyms per class metric ranged
from 0 to 4.84, with a median of 0.73 and a mean of 1, and a
standard deviation of 1. Table 8 shows the top 5 ontologies
with the highest number of synonyms per class, including
the Microbial Conditions Ontology (MCO), the National
Cancer Institute Thesaurus (NCIT), the Protein Modification
Ontology (MOD), the Fission Yeast Phenotype Ontology
(FYPO), and the Compositional Dietary Nutrition Ontology
(CDNO). On the other hand, no synonyms were found in the
classes of the following ontologies (i.e. a value of 0 synonyms
per class): The Core Ontology for Biology and Biomedicine
(COB), The Disease Drivers Ontology (DISDRIV), The
Nomenclatural Ontology for Biological Names (NOMEN),
The Systems Biology Ontology (SBO), The Units of Mea-
surement Ontology (UO), and The Zebrafish Developmental
Stages Ontology (ZFS). As shown in Figure 8C, most syn-
onyms were included by using oboInOwl:hasExactSynonym
and oboInOwl:hasRelatedSynonym; however, seven other
annotation properties with marginal use for including syn-
onyms were identified in the repository.

Evaluome grouped the ontologies into 2 clusters according
to this metric, achieving a stability of 0.9819980 and a
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FIGURE 7. Clusters of ontologies found by using the LSLD and the systematic naming metrics together as features and k = 3.

TABLE 8. Top-5 ontologies according to the synonyms per class metric.

goodness of 0.7089322, indicating a highly stable cluster
with a strong structure. Cluster 1 contained 96 ontologies
with a low number of synonyms per class, ranging from 0 to
1.5, while cluster 2 contained 37 ontologies with a higher
number of synonyms per class, ranging from 1.55 to 4.84 (see
Figure 4E).

V. DISCUSSION
The HURON framework has made it possible to obtain
knowledge about the adherence to best practices related to
the human readability of ontologies (RQ1). In this work,
we did not use a predetermined threshold for the values of
the metrics to determine compliance with a best practice.
However, we did use a target value for their interpretation.
In addition, we used clustering to classify the ontologies
according to their calculated metric values. This served to

detect different levels of readability of the ontologies in
the OBO Foundry repository. Next, we provide a general
discussion of the work done.

A. THE METRICS
In this work, we have proposed a target value per metric
to serve as a reference for the analysis of the ontologies.
However, different target values for the same metric could
apply to different ontologies. For example, a value higher
than 1 name per classmay be justified by the design decision
of including multilingual names or additional annotations for
different name types. In this case, the target value for names
per class metric should depend on the number of languages
supported by the ontology. Accordingly, the fact that three
ontologies have a value of 1.4 names per class could indicate
that there are classes without labels for all languages used in
the ontology.

Regarding the systematic naming metric, we observed
the existence of LR classes with short names representing
very general concepts, usually located at high levels of
the ontology, such as ‘role’, ‘object’ or ‘entity’. These
classes can be considered as ‘domain-independent’ classes
and are usually present in top-level ontologies such as BFO,
which are imported to be used as a semantic framework
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FIGURE 8. Usage, in terms of the number of annotations in classes,
of each annotation property identified in the OBO Foundry repository that
encodes (A) names, (B) descriptions, and (C) synonyms.

for the development of new ontologies. Maintaining these
words as part of the names along the subclass hierarchy is
difficult due to the large number of subclasses by transitivity.
For example, in the ontology of core ecological entities
(ECOCORE), the LR class ‘entity’ has 5, 439 subclasses by
transitivity, but only 43 of them include the word ‘entity’ as
part of the name. In general, the classes exhibiting lexical
regularities with a broad meaning in their names are not
subclasses of the corresponding LR class, resulting in low
values for the metric. Conversely, LR classes that refer to
more concrete domain-dependent concepts are more likely
to have higher systematic naming scores. This fact is mainly
due to a lower number of transitive subclasses to evaluate
for the corresponding LR class, which makes it easier to
maintain the lexical regularity in these subclasses. As an
example taken from ECOCORE, the LR class ‘aorta’ is
a domain-dependent class that has only three subclasses
that exhibit the corresponding lexical regularity: ‘dorsal
aorta’, ‘left dorsal aorta’ and ‘right dorsal aorta’, thus
having a systematic naming value of 1. To quantify this
fact, we performed a Spearman correlation test between the
number of transitive subclasses of each LR class found in
the entire repository, and the value obtained for that LR class
for the systematic naming metric. The Spearman correlation
showed, as depicted in Figure 9, a negative correlation
between the number of transitive subclasses and the value

