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ABSTRACT Text readability assessment has gained significant attention from researchers in various
domains. However, the lack of exploration into corpus compatibility poses a challenge as different research
groups utilize different corpora. In this study, we propose a novel evaluation framework, Cross-corpus text
Readability Compatibility Assessment (CRCA), to address this issue. The framework encompasses three key
components: (1) Corpus: CEFR, CLEC, CLOTH, NES, OSP, and RACE. Linguistic features, GloVe word
vector representations, and their fusion features were extracted. (2) Classification models: Machine learning
methods (XGBoost, SVM) and deep learning methods (BiLSTM, Attention-BiLSTM) were employed. (3)
Compatibility metrics: RJSD, RRNSS, and NDCG metrics. Our findings revealed: (1) Validated corpus
compatibility, with OSP standing out as significantly different from other datasets. (2) An adaptation effect
among corpora, feature representations, and classification methods. (3) Consistent outcomes across the three
metrics, validating the robustness of the compatibility assessment framework. The outcomes of this study
offer valuable insights into corpus selection, feature representation, and classification methods, and it can
also serve as a beginning effort for cross-corpus transfer learning.

INDEX TERMS Compatibility assessment, cross-corpus, text readability assessment, transfer learning.

I. INTRODUCTION
With the advent of globalization and digitization, English
has become a universal language [1]. For non-native English
learners, reading proficiency is of paramount importance [2].
Teachers often use reading exercises to enhance the reading
skills of their students, but it is essential to ensure that the
texts are suitable for the students’ level [3]. However, the dis-
crepancy in readability levels among different corpora poses
challenges for non-native English learners. Thus, it becomes
necessary to investigate the compatibility of English text
difficulty across different corpora.

The compatibility of cross-corpus English text difficulty
refers to the correlation between the readability assessment
results of the same English text in different corpora. Over the
past few decades, researchers in natural language processing
(NLP) have explored various methods, including statistical
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language models, feature-based machine learning methods,
and state-of-the-art deep neural networks, to assess readabil-
ity. While Automatic Readability Assessment (ARA) often
employs traditional readability formulas, these formulas tend
to overlook intricate aspects within the text. Although ARA
is typically approached as a supervised learning problem [4],
[5], a consensus on the compatibility of cross-corpus dif-
ficulty has yet to be reached. While Lee and Vajjala [6]
proposed a neural pairwise ranking model that demonstrated
promising results in zero cross-language transfer, a compre-
hensive analysis of cross-corpus compatibility is still lacking.
Most studies describing ARA models typically focus on
metrics such as classification accuracy, F-score, Pearson cor-
relation, Spearman correlation, and root mean squared error.
Although some evaluations have considered multiple cor-
pora, either by training on one corpus and testing on multiple
ones [6] or training and testing on multiple corpora [4], [7],
there lacks standardized metrics for tasks involving cross-
corpus compatibility. Moreover, although a few studies have
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explored the application of cross-corpus analysis [8], [9],
there is a need for a comprehensive framework to assess
compatibility and to compare new corpora with widely used
benchmark corpora.

Addressing the aforementioned issues, our work makes
a threefold contribution. Firstly, it serves as an exploratory
study on cross-corpus readability compatibility. Secondly,
three metrics are proposed to evaluate cross-corpus com-
patibility, which can serve as a basis for validating corpus
selection. Thirdly, a systematic framework is established to
evaluate and compare the compatibility of new corpora with
benchmark corpora. Additionally, our research has implica-
tions for applications such as corpus data augmentation and
transfer learning. Specifically, in this study, machine learning
and deep learning techniques and employed. Three met-
rics, including Reverse-Jensen-Shannon Divergence (RJSD),
Reverse-Rank Normalized Sum of Squares (RRNSS), and
Normalized Discounted Cumulative Gain (NDCG), are
adopted to assess compatibility. Experimental results demon-
strate the effectiveness of our proposed text readability
compatibility assessment system for cross-corpus analysis,
addressing the limitations of previous studies in this area.

