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ABSTRACT Binary code similarity detection is an effective analysis technique for vulnerability, bug, and
plagiarism detection in software for which the source code cannot be obtained. The recent proliferation of
IoT devices has also increased the demand for similarity detection across different architectures. However,
there are currently not many examples of feature extraction methods using neural machine translation
(NMT) models being applied to similarity detection in basic block units across different architectures. In
this research, we propose new methods that extract features at a higher speed and detect similarities across
different architectures with higher accuracy than existing methods for basic block feature extraction using
neural machine translationmodels.We assume that the intermediate representation of the NMTmodel, which
learned the translation of basic blocks across different architectures, includes the semantics of the instructions
in the basic block. Hence we adopted the intermediate representation as the features of the basic blocks.
Then, we applied the linear transformation used in bilingual word embedding to match the embedding space
of basic blocks across different architectures. This enables the similarity detection in basic block units across
different architectures with higher accuracy than the distance learning method used in existing research to
match the embedding space. In the evaluation experiment, we compare the Precision at k (P@k) on the same
dataset with existing research methods and our method achieved the highest accuracy of 92%. In addition,
We also compare the time required for feature extraction using GPUs, and found that it was up to 16 times
faster.

INDEX TERMS Binary code similarity detection, machine learning, neural machine translation.

I. INTRODUCTION
In software vulnerability, bug, and plagiarism detection,
various methods for comparing source code have been
proposed for many years in order to detect similarity of
function and behavior [1], [2], [3]. However, the source code
of commercial software and pirated software is often not
disclosed. In such cases similarity comparisons are performed
using only binary code such as one in executable files.
Similarity comparisons using only binary code are more
difficult than those with source code and human analysis
requires more time to obtain results. This can lead to errors
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in the analysis results. For this reason, many proposals have
been made not only for source code similarity detection, but
also for binary code similarity detection [4], [5]. Furthermore,
recent extensive studies utilize machine learning and natural
language processing techniques for binary code similarity
detection.

However, the rapid proliferation of IoT devices [6] has
led to a wide range of Instruction Set Architectures (ISA)
used for binary code. These include ARM, MIPS and
RISC-V for embedded systems, in addition to x86 and
x86_64 for general personal computers. This means that
if source code containing a vulnerability exists, it may be
cross-compiled and provided for multiple ISAs. When a
vulnerability is found in software for a certain ISA, a binary
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code similarity detection method across different ISAs helps
to detect whether the vulnerability is also present in software
for different ISAs. However, there are few applications of
similarity detection using natural language features extracted
by applying a Neural Machine Translation (NMT) model to
this method [7], [8], [9], [10].

Zuo et al. [11] are the first to introduce an NMT model
in distance learning for binary code similarity comparisons
across different ISAs. Zhang et al. [12] then improved the
accuracy by training translations of basic blocks across
different ISAs as a pre-training for the NMT model for
distance learning. However, the P@k is 77% at best, leaving
room for improvement in accuracy, and the NMT model
was not lightweight. Various problems would arise when
non-lightweight models were used in actual binary code
similarity comparison tools. For example, it takes time to
analyze software that contains tens of thousands of basic
blocks, making it difficult to install in IoT devices and devices
with limited resources. Therefore, we decided to develop
feature extraction methods using a lightweight model with
a target accuracy of over 90%. We also studied another
method that does not require a linear transformation as a
comparison.

In this study, we propose feature extraction methods for
basic blocks using NMT models to improve the accuracy
of binary code similarity detection across different ISAs.
We applied one training method that requires a linear
transformation of features and four training methods that
do not require a linear transformation to GRU [13]- or
Transformer [14]-based NMT models. We then evaluated a
total of 10 feature extraction methods. In these methods,
the NMT model learns x86_64-ARM translations as a
natural language in which x86_64 and ARM instructions
are words and basic blocks are sentences. The intermediate
representation is then taken as the features.