for the systematic naming metric (ρ = −0.229; p = 2.19 ·

10−239). In addition, we provide a supplementary CSV file
available on our GitHub3, where this correlation analysis was
performed for each ontology in the repository individually,
showing that 92 out of 126 ontologies resulted in a significant
negative correlation, whereas only 7 showed a significant
positive correlation (p < 0.05).

FIGURE 9. Correlation between the systematic naming score and the
number of transitive subclasses found for all the LR classes in the
repository.

The LSLD metric can help to identify possible ontology
errors by looking at LR classes that negatively affect the
metric. For example, looking at the LR class ‘informed
consent form’ from ICO, 36 classes contained this lexical
regularity in their names (e.g., ‘signing an informed consent
form’), but 18 of them were not semantically related to the
LR class ‘informed consent form’. In this case, the LSLD
metric helps to detect classes whose semantics may not be
fully formalized.

The value of the metric synonyms per class seems to be
related to the nature of the domain. Ontologies whose classes
can be named using different naming systems are more likely
to have a higher number of synonyms. In addition, domain
ontologies that contain very specific classes are also likely
to have more synonyms. This is the case in the chemical
domain, where compounds defined as domain classes can
be named using different nomenclatures (e.g., traditional,
systematic, inventory). For example, the highest number of
synonyms per class (4, 839) was achieved by the Microbial
Conditions Ontology (MCO) (see Table 8), which has a
strong chemical background. This ontology reuses a large
number of terms from the CHEBI ontology by adding them
directly to the ontology, including all annotations of the
class from CHEBI. For example, the class chebi:29222
(hypochlorite) includes the synonyms ‘oxidochlorate(1-)’,
‘[ClO](-)’ or ‘hypochlorite’. However, the terms in CHEBI
contain annotations such as chebi:charge, chebi:mass,
or chebi:monoisotopicmass, whichwere erroneously included
as synonyms in MCO, possibly due to an automatic
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import process, resulting in a higher number of synonyms
compared to CHEBI. Ontologies with a lower number
of synonyms per class are usually ontologies with very
general concepts that are less likely to have synonyms.
This is the case of the previously mentioned ontologies
with 0 synonyms per class. They include concepts like
‘information representation’ or ‘geographic location’ from
COB, or ‘chemical driver’ or ‘nutrient deficiency’ from
DISDRIV. However, ontologies such as ZFS or SBO
contained low-level classes such as ‘gastrula’ or ‘enzymatic
rate law for irreversible non-modulated non-interacting bire-
acting enzymes’, which were not enriched with synonyms,
possibly due to a lack of synonyms in the correspond-
ing domains. In addition, we found that UO included
synonyms by using both oboInOwl:hasExactSynonym and
oboInOwl:hasRelatedSynonym; however, these properties
were included by using an undefined prefix in the ontology,
thus preventing the proper recognition of synonyms. In
addition, NOMEN also included synonyms by using
its own annotation properties (http://purl.obolibrary.org/
obo/NOMEN:0000017 and http://purl.obolibrary.org/obo/-
NOMEN_0000018), which were not considered by the
synonyms per class metric.

The clusterings performed showed that the metrics provide
useful information for analyzing the ontologies. The method
automatically selects the optimal number of groups based
on statistical features of a set of clusterings. Each cluster
contains ontologies with similar values for a given metric,
which facilitates the analysis of a repository based on the
metrics. Since there is no community proposal or agreement
on the existence and characterization of readability levels,
we cannot assign a specific readability level to each cluster
at this time.