The remainder of this paper is organized as follows.
Section II provides an overview of related research.
Section III defines the problem of cross-corpus text read-
ability assessment compatibility. Section IV introduces the
corpora and features used in this study. Section V presents
a detailed description of the readability compatibility assess-
ment system and model construction. Section VI analyzes the
performance of the model and evaluates cross-corpus com-
patibility. Finally, we discuss the experimental conclusions
of this paper and present future prospects.

II. RELATED WORK
ARA has been a cross-disciplinary topic in education, psy-
chology, and computer science for almost a century. At the
core of ARA tasks lies the concept of text difficulty, which
refers to the level at which learners can read and comprehend
text materials [10].
Early methods of evaluating text readability primarily

relied on manually designed readability formulas. These for-
mulas offered objectivity, simplicity, and cost-effectiveness
in assessing text difficulty. However, Oakland and Lane [11]
pointed out limitations in readability formulas. For instance,
the Flesch-Kincaid formula only considers text features such
as sentence length and word difficulty, neglecting other
factors that may impact readability. Similarly, Vajjala [10]
highlighted that traditional readability formulas can only be
trained and tested on specific domains or text types.

The main research results on the difficulty measurement
of English texts have developed hundreds of text readability
measurement formulas. Several typical readability measure-
ment formulas are shown in Table 1.
ARAhaswitnessed the dominance of neural network-based

architectures in recent years, following the trend observed
in other NLP studies. Researchers, such as Mohammadi

and Khasteh [12] and Meng et al. [13], have proposed var-
ious neural network models for multilingual readability
assessment. These models incorporate deep reinforcement
learning and hierarchical self-attention based transformer
architectures, respectively. Word embedding techniques have
been combined with additional attributes, such as domain
knowledge and language modeling, to enhance perfor-
mance [14], [15]. A wide range of neural architectures,
includingmulti-attention RNN and deep reinforcement learn-
ing, have been explored in the pursuit of improved ARA
models [16], [17].

While there have been studies examining cross-corpus
compatibility, the focus remains limited. For instance,
François and Fairon [18] utilized sentence alignmentmethods
to construct a parallel corpus of French and English for corpus
construction. Xia et al. [7] leveraged out-of-domain training
data to improve performance on limited in-domain data.
Azpiazu and Pera [8], [9] explored deep learning architec-
tures to investigate multilingual and cross-lingual approaches
to ARA. Weiss et al. [19] explored the effectiveness of lin-
guistic features across different languages and conducted
a zero-shot cross-lingual evaluation between English and
German, utilizing an extensive set of linguistic features.
However, to the best of our knowledge, there is currently
no existing work specifically evaluating the compatibility of
cross-corpus readability.

In summary, for readability assessment research, cross-
corpus difficulty compatibility is an important problem to be
solved. This study utilized six different corpora and employed
machine learning and deep learning methods, as well as
various feature combinations and evaluation metrics. These
efforts greatly advanced research progress in compatibility
assessment tasks and also provided broader prospects for the
application and development of readability assessment.

where, ‘characters’ is the total number of characters,
‘words’ is the total number of words, ‘sentences’ is the total
number of sentences, ‘complexWords’ is the number of com-
plex words, ‘longwords’ is the number of words longer than
6 characters, ‘Syllables’ is the total number of syllables, and
‘Polysyllables’ is the total number of polysyllabic words.

III. PROBLEM DESCRIPTION
Cross-corpus difficulty compatibility assessment requires
some preliminary knowledge. In this section, we propose
two hypotheses based on background knowledge. To make
it clearer, the relevant variable attributes in the consistent
evaluation task are given as follows:

• L2 stands for the corpus collection of second language
learners;

• S stands for the source corpus for model training and
difficulty evaluation;

• T stands for the target corpus for model evaluation and
testing;

• f (S,T ) stands for the cross-corpus difficulty evaluation
function, and uses the model trained by the source cor-
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TABLE 1. Traditional readability formula, including Automated Readability Index (ARI), Flesch-Kincaid Grade Level (FKGL), Gunning Fog Index (GFI),
SMOG Grading (SMOG), Coleman-Liau Index (CLI), Lesbarhets Index (LIX), and Rate Index (RIX).

pus S to predict the difficulty level of the text of the target
corpus T ;

• ω(S,T ) stands for the compatibility of difficulty levels
between the source corpus and target corpus. In par-
ticular, due to the particularity of the compatibility
assessment process proposed in this paper, ω(S,T ) and
ω(T , S) are not numerically equal.