In the field of natural language processing, NMT models
have allowed translation between different languages with
high accuracy [14]. The intermediate representation is
considered to contain the semantics of the sentence. Our
proposed methods use an intermediate representation of the
NMTmodel trained to translate across different architectures
to compare the similarity of basic blocks between different
architectures. We attempt to use the semantics of the basic
block for similarity comparisons, based on the idea that the
intermediate representation contains the semantics of the
instruction sequence in the basic block, similar to Zhang
et al. [12]. Since the basic block features are not selected
by humans, it is not possible to identify which features
are extracted in the intermediate representation. However,
we believe that hidden features that cannot be grasped by
humans can also be extracted. In addition, since insertion
of vulnerabilities or bugs, or code plagiarism do not always
occur in function units [11], we compare similarities by a
smaller unit of basic block. We use cosine similarity as the
measure for similarity comparisons. In the intermediate layer

of the neural network, layer normalization is performed to
improve learning efficiency. Considering that the magnitude
of the vector output from the final layer is not very
significant, we chose a similarity measure that takes into
account the direction of the vector. Although we use cosine
similarity, which is relatively computationally expensive
among similarity measures, it accounts for only a small
percentage of the computational effort of a neural network.
Therefore, the computational effort of the cosine similarity
has not been a problem.

The contributions of this research are summarized in the
following three points.

• We utilized Mikolov et al.’s linear transformation [15]
to the similarity detection method of basic blocks across
different ISAs. By doing so, similarity was detected
with higher accuracy than Zhang et al.’s MIRROR [12]
and Zuo et al.’s INNEREYE-BB [11] which perform
distance learning.

• We compared the following two types of methods
for basic block similarity detection across different
ISAs. One is Mikolov et al.’s method that utilizes
linear transformation, and the other is a method that
incorporates autoencoder training instead of linear
transformation. As a result, we showed that the accuracy
of the method utilizing linear transformation is higher.

• We compared the time required for feature extraction
among our methods, INNEREYE-BB by Zuo et al. and
MIRROR by Zhang et al., using a GPU. The results
indicate that our methods are able to extract features in
the shortest time.

This paper is organized as follows: Section II describes
research related to binary code similarity detection.
Section III describes our proposed methods. Section IV
describes evaluation experiments for comparison with the
baselines, and discussions on the results. Section V describes
the discussions of the proposed methods, and Section VI
summarizes our study.

II. RELATED RESEARCH
A. BINARY CODE SIMILARITY DETECTION BASED ON
FEATURES
Research on feature-based binary code similarity detection
includes methods that compare similarities per function [16],
[17], [18], [19], [20], [21], [22], [23], [24] and methods
that compare similarities per basic block [11], [12], [25].
These methods use machine learning to learn instructions,
basic blocks, and Control Flow Graph (CFG) embeddings,
and measure the similarity of feature vectors obtained with
Euclidean distance, Manhattan distance, Jaccard coefficient,
cosine similarity, and so on.

Zuo et al. [11], Redmond et al. [25], Ding et al. [19], and
Massarelli et al. [20], [21] used word2vec or doc2vec-based
methods that learn distributed representations of natural
languages for instruction embedding. This is because the
semantics of binary code are not sufficiently included in
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human-designed features such as those used by Feng et al.
[16], Xu et al. [17], and Gao et al. [18]. Other NLP-based
methods include Transformer [14], a deep learning model,
utilized by Zhang et al. [12], Yu et al. [22], Masubuchi et al.
[23], and Wang et al. [24] and its pre-training model, BERT
[26], to embed binary code.

B. BINARY CODE SIMILARITY DETECTION USING NMT
MODELS
Feature extraction methods, which compare the similarity
of basic blocks across different ISAs, incorporate learning
using NMT models in order to extract more basic block
semantics. Similarity detection of natural language sentences
has also been studied using NMT models [7], [8], [9], [10].
The method of using the intermediate representation of the
NMT model to compare similarities between sentences has
also been applied to binary code.

1) METHOD OF ZUO ET AL.: INNEREYE-BB
Zuo et al. configured the Long-Short Term Memory (LSTM)
with a Siamese network to embed features of basic blocks
of different ISAs in the same vector space in order to enable
similarity comparisons. Features of basic blocks are the
final state of LSTM. Their method uses an NMT model,
however it does not learn translations across different ISAs.
Instead, it learns feature vectors for basic block pairs with
similar semantics to be close together, and feature vectors
for basic block pairs without similar semantics to be far
apart. As a result, this achieved an AUC of 98% for the
ROC curve when similar and dissimilar pairs were identified.
However, Zhang et al. argue that this result is due to the large
difference between similar and dissimilar pairs in the test
data [12]. Also, most of the instructions at the end of basic
blocks are jump instructions, return instructions, and jump
destination symbols. Therefore, if the final state of LSTM is
an intermediate representation of the basic block, there is a
problem that the differentiation of embedding is limited [12].