It should be noted that the target value of a metric for an
ontology may depend on design decisions (e.g., multilingual
ontologies should have multiple names per class) that need
to be taken into account to determine the readability level.
Identifying such design decisions can be complex in most
cases. Consequently, the metrics may be analyzed differently
when trying to characterize a repository and when analyzing
a single ontology. In the first case, the values of the
metrics and the structure of the corresponding clusterings
will show which ontologies exhibit similar behavior with
respect to these metrics. In the second case, the values of the
metrics need to be tested against the design decisions of the
ontologies.

B. THE REPOSITORY
Regarding RQ3, our metrics suggest that the ontologies
in the OBO Foundry repository show adherence to best
practices regarding the number of classes and descriptions,
and the application of the ‘lexically suggest, logically define’
principle. Figure 8A shows that the most used annotation
property for class names is rdfs:label with a marginal use
of skos:prefLabel and iao:0000589, which is in line with
the recommendations of the OBO Foundry Principle 12 on

naming conventions [36]. Furthermore, the ontologies in this
repository use the properties rdfs:comment and IAO:0000115
(definition) to include descriptions, in accordance with
OBO Foundry Principle 6 about textual definitions2, which
recommends using these two properties to include descrip-
tive information in classes. Figure 8B shows that both
annotation properties are widely used in the repository,
compared to other properties that show minimal use, such as
dc:description or skos:definition. The results of the names
per class metric and the clustering obtained, with only
4 ontologies in cluster 1 (values from 1.436 to 1.472), means
that this community is not developingmultilingual ontologies
and that most names are provided in English only.

Conversely, they do not show compliance with systematic
naming or the number of synonyms. It should be noted
that the analysis of the results obtained for these two best
practices shows a high dependency on the nature of the
domain modeled. This means that there are some ontologies
that would never obtain a good value for the metrics due
to the nature of the domain. It should be remembered that
from a quality perspective, the metrics provide information
that must be interpreted in terms of the design requirements
of the ontology. Therefore, not showing compliance with a
particular best practice may not be a sign of lower quality,
as this best practice may not be applicable to the ontology.
Therefore, in this article, we do not evaluate the quality of the
ontologies, but we analyze the adherence to the principles.

The OBO Foundry uses automatic methods implemented
in ROBOT to evaluate the OBO Foundry Principles. Accord-
ing to the results of the evaluation, they rate the ontology
for this principle as pass, warning or fail, which we believe
is an important, positive step forward in quality assurance
for this community. It should be noted, however, that we are
interested in generating information for ontology developers
that could help them improve their ontologies, not in rating
them, and our efforts are independent of any particular
ontology community. Next, we describe some differences
between our work and the evaluations performed by the OBO
Foundry.

On the one hand, OBO Foundry automatically checks its
Principle 12 (naming conventions) by applying the following
criteria (https://obofoundry.org/principles/checks/fp_012):

1) Each label must be unique. If this requirement is
not met, update at least one label to distinguish
between the two terms. Add the original label to
a oboInOwl:hasExactSynonym (alternatively, narrow,
related, or broad) or IAO:0000118 (alternative term)
annotation.

2) Each entity must not have more than one label. If
this criteria is not met, determine which label most
accurately describes the term. Change the other label(s)
to oboInOwl:hasExactSynonym (alternatively, narrow,
related, or broad) or IAO:0000118 (alternative term).

3) Each entity should have a label using rdfs:label. If this
criteria is not met, add an rdfs:label annotation to each
term that is missing a label.
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This check only considers the number of names per class
and the annotation property used to include the name, and
thus does not cover all the recommendations of Principle 12.
The requirement to have only one label per class is contrary
to multilingual ontologies, which could have multiple labels
in multiple languages, and no recommendation is given on
how to include names in multilingual ontologies. However,
it is fine to have one if the OBO Foundry ontologies are
intended to be in English only, although to the best of our
knowledge this is not claimed as a principle. In addition, our
systematic naming and LSLD metrics are in line with most
of the recommendations of Principle 12 that are not already
covered by the OBO Foundry automatic check, so our results
could be helpful for their evaluation work.