Assumption 1: The difficulty level of each text in the cor-
pus can be represented by an integer, and the distance between
difficulty levels is ignored. The distance between each diffi-
culty level is equal, as follows:

d(xi, xj) = |xi − xj| (1)

where, d(xi, xj) stands for the distance between the difficulty
levels of text i and text j, xi and xj stand for the difficulty
levels of text i and text j, and | · | stands for the absolute value
function.
Assumption 2: Text labels between different corpora can

be transferred, such as readability formulas or general text
difficulty features. Specifically, it is assumed that the diffi-
culty level of each text can be represented by a function f (·):

yi = f (xi) (2)

where, xi stands for the difficulty level of text i in the target
corpus T , and yi stands for the difficulty level of text i in the
source corpus S. The function f (·) stands for the transfor-
mation function from the difficulty level of corpus T to the
difficulty level of corpus S.
Definition (Cross-Corpus Readability Assessment Com-

patibility): Assuming that we select two corpora from L2,
which are respectively used as the source corpus S and the
target corpus T , with readability difficulty levels of Ls and Lt .
The assessment model trained by the source corpus S is used
to evaluate the target corpus T , and the prediction difficulty
label Lt ′ is obtained.

�(T , S) = cor(Lt ,Lt ′ ) (3)

where, cor(·) stands for the assessment method, which is
RJSD, RRNSS and NDCG in this paper.

The study learns a modelModel(S) from the source corpus
that can map text to the corresponding difficulty level, and

predicts the difficulty of the text in the corpus T . Based on
the above premises and definitions, this study aims to answer
the following two questions: 1) Can similar compatibility
assessment results be obtained by using different model train-
ing methods and feature combinations? 2) Can the method
proposed in this study be universal on different corpora?

Compared with most previous works, this paper answers
these questions based on experiments across multiple cross-
corpus. Traditional readability formulas cannot reflect the
compatibility of readability assessment when evaluating
cross-corpus texts. Therefore, this study uses machine learn-
ing and deep learning methods to model cross-corpus text.

IV. DATA AND FEATURES
A. DATASETS
Our study employs six common datasets for readability
research. In the experiment, all pre-processed samples from
the datasets are included. The data set details are shown in
Table 2.
In general, different datasets have different characteristics

and readability systems.

• Data Volume: Among the six datasets, NES has the
most data with 33,006 records, while RACE has 27,931
records. In comparison, CLOTH and CLEC have rela-
tively few records, which is less than 10,000; and CEFR
and OSP have the least amount of data, with 683 and
567 records, respectively.

• Text Types: NES andOSP datasets include news articles.
CLEC, CLOTH, and RACE contain exam questions,
with CLEC being the Chinese English proficiency test
data, CLOTH being the cloze test data, and RACE
being the reading comprehension data. The CEFR
dataset comes from various text types, including online
resources, textbooks, social media, and news media,
covering language usage scenarios for different topics.

• Readability Levels: From the description of the datasets
in Table 2, it can be seen that NES has the widest range
of readability levels, from 2nd grade to 12th grade, with
11 levels included. CEFR and CLEC are next, each
containing 6 and 5 levels respectively; OSP contains
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TABLE 2. Dataset information.

3 levels; while CLOTH and RACE are divided into
2 levels based on junior high and senior high.

The datasets used in this study have different difficulty sys-
tems. Appendix A shows the assessment results of traditional
readability formulas on the datasets. It can be seen that the
data set text has a difficulty level. At the same time, we show
the distribution of traditional readability formula scores for
difficulty levels in each dataset in Appendix B.

B. FEATURES
Feature extraction is a important part of machine learning,
which is the process of converting raw data into useful
information representations. We extracted features from six
datasets respectively, which were used as inputs for subse-
quent machine learning and deep learning methods. In this
study, the readability assessment features used are divided
into three categories: lexical features, syntactic features, and
semantic features. Appendix C shows the feature information.