2) METHOD OF ZHANG ET AL.: MIRROR
The model used by Zhang et al. is constructed with
Transformer, and the output of the encoder is used as the
basic block features. In this method, only one of the two
NMT models prepared for each ISA is trained in advance
to translate basic blocks across different ISAs. In order to
make the trained encoder output and the untrained encoder
output close to each other, the basic block features of different
ISAs are embedded in the same vector space by training
with triplet loss using hard negative samples. As a result,
MIRROR’s P@1 was 77% in the Zhang et al.’s experiment to
evaluate Precision at K (P@K)when retrieving similar blocks
from 100 basic blocks. Whereas the P@1 of INNEREYE-
BB was 51%. INNEREYE-BB tokenizes basic blocks per
instruction when they are input into the model. MIRROR,
on the other hand, tokenizes per operand or opcode, which are
further division of instructions. Therefore, MIRROR has the

problem of longer sequence lengths and longer embedding
time for the basic block [27].

III. PROPOSED METHOD
This chapter describes one type of model that utilizes
the linear transformation of Mikolov et al. [15] used in
bilingual word embedding as a similarity detection method
for binary code. This is inspired by Seki et al.’s sentence
similarity detection method using natural language [9]. In
addition, it also describes four other models for which we
added auto-encoder training to eliminate the need for linear
transformations of the first model. Furthermore, these five
types of models include GRU-based and Transformer-based
models, which means there are a total of ten combinations.
The difference from the methods of Zuo et al. [11] and Zhang
et al. [12] is that ourmethods do not use any distance learning.
Instead, our methods are based only on the NMT model and
linear transformation, or the NMT model and autoencoder
training. The differences between the proposed methods and
the baselines are shown in Table 1.

A. NORMALIZATION OF INSTRUCTIONS
Instruction normalization is performed as a preprocessing
method for inputting basic blocks into the NMT model.
Instructions consist of opcodes representing operations such
as ADD (add) and MOV (move), and operands representing
operation targets such as registers, numerical constants,
string constants, and symbolic constants. Since the operand
registers are allocated from unused ones, they may change
depending on the compilation environment. Therefore, it is
necessary to classify registers by usage and normalize them so
that the semantics of the basic blocks and instructions do not
change even if the registers used change. Therefore, we adopt
the register replacement method by Zhang et al. [12] and
normalize registers as follows;

• x86_64 instructions (partial excerpt)
rax,rbx,rcx,rdx → reg_data_64
esi,edi → reg_addr_32
rbp,rsp,ebp,esp → reg_pointer

• ARM instructions
r0 - r15 → reg_gen
pc,sp,lr → reg_pointer

Some operand constants do not change at the compile time,
however there are countless variations because they are values
or strings. To tokenize instructions, the size of vocabulary
must be finite, and if constants are treated as they are, the
Out Of Vocabulary (OOV) problem will occur. Therefore, the
constants must also be normalized, and we adopt the constant
replacement A in the method of Zuo et al. [11] to normalize
the constants as follows.

• Replace numeric constants with 0 or −0
• Replace string constants with < STR >
• Replace function names with FOO
• Replace other symbolic constants with < TAG >
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TABLE 1. List of differences between the proposed methods and baselines.

By doing this, instructions with different character strings
but similar semantics can be normalized as the same
instruction.

B. TOKENIZATION OF BASIC BLOCKS
In order to input basic blocks into an NMTmodel we tokenize
basic blocks. A basic block consists of several instructions.
An instruction consists of an opcode and operands. Therefore,
a basic block can be regarded as sequence data with
consecutive opcodes and operands. Tokenization of such
sequence data includes the method [11], which combines
operands and opcodes together, and the method [12], which
separates the operands and opcodes. The former has the
advantage that the sequence length does not become long,
but the disadvantage is that the size of vocabulary increases.
The latter is the opposite, having a trade-off relationship with
the former. We adopted a method that combines operands
and opcodes to tokenize basic blocks without increasing the
sequence length. The reason for this is the use of GRUs in the
NMT model and the reduction of the instruction vocabulary
by Zuo et al.’s method [11].