On the other hand, the application of the OBO Foundry
Principle 6 (textual definitions)2 is also automatically
evaluated by the following criteria (https://obofoundry.org/
principles/checks/fp_006):

1) Each definition must be unique. If this criterion is not
met, update any duplicate definition to include some
detail that distinguishes one term from another.

2) Each entity may have no more than one textual defini-
tion. If a term has more than one definition, combine
the definitions. Alternatively, change a definition to a
rdfs:comment if it only contains further details.

3) Each entity should have a textual definition using
IAO:0000115 (definition). If this criterion is not met,
add a IAO:0000115 (definition) annotation to each term
that lacks a definition.

In this context, the metric description per class measures
this aspect in a more general way, taking into account not
only the annotation properties proposed by OBO Foundry,
IAO:0000115 (definition) and rdfs:comment, but also others
such as skos:definition or dcterms:description. In addition,
the criteria used by OBO Foundry for checking class
definitions would be contrary to multilingual ontologies,
which would not pass the check due to having one definition
per supported language.

It should also be noted that the OBO Foundry has
traditionally distinguished between member and candidate
ontologies. The member ontologies have been manually
checked and are expected to comply with the OBO Foundry
principles. Table 9 shows the mean value obtained by each
group and the p-value indicating the statistical significance
using the Wilcoxon Rank Sum Test, also known as the
Mann-Whitney test. In general, the member ontologies had
a higher number of synonyms per class (1.43 vs. 1.02) and
descriptions per class (0.94 vs. 0.84). In addition, themember
ontologies obtained higher values for the systematic naming
metric (0.26 vs 0.19). However, theWilcoxon Rank Sum Test
did not show a statistically significant difference between
member and candidate ontologies.

For most metrics, two levels of readability have been
identified in the repository by the clusters. These clusters
describe the content of the repository for that metric.

TABLE 9. Comparison between the member and the candidate OBO
Foundry ontologies. For each metric, the mean values for the member and
the candidate set are shown, together with the p-value resulting from the
Wilcoxon test.

The clusters separated the ontologies with higher values for
each metric from those with lower values. The range of
values associated with eachmetric could be used to determine
quality-related thresholds, but that is beyond the scope of this
article.

C. RECOMMENDATIONS
Next, wemake some recommendations (RQ2) to the ontology
developers and users inspired by the results of our research.

1) RECOMMENDATION 1: REUSE OF HUMAN-READABLE
CONTENT
The minimum information to be reused to ensure human
readability of ontologies should include names, descriptions
and synonyms. MIREOT [47] recommends reusing labels
and some textual information in addition to reusing URIs.
Most of the ontologies in our corpus show adherence to the
best practice of defining human-readable names for ontology
classes. The exceptions are mostly due to the reuse of URIs,
but not to the reuse of their annotations. Reusing only URIs
makes sense from an ontologymaintenance perspective, since
the human-readable content of the ontology is more likely
to change. However, this has limitations for an ontology
that is intended to be human-readable. Ontology developers
should not only reuse the minimum information suggested
by MIREOT, but also follow its recommendations regarding
labels and textual information.