V. MODEL DESIGN
A. CROSS-CORPUS ASSESSMENT SYSTEM
To address the problems described in Section III, this paper
proposes a method for cross-corpus assessment, which pre-
dict the readability of texts based on the knowledge of
different corpora, so as to evaluate the cross-corpus compat-
ibility.

The overall framework of our work is shown in Figure 1,
which includes six steps for evaluating the compatibility of
cross-corpus difficulty system.
Step 1. Feature Extraction: In natural language process-

ing, feature extraction is a crucial process. In this process,
we retrieve the most suitable features from the corpus and
convert the text into a vector space to optimize the quality
and efficiency of the model. In this study, 21 linguistic fea-
tures were calculated for six corpora, including three levels:
lexical, grammatical, and syntactic aspects. The details of

FIGURE 1. Cross-corpus assessment process.

the feature information are shown in Appendix Appendix C,
collectively referred to as L-Features.
Step 2. Word Vector Representation: When using GloVe

for text representation, we extract all possible word combi-
nations from the corpus according to a pre-set window size
and count their frequency of occurrence in the text. In this
way, a co-occurrence matrix based on word frequency can be
obtained. The co-occurrence matrix is then decomposed into
two low-dimensional matrices to obtain a vector representa-
tion of each word. Therefore, D-Features using GloVe can
better represent the semantic relationship between words in
terms of text representation, providing a more optimized way
of representing text.
Step 3. Feature Fusion: In order to comprehensively uti-

lize the multi-level information of text, we fuse traditional
text features with word vector representations. And the new
feature representation is used for subsequent model train-
ing. Specifically, we convert each sentence in the text data
into a corresponding feature vector in the machine learn-
ing method, and concatenate the linguistic feature data with
the sentence-level feature vectors element-wise to obtain a
multi-level text representation. In the deep learning approach,
we concatenate the LSTMoutput through a concatenate layer,
process the linguistic features through a dense layer. Finally,
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the concatenate layer is used to combine both types of fea-
tures into a new feature representation called ALL-Features
for subsequent model training.
Step 4. TrainingModel: In this study, we trained themodels

using different learning methods, including XGBoost, SVM,
BiLSTM, and Attention-BiLSTM. To explore the impact of
different feature combinations on compatibility assessment,
we also conducted three sets of experiments based on dif-
ferent feature combinations. The first set of experiments
trained traditional machine learning models on the extracted
linguistic features to predict text complexity. The second set
of experiments evaluated readability usingGloVeword vector
representations with both machine learning and deep learning
methods. The third set of experiments evaluated readabil-
ity using features obtained by fusing linguistic features and
word vectors with both machine learning and deep learning
methods. It should be noted that deep learning methods can
extract more information from raw text data, helping mod-
els learn more complex feature representations and improve
generalization ability. In contrast, low-dimensional language
features are limited by lack of information richness and repre-
sentational power, which limit effectiveness in deep learning
models. During model training, cross-validation was used to
evaluate the performance of the models, and the accuracy
value was used as the main metric for model selection and
optimization.
Step 5. Readability Prediction: We use the classification

model trained in Step 4 to predict the text readability of the
target corpus T . By obtaining the difficulty labels predicted
by models trained on different source corpora for the target
corpus, we can further analyze the compatibility assessment
of cross-corpus text difficulty. This study trains models using
different combinations of learning methods, feature combi-
nations, and source corpora. We found that different learning
methods and feature combinations have different effects on
cross-corpus compatibility assessment of text difficulty.
Step 6. Readability System Compatibility Assessment:We

will evaluate the compatibility between the predicted labels
and the real labels of the target corpus in the fifth step. This
paper uses the evaluation metrics RJSD, RRNSS and NDCG
to measure the compatibility between the corpus difficulty
systems, and compares the results of the three methods.

Through the above steps, we can get the readability
assessment results of cross-corpus texts. By comparing the
compatibility between the difficulty systems of different cor-
pora, we can further analyze the differences and rules of text
difficulty across corpora.