C. CONFIGURATION OF NMT MODELS
The NMT model requiring a linear transformation is shown
in Fig. 1. It consists of an NMT model of x86_64 to ARM
that translates x86_64 basic blocks to ARM basic blocks,
and an NMT model of ARM to x86_64 that translates ARM
basic blocks to x86_64 basic blocks. TheNMTmodel without
requiring a linear transformation is shown in Fig. 2. In
addition to the NMT model described above, an autoencoder
is configured between the x86_64 encoder and the x86_64
decoder, plus between the ARM encoder and the ARM
decoder.

1) GRU-BASED NMT MODEL: GRU-NMT
Weconstruct aGRU-NMTof the sequence to sequencemodel
using the following; a single-layer bidirectional GRU for the
encoder of the NMT model requiring a linear transformation,
a three-layer bidirectional GRU for the encoder of the

FIGURE 1. NMT models requiring a linear transformation.

FIGURE 2. NMT models without requiring a linear transformation.

NMT model without requiring a linear transformation, and
a single-layer uni-directional GRU for the decoder of both
models. A Layer Normalization layer is inserted between
each layer and the hidden state of the bidirectional GRU
is connected. The feature vectors of basic blocks used for
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similarity comparison are the averaged time-sequence data
of the bi-directional GRUs, concatenated with the final state.
The hyperparameters are shown in Table 2.

TABLE 2. Hyperparameters of the GRU models.

2) TRANSFORMER-BASED MODEL: TRM-NMT
We construct an NMT model Trm-NMT using a single-layer
Transformer. The feature vector of basic blocks used for
similarity comparison is the average of the encoder outputs.
The hyperparameters are shown in Table 3.

TABLE 3. Hyperparameters of the transformer models.

D. TRAINING METHODS FOR NMT MODELS
1) TRAINING METHOD REQUIRING A LINEAR
TRANSFORMATION: +LT
For the NMT models GRU-NMT+LT and Trm-NMT+LT
applying a training method that requires a linear transforma-
tion, we trained the x86_64 to ARM model and the ARM to
x86_64model for 40 epochs each.We then adopted themodel
with the parameters that yielded the highest P@1.

Let φsrc be the encoder parameters of the translation source
ISA and ψtgt be the decoder parameters of the translation
target ISA, where src, tgt ∈ {x86_64,ARM}. Let ŷjk be the
j-th instruction of the basic block ŷe output by the decoder
of the target ISA and an element of the probability vector
satisfying

∑
j
ŷjk = 1. Also, let yjk be the j-th instruction of

basic block y of the target ISA and an element of the One-
Hot vector corresponding to the element of the k-th set of
instructions of the target ISA. Then, the loss function of this
NMT model is defined as follows.

LNMT = −

∑
j=1

∑
k=1

yjk log ŷjk (1)

We optimized φsrc and ψtgt per batch size unit to minimize
the loss function.

2) TRAINING METHOD WITHOUT A LINEAR
TRANSFORMATION: +SA/SE/SD/AE
There is a training method that trains the NMT model to han-
dle natural language for autoencoding and back-translation
without using bilingual pairs by Artetxe et al. [30]. This
improves the accuracy of unsupervised NMT models by
embedding the feature vectors of each language in the same
space. We adopted only the autoencoder training method of
Artetxe et al. for the purpose of embedding the feature vectors
of the basic blocks of each ISA in the same space, instead of
unsupervised learning.

For the NMT models GRU-NMT+SA/SE/SD/AE and
Trm-NMT+SA/SE/SD/AE, we applied a training method
that does not require a linear transformation. For these, NMT
models that translate from x86_64 to ARM and from ARM
to x86_64 are trained for one epoch each. After that, the
autoencoder that re-configures from x86_64 to x86_64 and
the autoencoder that re-configures from ARM to ARM are
trained for one epoch each. These processes are repeated for
40 times. Thenwe adopted themodel with the parameters that
yielded the highest P@1.

The loss function used to train these NMT models is the
same as in equation (1). In addition, when a basic block with
randomly permuted instructions is input to the encoder, the
autoencoder is given the task of learning to remove noise so
that the output of the decoder will be in the correct sequence.

Let φisa be the encoder parameters of the ISA of the input
basic block and ψisa be the decoder parameters of the same
ISA as the input basic block, where isa ∈ {x86_64,ARM}.
Let x̂jk be the j-th instruction of the basic block x̂ output by the
decoder and an element of the probability vector satisfying∑
j
x̂jk = 1. Also, let xjk be the j-th instruction of the basic

block x with the correct instruction sequence and an element
of the One-Hot vector corresponding to the element of the k-
th instruction set. Then, the loss function of this autoencoder
is defined as follows.

