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ABSTRACT In a network system, there inevitably be a few connection failures at nodes, such as delay.
Once a failure occurs, the network administrator must detect failure sources as soon as possible to maintain
communication over the network. Group testing is a method for detecting failure nodes in networks using
a small number of measurements, provided that the measurement matrix is constructed appropriately.
A promising method for constructing measurement matrices is given by the binary correlation matrices.
This study analyzes the performance limitation of group testing based on the binary correlation measurement
matrix. We derive the upper and lower bounds of the minimum number of measurements needed for network
detection. Moreover, we propose a sufficient condition of network topology, under which the failure vertices
in the network can be detected with optimal performance, and we also provide a detection scheme with
guaranteed exactness for the network. Numerical example indicates that for the network that satisfies
the proposed sufficient condition, the administrator can exactly detect the failure vertices with optimal
performance by using our proposed detection scheme.

INDEX TERMS Network, failure detection, group testing, sparse reconstruction, graph theory.

I. INTRODUCTION
Network management refers to the process of configuring,
monitoring, and managing the performance of a network. It is
one of the most important components of network oper-
ation [1]. Monitoring and detecting abnormal network
characteristics, such as delay at nodes, is an indispensable
research topic of networkmanagement [2], [3], [4], [5]. In this
paper, we focus on the diagnosis of the nodes with abnormal
characteristics in a network.

A typical network system consists of an administrator and
nodes, as shown in Fig. 1. It is modeled as an undirected
graph, which consists of two sets called vertices, edges, and
an incidence relation between them. In a network, the vertices
communicate with others over the edges [6]. The network
administrator is responsible for network management and
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maintaining the stability of the network. In practice, it is
inevitable to occur some failure nodes in the communication
network. Thus, the administrator has to locate the failure
sources and subsequently repair them as soon as possible to
maintain the quality of communication over the network [7].
A straightforward approach for failure detection is directly

measuring the health of individual nodes. However, such
direct measurements and monitoring of all nodes are
unwieldy due to the high costs of communication and
detection [2], [3], [4]. Therefore, it is desirable to avoid
employing such brute-force measurements for failure detec-
tion in networks.

Recently, several frameworks for failure detection in
networks have been proposed [8], [9], [10], [11], and they
are based on the idea of group testing. Group testing is
an anomaly detection approach that divides the objects into
several groups and identifies abnormal items on groups,
rather than on individual ones [12]. When there are a few
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FIGURE 1. Network system.

abnormal objects, it is expected to detect them with a few
tests. Applying group testing to failure detection in networks,
then a group corresponds to a simple path that is a sequence
of distinct adjacent nodes in the network. The administrator
sends test signals, called probes, along the pre-determined
paths to measure the sum of faults over the paths, and
such measurement is called analog measurement [13]. Then,
the administrator estimates the failure nodes based on the
measurement results of the probes.

For exact detection, it is important to appropriately choose
probes, i.e., to design paths. However, in almost all of
the existing results [8], [9], [10], [11], the probes are
constructed based on random walks in networks. Although
the results show that such random construction can detect
failure sources with a high probability, it is never exactly
equal to one. In the field of sparse reconstruction, there is
a promising method that can be applied to the construction
of probes for detection, called binary correlation construc-
tion [14], [15], [16], [17], [18]. Compared with the existing
method in [8], [9], [10], and [11], the binary correlation
construction of probes can guarantee the exactness of the
failure detection in the network.

In the interest of minimizing the cost of failure detection,
it is important to know the minimum number of measure-
ments needed for failure detection in networks. Therefore,
in this study, we analyze the performance limitation of group
testing based on the binary correlation construction probes.
The contributions of this paper are as follows.

1) Based on the knowledge of sparse reconstruction,
we analyze the performance limitation of group
testing based on the binary correlation construction,
where the performance is evaluated by the number
of needed measurements for networks. We derive the
upper and lower bounds of the minimum number of
measurements needed for failure detection in networks.

2) We consider the network topological constraint on the
design of probes and provide a sufficient condition of
network topology, under which the failure vertices in
the network can be detected with optimal performance.

3) We provide detection schemes with guaranteed exact-
ness for the networks that satisfy the condition in 2).

FIGURE 2. Network G.

FIGURE 3. Induced subgraph GT.

To the best of our knowledge, there is no result that
guarantees the exactness of group testing with analog
measurements in network detection.