2) RECOMMENDATION 2: DEVELOPMENT BASED ON
CONTINUOUS INTEGRATION
Ontology developers should use a continuous integration
process. Recommendation 1 may create additional overhead
to keep reused content up to date. The development of
some ontologies, such as the Gene Ontology, follows a
continuous integration process. Such an approach would
allow for the inclusion of a step to obtain the updated
content from the reused ontologies. Interestingly, the OBO
Foundry provides the Ontology Development Kit [48], which
provides workflows for managing ontologies with continuous
integration. This feature is not common in most standard
ontology editors.
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3) RECOMMENDATION 3: HUMAN READABILITY OF
MULTILINGUAL ONTOLOGIES
Ontology developers must take care of readability in all lan-
guages associated with the ontology. Considerable research
has been done on themultilingualism of ontologies, one of the
challenges of the multilingual Web of data [49]. Our results
show that the developers of the ontologies in this corpus
have not paid enough attention to this aspect. The effort and
cost of developing and maintaining a multilingual resource is
high, we need only think of a large resource like SNOMED
CT and its versions in several languages, but this has the
advantage of facilitating the use of the ontology as part of the
content shown to non-scientists, citizens for example, who
may not speak English. Most of the ontologies in the corpus
studied are not that large, so some improvements in this
direction are possible. In fact, there are automatic translation
tools that should be explored, always taking into account
the specificity of each domain, which could require a very
rigorous, supervised process.

4) RECOMMENDATION 4: STANDARDIZATION
Ontology developers need to follow community standards
for readability. Our results showed that the OBO Foundry
repository has a high degree of standardization in terms of
the annotation properties used to set names and descriptions
in classes. Figure 8 shows this homogeneity in annotation
property usage. This is mainly due to the rules and
recommendations provided by the OBO Foundry through
its principles. Nevertheless, previous studies have shown
that a variety of annotation properties are used to provide
human-readable information in other repositories such as
BioPortal, which is a sign of lack of standardization in
the field (see Table 1 of [22] as an example). This can
make it difficult to find human-readable content. Recently,
the BioLink model [50] has been proposed as a universal
schema for biomedical knowledge graphs. It proposes its own
annotation properties for human-readable information, such
as for description (biolink:description), but also defines the
mappings to other existing properties. Thus, it can be said to
provide an explicit catalog of properties that can be used in
the knowledge graph. Our recommendation to the community
is to move in this direction of having a clear catalog of
properties that can be used for human-readable information.
Regarding synonyms, our results show the use of custom
properties to provide synonyms. Our recommendation is
to use known annotation properties (see Table 3) for this
purpose.

5) RECOMMENDATION 5: NAMING CONVENTIONS
Ontology developers should consider the benefits of system-
atic naming conventions to improve readability. Most OBO
Foundry ontologies have a weak naming style according to
the values of the systematic naming metric. This metric is
high when the genus-differentia style of naming is used.
This type of naming allows for a better understanding of

ontology classes, since class hierarchies can be inferred from
class names alone. In this context, the Protégé ontology
editor [51] facilitates the use of the genus-differentia style by
providing the ability to include common prefixes or suffixes
when creating a set of classes. For example, the ontology
developer can specify the suffix ‘DorsalAorta’ when creating
the subclasses of DorsalAorta, and then the URIs of the
created subclasses would start with ‘DorsalAorta’. However,
this functionality is only available at the URI level and
does not apply to annotation properties. To mitigate this,
Protégé allows the creation of rdfs:label annotations from the
URIs, but this would not be useful for opaque URIs. Finally,
it should be noted that a perfect score for the systematic
naming metric is unlikely to be achievable in real-world
scenarios; therefore, we recommend keeping the value of this
metric as close to 1 as possible, while avoiding the inclusion
of artificial suffixes or prefixes in class names that have a
negative impact on the readability of the ontology.

6) RECOMMENDATION 6: DESCRIPTIONS ARE AS
IMPORTANT AS NAMES FOR HUMAN READABILITY
Ontology developers should explain the meaning of classes
by providing descriptions. The values for the metric descrip-
tions per class are lower and have more variance than for
names per class in the OBO Foundry repository, as shown in
Figure 10. This clearly indicates that ontology developers do
not pay as much attention to descriptions as they do to names
when developing ontologies. Nevertheless, we believe that
the description of a class is a key factor in making an ontology
shareable, as it adds additional information that could clarify
how to use that class, thus avoiding misunderstandings due
to possible polysemous names. Therefore, we recommend to
consider the descriptions with the same level of importance
as the names when developing an ontology.