LAE = −

∑
j=1

∑
k=1

xjk log x̂jk (2)

We optimized φisa and ψisa per batch size unit to minimize
the expected value of this loss function.

3) CONSTRAINTS WHEN TRAINING AUTOENCODERS
For training autoencoders of the four types of NMT models
that do not require a linear transformation, we restrict them
to share the following parameters. This was inspired by the
multitask learning model used in the experiments of Luong
et al. [28]. A model that shares the encoder and the decoder
is also used in Google’s Zero-Shot translation method of
embedding languages in the same space [29]. In addition,
a model that shares only the encoder is also used in Artetxe
et al.’s unsupervised learning model [30].
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• GRU-NMT+SA/Trm-NMT+SA
The x86_64 encoder and the ARM encoder share
the same parameters, and the ARM decoder and the
x86_64 decoder share the same parameters. Hence, the
constraints are φx86_64 = φARM and ψx86_64 = ψARM .

• GRU-NMT+SE/Trm-NMT+SE
The x86_64 encoder and the ARM encoder share the
same parameters. Hence, the constraint is φx86_64 =

φARM . However, for the Transformer model only, we did
not let the encoder parameters update when training the
autoencoder.

• GRU-NMT+SD/Trm-NMT+SD
The ARM decoder and the x86_64 decoder share the
same parameters. Hence, the constraint is ψx86_64 =

ψARM . However, for the Transformer model only, we did
not let the decoder parameters update when training the
autoencoder.

• GRU-NMT+AE/Trm-NMT+AE
The x86_64 encoder and the ARM encoder do not
share parameters, and the ARM decoder and the x86_64
decoder do not share parameters. Hence, there are no
constraints. However, for the Transformer model only,
we did not let the encoder parameters update when
training the autoencoder.

E. SIMILARITY DETECTION METHOD
For NMT models requiring a linear transformation, 10,000
similar pairs of basic blocks taken from the training data
are input to the trained encoder. The x86_64 feature
matrix Vx86_64 and the ARM feature matrix VARM are then
obtained. Then, using the Moore-Penrose pseudo-inverse
matrix V †

x86_64 in Equation (3), the linear transformation
matrix W is obtained as in Equations (4) and (5). After
applying the linear transformation to the x86_64 encoder
output, we calculate the cosine similarity with the ARM
encoder output.

V †
x86_64 = (V T

x86_64Vx86_64)
−1V T

x86_64 (3)

W = arg min
W

||Vx86_64W − VARM ||
2
F (4)

= V †
x86_64VARM (5)

However, the NMT models, which do not require a
linear transformation, simply calculate the cosine similarity
between the x86_64 encoder output and the ARM encoder
output.

IV. EVALUATION EXPERIMENTS
This chapter describes the evaluation processes of the
proposed methods and the results of the experiments. We
evaluate the accuracy of detecting similarity of a basic block
of one ISA among 100 basic blocks of another ISA. We
also evaluate whether the model is lightweight or not by
the embedding time per basic block. These are to evaluate
whether the binary code similarity detection methods have

practical capabilities when it is made into a practical
tool.

A. EVALUATION INDEX
When k blocks similar in function to a basic block of one ISA
are extracted from 100 basic blocks of another ISA in order
of cosine similarity, we evaluate P@k by whether the correct
answer was included in the k blocks.
Prepare pairs (v1, u1) to (v100, u100) of the feature vector v

of the x86_64 basic block and the feature vector u of the ARM
basic block, which have similar functions. List those similar
to vector vi from u1 to u100 in descending order of cosine
similarity. Let Vk(i) be a function that returns 1 if it ranks
in the top k ranks, and 0 otherwise. Also, list those similar
to vector ui from vi to v100 in descending order of cosine
similarity. Let Uk(i) be a function that returns 1 if it ranks
in the top k ranks, and 0 otherwise. The P@k for the feature
vectors of 100 pairs of x86_64 basic blocks and ARM basic
blocks with similar functionality is defined as in Equation (6).

P@k =

100∑
i=1

(Vk(i) + Uk(i))/200 (6)

Note that if multiple 100 pairs of feature vectors are
extracted without replacement from the dataset, the P@k
obtained each time is averaged.