B. LEARNING ALGORITHMS
In this study, we employed both machine learning and deep
learning approaches with different feature combinations for
experimentation. Specifically, the machine learning method
utilized language features, GloVeword embeddings, and their
fusion features, while the deep learning method only used
GloVe word embeddings and fusion features. Additionally,

we compared and analyzed the performance of different fea-
ture combinations.

• XGBoost: We utilized the XGBoost classifier proposed
by Cortes and Vapnik [47] to train a model for text
readability assessment.

• SVM: Support Vector Machines constructs a hyperplane
that separates the data into classes. SVM is efficient for
high-dimensional feature spaces [48], [49].

• Bi-LSTM: The designed Bidirectional LSTM neural
network is based on the research conducted out by
Stevens [50]. The implemented model architecture is
a sequential architecture consisting of an embedding
layer, a single bidirectional LSTM layer, a pooling layer,
and a fully-connected layer with softmax function for
classification. All hyperparameters are tuned using the
development set.

• Att-BiLSTM: Attention-based bidirectional long short-
term memory is a model that adds an Attention layer
on top of the BiLSTM model. In English text, different
words contribute differently to the overall semantics of a
sentence. Based on the attention mechanism, we assign
weights according to the contribution of words to text
semantics, so that the classifier pays more attention to
semantic information and improves the classification
performance of the model.

VI. RESULTS AND EVALUATION
In this section, we will present the experimental results.
Section VI-A introduces the evaluation metrics used in the
study, and Section VI-B presents the experimental results and
analysis.

A. EVALUATION METRICS
1) MODEL PERFORMANCE METRICS
In this section, the performance of each classifier are eval-
uated and related results are shown in Appendix D. The
following four metrics are used: (a) Accuracy, (b) Precision,
(c) Recall, (d) F1. The definitions of the formulas are as
follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

F1 =
2 × Precision × Recall
Precision + Recall

(7)

where, true positive (TP) is the number of data classified
as positive in the data marked as positive, and true negative
(TN) is the number of data classified as negative in the data
marked as negative. False positive (FP) is the number of data
classified as positive but marked as negative in the data set,
and false negative (FN) is the number of data classified as
negative but marked as positive in the data set. Accuracy
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represents the proportion of correct prediction of the model.
Precision refers to the proportion of the number of correctly
classified texts to the total number of texts classified into
different readability levels. Recall refers to the ratio of the
number of correct classifications to the total number of texts
in each test set. F1 is the average of Precision and Recall.

2) COMPATIBILITY ASSESSMENT METRICS
To evaluate the compatibility of cross-corpus, we adopted
three assessment metrics: Reverse-Jensen-Shannon Diver-
gence (RJSD), Reverse-Rank Normalized Sum of Squares
(RRNSS), and Normalized Discounted Cumulative Gain
(NDCG). The following describes the detailed definition of
indicators.

RJSD is a new metric based on Jensen-Shannon Diver-
gence (JSD) [51]. JSD is a commonly used method for
measuring the similarity between probability distributions,
proposed by Jensen and Shannon. Its value ranges from 0 to 1,
with smaller values indicating greater similarity between dis-
tributions. In this study, JSD is adjusted so that the value
range of RJSD is [0,1], with larger values indicating greater
similarity between distributions. The formula for calculating
RJSD is as follows:

RJSD(P,Q) = 1 −
KL(P|M ) + KL(Q|M )

2
(8)

where, P and Q stand for the two probability distributions to
be compared, and M stands for their average distribution.

RRNSS is a newmetric based on Rank Normalized Sum of
Squares (RNSS). RNSS is essentially the RootMean Squared
Error (RMSE), and the advantages of RMSE over MAE have
been discussed in Chai and Draxler [52]. In the calculation of
RNSS, the elements in the two ranking lists are standardized
and converted into a numerical list in the range of [0,1], and
then the sum of squared differences and weighted sum are
calculated for these two standardized lists to obtain the RNSS
value. The calculation formula of the adjusted RRNSSmetric
in this study is as follows:

RRNSS = 1 −

1 +

( ∑n
i=1(Ai − Bi)2

n(n+ 1)(2n+ 1)/6

)0.5
−1

(9)

where, Ai stands for the ranking of the i th element in list
A, and Bi stands for the ranking of the i th element in list
B. RRNSS has a value range between 0 and 1. The larger
the RRNSS value, the closer the sorting result is to the true
sorting, and the better the sorting quality.