FIGURE 10. Comparison between the names per class and the
descriptions per class between the OBO Foundry ontologies. The p-value
returned by the Wilcoxon test is shown.

D. LIMITATIONS AND FUTURE WORK
We have presented several metrics that provide information
for evaluating the human readable content in ontologies.
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These metrics and related best practices can help to analyze
and improve the human readability of ontologies, but they
are not sufficient to perform a complete quality assurance
analysis. To achieve this, they should be combined with other
metrics to cover other relevant aspects of quality assurance,
such as coverage in a particular domain or conciseness. For
this reason, we plan to develop new metrics that cover these
other aspects and combine them with metrics included in
frameworks such as OQuaRE [12].
Some ontologies received low values for some of the

metrics; for example, The Core Ontology for Biology and
Biomedicine (COB), or The Zebrafish developmental stages
ontology (ZFS), which presented the minimum value for
synonyms per class. This can be justified by the type of
knowledge included. Therefore, further research studying the
values of the metrics by type of ontology could provide
insights on the need to consider the type as a factor in the
process of determining thresholds. Moreover, we identified
cases where the reuse of top-level ontologies, such as BFO,
negatively affects the systematic naming metric due to the
inclusion of domain-independent classes that are also LR
classes, with a high number of subclasses that do not exhibit
the lexical regularity of the parent class. As future work,
we plan to study the impact of classes reused from top-level
ontologies on the systematic naming metric.

In addition, the LSLD and systematic naming metrics are
calculated over the LR classes; however, we found ontologies,
such as GNO, that had a low number of LR classes. In
these cases, the values obtained for the metrics could not be
representative for the ontology, since they represent a small
part of the ontology. On the one hand, we decided to use
only LR classes to calculate these metrics to avoid a high
penalty on the score obtained. The fact that a class is an
LR class is an indicator of the semantic relationship with
the classes that have this regularity class, so we focused
on these classes. In other words, the metrics would have
returned much lower values if all ontology classes had been
considered for their calculation. On the other hand, we are
aware that this is a limitation when evaluating ontologies
with a small number of lexical regularities. To correct this
behavior, we plan to generate further information based on
themetrics presented in this article, and to develop themetrics
to take into account aspects such as the number of lexical
regularities of an ontology as an additional metric, and to use
this value as a weight for the LSLD and systematic naming
metrics.

We have mentioned that reuse by URI creates some human
readability problems due to the lack of reuse of names,
descriptions or synonyms. It would also be interesting to
study the real impact of this by checking whether this
human-oriented content is available in the source ontology,
and to study in detail the human readability of highly reused
ontologies.

An area of interest for further research is the determination
of thresholds for the different metrics, which would allow a

more comprehensive assessment of the human readability of
ontologies. This would require further experiments with other
repositories.

Finally, although the framework has been applied to a
repository of biomedical ontologies, the presented metrics
and related best practices are domain independent, so they
can be applied to evaluate the readability of any ontology
from any domain. For this purpose, it would be interesting
to evaluate other domains where the use of ontologies
is increasing, such as the Internet of Things [52] or
agronomy [1].

VI. CONCLUSION
In this work, we have proposed the HURON framework,
which processes the natural language content of ontologies
to compute a set of quantitative metrics related to the human
readability of the ontology. The metrics have been mapped
to existing best practices to support their interpretation, and
implemented in a software tool that can be freely used
by ontology developers and users. We applied our method
to a representative set of biomedical ontologies, the OBO
Foundry repository. In general, our metrics suggest that
the ontologies in the repository adhere to best practices
with respect to the number of classes and descriptions,
and the application of the ‘lexically suggest, logically
define’ principle. Conversely, they do not show adherence
to systematic naming or the number of synonyms, although
these two best practices may be highly dependent on the
nature of the domain being modeled. These results have
served to propose a set of recommendations to ontology
developers, since the metrics are useful for generating
information related to human readability. The data generated
in this study could be helpful in detecting ontologies and
specific entities with potential deficiencies, thus allowing
their improvement based on informed decisions.
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