B. EVALUATION ENVIRONMENT
Weused a desktop computer with the following specifications
for the evaluation experiments.

• MEM: 32GB
• CPU: Intel(R) Core(TM) i7-8700
• GPU: NVIDIA GeForce GTX 1660

The development environment for NMTmodels is as follows.
• Python 3.10.5
• TensorFlow GPU 2.10.0
• Keras 2.10.0
• Pytorch 1.12.1+cu116
• CUDA 11.7
• cuDNN 8.5.0

C. DATASET
This subsection describes the dataset used in the evaluation
experiments.We used the dataset published by Zuo et al. [31].
Zuo et al.’s dataset contains similar and dissimilar pairs of
x86_64 basic blocks and ARM basic blocks compiled with
Clang (ver.6.0.0) with optimization option O2. The source
code is from OpenSSL(v1.1.1-pre1), coreutils(ver.8.29),
findutils(ver.4.6.0), diffutils(ver.3.6), and binutils(ver.2.30).

We used 42,343 similar pairs in Zuo et al.’s dataset as
training data, and 100 similar pairs not included in the training
data as test data.

Basic blocks with too few instructions have similar
semantics and we consider that they are unsuitable for
evaluating model’s accuracy, hence basic blocks with less
than 10 instructions were not included in the test data.
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D. BASELINES
We decided to use INNEREYE-BB [11] and MIRROR
[12] as baselines, because these methods perform similarity
detection across different ISAs in basic block units similar
to our proposed methods. We used the pre-trained model
published by Zuo et al. [31] in INNEREYE-BB. We trained
MIRROR on the dataset used in this study using the
source code published by Zhang et al. [32]. Note that the
INNEREYE-BB used hyperparameters optimized for our
dataset, whereas MIRROR used the hyperparameters set in
the source code of Zhang et al. as they are, and is not
optimized for our dataset.

E. EVALUATION METHODS
To evaluate the model’s accuracy, P@k was measured when
the number of instructions in the basic block of all 100 test
datasets was 10 or more and 20 or more, respectively,
from 100 to 42,343 training datasets.

In the evaluation of model embedding time, we measured
the embedding time for 32,000 similar pairs of basic blocks
when using the CPU and when using the GPU, and obtained
the embedding time per pair. Assuming that the proposed
method is used in a low-resource environment, the batch
size was set to 32, and batch processing was performed
1,000 times. Since the source code of MIRROR was written
using Pytorch, in order to match the experimental conditions,
we built a Transformer with the same hyperparameters as
MIRROR in Keras and measured the embedding time.

F. EVALUATION RESULTS AND DISCUSSION
1) PRECISION AT K
Table 4 shows the P@k of the proposed approaches and
the baseline approaches for test data in which the number
of instructions in one basic block (szBB) is 10 or more.
Table 5 shows the P@k for test data in which the number of
instructions in one basic block (szBB) is 20 or more. Values
for which the proposed method exceeded the baselines are
highlighted in bold.

In the models using a GRU, GRU-NMT+LT, which requi-
res a linear transformation, GRU-NMT+SE, which shares
the encoder parameters, and GRU-NMT+SA, which shares
all parameters, resulted in higher P@k than any baselines.
In addition, we found that it is effective to share encoder
parameters in order to embed feature vectors of basic blocks
of the different ISA in the same space and improve the P@k.

In the models using a Transformer, the P@k of all
models except Trm-NMT+SD, which does not share decoder
parameters, was higher than any of the baselines. In addition,
we found that sharing encoder parameters tends to be as
effective as GRU-NMT in order to embed feature vectors
of basic blocks of the different ISA in the same space and
improve the P@k.

Comparing the P@k between GRU-NMT and Trm-NMT,
the results of GRU-NMT were relatively high overall on
test data in which the number of instructions in one basic

block (szBB) is 10 or more. This is presumably because
there were a lot of test data with sequence lengths short
enough to be handled by a recurrent neural network. Also,
the Transformer’s ability to handle long sequence lengths
was not demonstrated. On the other hand, on test data in
which the number of instructions in one basic block (szBB) is
20 or more, compared to test data where szBB is 10 or more,
the P@k of GRU-NMT was greatly reduced. Whereas the
P@k of Trm-NMT was not as degraded as GRU-NMT. We
believe that the characteristics of Transformer were relatively
demonstrated because the test data of short sequence length,
which GRU-NMT excels at, reduced.