NDCG is a metric used to evaluate the quality of rankings,
taking into account both the relevance of the ranking result
and the order in which they are ranked [6], [53]. The calcula-
tionmethod of NDCG is based on the Discounted Cumulative
Gain (DCG) metric [54]. DCG is a metric that measures the
quality of ranking results and reflects the gap between the
ranking results and the ideal ranking results. Its calculation

FIGURE 2. Compatibility assessment results of RJSD (ML+Feature).

formula is as follows:

DCGk =

k∑
i=1

rel(i)
log2(i+ 1)

(10)

where, reli represents the relevance score of the i th text, and k
is the number of results. In order to eliminate the influence of
the number of ranking results, DCG needs to be normalized to
obtain the NDCGmetric. The formula for calculating NDCG
is as follows:

NDCG =
DCG
IDCG

(11)

where, IDCG is the DCG value of the ideal ranking result.
The value range of NDCG metric is between 0 and 1, and the
larger the value, the higher the relevance between the ranking
result and the true label.

B. EXPERIMENTAL RESULTS AND ANALYSIS
We conducted readability assessments on six corpora
using three experimental combinations, including machine
learning+features, machine learning+GloVe word vectors,
deep learning+GloVeword vectors, machine learning+fusion
features, and deep learning+fusion features. This study used
three assessment metrics to evaluate the compatibility of pre-
diction results. Based on the length of this section, we mainly
discuss the RJSD assessment metric. The results of RRNSS
are shown in Figure 5, Figure 6, and Figure 7. The results of
NDCG are shown in Figure 8, Figure 9, and Figure 10.

1) COMPATIBILITY ANALYSIS OF USING LINGUISTIC
FEATURES IN MACHINE LEARNING
Figure 2 shows the results of evaluating machine learning
using linguistic features for prediction. The horizontal axis
represents the source corpora used by the training model,
and the vertical axis represents the target corpora used for
prediction evaluation. The values in Figure 2 are the com-
patibility assessment results using the RJSD method, with a
value range from 0 to 1. The larger the result value, the higher
the compatibility.

According to the comparison experimental results in
Figure 2, it can be seen that the results obtained by the
XGBoost and SVM methods are similar. When the RACE
and CLEC corpora are used as the target corpora, the com-
patibility scores are higher compared to other corpora. For
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FIGURE 3. Compatibility assessment results of RJSD (ML/DL+GloVe).

example, when using the XGBoost and SVMmethods to train
the CLEC corpus, the compatibility values for RACE reach
the highest values of 0.948 and 0.952, respectively. On the
other hand, when the OSP corpus is used as the target corpus
for prediction evaluation, its compatibility score is relatively
lower compared to other corpora. For example, by using SVM
to train the source corpus CLOTH, the lowest value of the
model result is 0.523.

Obviously, there is low compatibility shown on the RJSD
measurement standard when the model trained on the OSP
source corpus predicts the target corpus. The average results
for XGBoost and SVM are 0.502 and 0.488, respectively.
In contrast, the models trained on the CLEC and RACE
source corpora have higher compatibility assessment results.
The average results for XGBoost are 0.821 and 0.823, respec-
tively, and the average results for SVM are 0.82 and 0.819,
respectively.

2) COMPATIBILITY ANALYSIS OF USING GLOVE WORD
VECTORS
Figure 3 shows the results of using GloVe word vectors for
readability compatibility assessment bymachine learning and
deep learning methods. The four heatmap diagrams corre-
spond to the results of compatibility assessment on the dataset
using XGBoost, SVM, Attention-BiLSTM, and BiLSTM
methods, respectively.