TABLE 4. Comparison of P@k (szBB≥10).

TABLE 5. Comparison of P@k (szBB≥20).

2) LEARNING CURVES
Figures 3 to 6 show the values of P@1 when the models of
the proposed method are trained between 100 and 40,000
training datasets. Among GRU-based NMT models, GRU-
NMT+LT requiring a linear transformation was less accurate
than other models when the number of training datasets
was small. However, the accuracy tended to improve when
the number of training datasets exceeded 1,000. This is
probably because about 1,000 pieces of data are required to
obtain the linear transformation matrix. On the other hand,
among Transformer-based NMT models, Trm-NMT+LT
requiring a linear transformation did not show the linear
transformation-dependent features that appeared in GRU-
NMT+LT when the number of training datasets was small.
Trm-NMT+LT showed almost the same learning curve as
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Trm-NMT+AE, Trm-NMT+SE and Trm-NMT+SA. This
indicates that linear transformations in the Transformer-based
NMT model have a limited contribution to accuracy.

FIGURE 3. Trends in the amount of training data and the P@1 of
GRU-NMT.(szBB≥10).

FIGURE 4. Trends in the amount of training data and the P@1 of
GRU-NMT (szBB≥20).

3) BASIC BLOCK EMBEDDING TIME
Table 6 shows the embedding time per pair of basic blocks
for the proposed methods and the baselines. For both CPU
and GPU, GRU-NMT+LT was the fastest and MIRROR was
the slowest. GRU-NMT and INNEREYE-BB used the same
tokenization method. However, since GRU is a recurrent
neural network model that is more lightweight than LSTM,
GRU-NMT showed faster embedding time. Both Trm-NMT
and MIRROR use a Transformer NMT model. However, due
to the use of different tokenization method and different
number of layers, the embedding time of Trm-NMT was
faster than that of MIRROR.

FIGURE 5. Trends in the amount of training data and the P@1 of
Trm-NMT.(szBB≥10).

FIGURE 6. Trends in the amount of training data and the P@1 of
Trm-NMT.(szBB≥20).

Regarding INNEREYE-BB, the reason why there was no
big difference between the embedding time on the CPU and
on the GPU is because CuDNN did not support LSTM using
ReLU as the activation function, and the CPU was used to
compute LSTM.

V. DISCUSSIONS
The number of layers of GRU and Transformer used in
the NMT model of our methods is from 1 to 3 layers. We
believe that this is lightweight compared to Zhang et al.’s
NMT model with the 6-layer Transformer so our methods
are more suitable for resource-constrained devices. However,
for even less resourced devices, the NMT model should be
compressed to make it even lighter. For example, model
compression methods such as pruning [33], distillation [34]
and quantization [35] may be considered. Pruning is a method
of reducing the number of parameters by deleting nodes
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TABLE 6. Comparison of the embedding time.

with small weights or unimportant nodes. Distillation is
a method of making a model with less parameters learn
the probability distribution output by a model with many
parameters. Quantization is amethod of reducing the data size
of parameters by keeping weights that are held with 32-bit
precision with 8-bit precision. All of these methods have been
applied to Transformer [36], [37], [38] and may be applicable
to our proposed method as well.

A limitation of the proposed methods is that the models
requiring a linear transformation are constructed to compare
basic blocks between different ISAs. In other words, they
do not support basic block comparisons for the same ISA.
Our models, which do not require a linear transformation,
share the same embedding space and thus has the potential to
compare basic blocks of the same ISA. However, its accuracy
has not yet been confirmed.

In addition, in all models of the proposed methods, the
datasets used for evaluation use the same compiler and the
optimization option is only O2. We have not been able
to confirm the accuracy when using datasets mixed with
different optimization options, such as those used in the
evaluation by Zhang et al. [12]. Learning with triplet loss as
used in Zhang et al.’s method [12] may be effective.

VI. CONCLUSION
We proposed feature extraction methods for basic blocks
using NMT models. These are intended to improve the
accuracy of binary code similarity detection across different
ISAs for software vulnerability detection, bug detection,
and plagiarism detection. Among the proposed methods,
we showed that the NMT models, which requires a linear
transformation of features, are able to detect basic block
similarity more accurately and faster than previous studies.
Our future work will include evaluation with combinations
other than x86_64 and ARM, including the same ISA, and
evaluation across different compilers and optimizations.
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