It can be seen from Figure 3 that the compatibility
assessment results of different target corpora are different.
In particular, when the target corpus uses XGBoost and SVM
methods to evaluate on different source corpora, the target
corpus CEFR and NES have high compatibility with all cor-
pora. In contrast, the compatibility between the target corpus
OSP and other corpora is low. For example, the average
values of XGBoost and SVM methods are 0.812 and 0.815,
respectively. From the analysis of the source corpus, there are

FIGURE 4. Compatibility assessment results of RJSD (ML/DL+fusion
feature).

differences in compatibility between the OSP source corpus
and the target corpus according to the RJSD measurement
standard. For example, the compatibility between NES and
the OSP source corpus reaches the highest value of 0.921 on
the XGBoost method, while the compatibility between CLEC
and the OSP source corpus is only 0.511 on the XGBoost
method. This shows that the selection of the source corpus
in the learning model is crucial to the performance of the
algorithm.

When evaluated using Attention-BiLSTM and BiLSTM
methods, they show the same level of compatibility as the
XGBoost and SVM methods. Different from XGBoost and
SVM methods, the compatibility of the target corpus with
OSP as the source corpus is improved. The improvement in
the Attention-BiLSTM method is obvious, and the average
compatibility value reaches 0.906. This shows that the deep
learning methods can improve the accuracy and compatibility
of OSP corpus when evaluating the readability of cross-
corpus text.

3) COMPATIBILITY ANALYSIS OF USING FUSION FEATURES
This experiment combines linguistic features with GloVe
word vector representation as a new feature to train themodel.
Figure 4 shows the compatibility assessment results using
fusion features according to the RJSD metric.

From the results shown in the figure, it can be observed
that the performance using fusion features is similar to the
previous two experiments. For example, the compatibility
assessment results vary across different corpora. OnXGBoost
and SVM methods, there is lower compatibility between the
target corpora CLEC, CLOTH, RACE and the OSP corpus.
However, CEFR and NES corpora have better compatibility
results with all corpora. When OSP is used as the source
corpus, the cross-corpus compatibility results are not good.
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FIGURE 5. Compatibility assessment results of RRNSS (ML+Feature).

FIGURE 6. Compatibility assessment results of RRNSS (ML/DL+GloVe).

FIGURE 7. Compatibility assessment results of RRNSS (ML/DL+Fusion
Feature).

Similarly, when evaluated using Attention-BiLSTM or BiL-
STM methods, it can be seen that the compatibility between
the OSP corpus and all source corpora is relatively low. The

FIGURE 8. Compatibility assessment results of NDCG (ML+Feature).

FIGURE 9. Compatibility assessment results of NDCG (ML/DL+GloVe).

FIGURE 10. Compatibility assessment results of NDCG (ML/DL+Fusion
Feature).

average compatibility values were 0.798 and 0.800, respec-
tively.

Different from the above two sets of experimental results,
we found that when using the method of fusion features
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TABLE 3. Results of the correlation between metrics of all datasets.

TABLE 4. Readability formula scores of datasets.

to train the model, the compatibility performance between
different corpora was significantly improved. For example,
when using the SVM+GloVe method to train a model on
the OSP source corpus, the compatibility value between the
CLOTH corpus and the OSP corpus was 0.265. However,
when using the SVM+fusion feature method to train the
model, the compatibility result is improved to 0.714. This
shows that the fusion feature method has excellent perfor-
mance in cross-corpus English text readability evaluation,
and can effectively transfer learning for different data sets.
The performance of Attention-BiLSTM and BiLSTM meth-
ods is more obvious. The combination of deep learning
methods and fusion features makes the OSP source cor-
pus obtain the same high compatibility as other corpora,
with an average compatibility value of 0.947 and 0.949,

FIGURE 11. Distribution ARI grade per text by reading labels.

FIGURE 12. Distribution FKGL grade per text by reading labels.

respectively. This shows that the combination of deep learn-
ing method and fusion feature technology can improve the
accuracy and compatibility of cross-corpus text readability
assessment.

Similarly, in this paper, compatibility assessment experi-
ments were conducted using the RRNSS and NDCGmetrics.
The results of RRNSS are shown in Figure 5, Figure 6, and
Figure 7, respectively. The results of NDCG are shown in
Figure 8, Figure 9, and Figure 10, respectively. The measure-
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FIGURE 13. Distribution GFI grade per text by reading labels.

FIGURE 14. Distribution SMOG grade per text by reading labels.

ment methods of different assessment methods are different,
but similar conclusions can be drawn in the experiments.
This verifies the robustness and reliability of our analysis
results.

C. THE CORRELATION BETWEEN COMPATIBILITY
ASSESSMENT METRICS
To further analyze the correlation between the results of the
compatibility metrics, we conducted a correlation analysis

FIGURE 15. Distribution CLI grade per text by reading labels.

FIGURE 16. Distribution LIX grade per text by reading labels.

of the results using three methods for measuring the com-
patibility of readability systems. In this analysis, we used
the Pearson correlation coefficient to measure the correla-
tion [55].

r =
n(
∑
xy) − (

∑
x)(
∑
y)√

[n
∑
x2 −

(∑
x
)2][n∑ y2 −

(∑
y
)2] (12)

where, r = Pearson Coefficient, n = number of pairs of the
stock,

∑
xy = sum of products of the paired stocks,

∑
x =
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FIGURE 17. Distribution RIX grade per text by reading labels.

TABLE 5. Feature information.

sum of the x scores,
∑
y = sum of the y scores,

∑
x2 = sum

of the squared x scores, and
∑
y2 = sum of the squared y

scores.
In Table 3, we present the Pearson correlation results

and corresponding p-values for the three Compatibility
Assessment metrics. It can be seen from the table that the
self-correlation analysis for each metric resulted in 1. The
correlation results along the diagonal are the same, with a

TABLE 6. Model performance.

confidence level of less than 0.01. Meanwhile, the correlation
between the RJSDmetric and the RRNSSmetric is 0.761, the
correlation between the RJSD metric and the NDCG metric
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is 0.317, and the correlation between the RRNSS metric and
the NDCG metric is 0.488. Thus, the results suggest that
the RJSD metric is more highly correlated with the RRNSS
metric than with the NDCG metric.

VII. CONCLUSION
In this work, we present CRCA1 to evaluate the compatibility
of cross-corpus difficulty systems. Through our experiments
on popular benchmark corpora, we observe that the RACE,
CLOTH, CLEC, CEFR, and NES corpora exhibit high com-
patibility with each other, while the OSP corpus demonstrates
low compatibility with all of the other corpora. Further-
more, the analysis of the source corpus reveals variations
in compatibility when paired with different target corpora,
highlighting the critical role of source corpus selection in
algorithm performance. This finding is particularly evident in
the SVM+GloVe method, where the compatibility between
OSP and NES is measured at RJSD = 0.851, whereas it is
RJSD = 0.265 when evaluating compatibility with CLOTH.
Our comparison of cross-corpus compatibility assessment

results encompasses two aspects: feature combination and
classification methods. We find that the applicability of clas-
sification methods for assessing text difficulty compatibility
depends on the chosen feature combination. The combination
of Attention-BiLSTM, BiLSTMmethods, and fusion features
significantly enhances the compatibility of the OSP source
corpus. Compared to GloVe word vector representation, the
average compatibility values increase by 0.214 and 0.137,
respectively. This demonstrates the superior performance of
deep learning methods and fusion features in cross-corpus
English text readability assessment.

Moreover, we employ RJSD, RRNSS, and NDCG as eval-
uation metrics for compatibility results in our experiments.
Despite their distinct perspectives, these metrics consistently
yield similar overall outcomes, confirming the robustness
and reliability of CRCA. Our work not only facilitates com-
parisons in corpus selection but also provides experimental
evidence for validating findings in the context of natural
language processing research and practical applications.

APPENDIX A
See Table 4.

APPENDIX B
See Figures 11–17.

APPENDIX C
See Table 5.

APPENDIX D
See Table 6.

1All demo code for the experiments is publicly available at:
https://github.com/zimzsh/CRCA. Full raw data can be publicly downloaded
upon: https://pan.baidu.com/s/12cc8KDw2FhAoT6UgJECZTw?pwd=1111.
The two mentioned sets of material are also available on request (email:
1973163532@qq.com).
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