Our result is expected to provide a solution for the network
administrator to configure a network with a low failure
detection cost, and further construct a detection scheme with
guaranteed exactness for the network.

The rest of the paper is organized as follows: In the rest
of this section, we introduce some preliminaries on graph
theory and notations. Section II presents the failure detection
problem in networks and introduces group testingwith analog
measurements, then formulates the problem of analyzing
the performance limitation of group testing based on the
binary correlation measurement matrix. Our main results
are provided in Section III. Finally, a numerical example of
the application of our results to network detection is shown
in Section IV.
Preliminaries on Graph Theory and Notations: We next

introduce some graph theory preliminaries [19], [20] and
notations that will be used in this paper.

Consider an undirected graph G = (V,E), where V =

{v1, v2, . . . , vn} is the set of vertices and E ⊆ V × V is the
set of edges. The degree of a vertex is the number of edges
with the vertex as an end-point. Let δi denote the degree of
the vertex vi ∈ V. Then the minimum degree of the vertices
in G is denoted by

δ(G) = min
i∈{1,2,...,n}

δi.

For example, consider the network G with six vertices and
seven edges in Fig. 2. The degree of the vertex v3 is δ3 = 3,
and the minimum degree of the vertices in G is δ(G) = 1.
A simple path is a sequence of distinct adjacent vertices in

graph. A Hamiltonian path is a path that visits each vertex of
the graph exactly once. For example, consider the network in
Fig. 2. Path 1 is a simple path, and it is a Hamiltonian path
of G.

Next, a class of subgraphs, called induced subgraph,
is introduced. Consider a set of vertices in G, denoted by
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T ⊆ V. The subgraph of G induced by T is the graph that
has T as its set of vertices and contains all the edges of G that
have both endpoints in T, it is denoted by GT. For example,
Fig. 3 shows the subgraph of the network in Fig. 2 induced
by T = {v1, v2, v3, v4}.
Finally, we introduce some notations. Let R be the real

number field, and let Z+ denote the set of positive integers.
We use ∥x∥p to represent the ℓp-norm of the vector x. The
cardinality of the set P is denoted by |P|. We use ⌊x⌋ to denote
the floor of a real number x, it is the greatest integer less than
or equal to x. Similarly, ⌈x⌉ denotes the ceiling of x, it is the
least integer greater than or equal to x.

II. FAILURE DETECTION IN NETWORKS
A. FAILURE-VERTEX DETECTION PROBLEM
Consider a communication network system as exemplified in
Fig. 1, which consists of an administrator and nodes. It is
modeled as an undirected graph G = (V,E, l), where V is
the set of vertices, E ⊆ V × V is the set of edges, and
l : V → [0, ∞) is a function defining vertex labels.

The elements of V are denoted by v1, v2, . . . , vn, and the
label of vertex vj is given by l(vj) ∈ [0, ∞). We use l(vj) to
represent the failure status at the vertex vj (j = 1, 2, . . . , n).
The value l(vj) represents the delay time in communication at
vertex vj, and thus l(vj) ̸= 0 and l(vj) = 0 respectively mean
that there is a fault and that there is no fault. In this paper,
we refer to a vertex with a nonzero label as a failure vertex.
Once a vertex fails, the administrator has to detect it as soon

as possible to maintain the quality of communication over the
network. In general, failure detection can be easily performed
by directly monitoring the status of all vertices. However, the
administrator should avoid such brute-force diagnosis. Thus,
we expect a method that can detect the failure vertices of a
network via a few measurements.

B. GROUP TESTING WITH ANALOG MEASUREMENTS
Group testing [12] is a method for detecting failure vertices
with a small number of measurements. In this method,
test signals, called probes, are sent by the administrator to
measure the failure status on pre-determined paths in the
network. This study focuses on the group testing with analog
measurements [9], and it is detailed as follows.

Consider a network G with n vertices. First, the adminis-
trator specifies m simple paths in the network and calls them
path 1, 2, . . . ,m. The set of the vertices in path i is denoted by
Pi ⊆ {v1, v2, . . . , vn}. Next, the administrator sends probes
along each path to measure the failure status of vertices. The
measurement for the probe along path i is given by

yi =

∑
vj∈Pi

l(vj). (1)

The measurement yi ∈ [0, ∞) denotes the sum of the labels
of the vertices in path i. If there is no failure vertex in path i,
we have yi = 0; otherwise, yi > 0.

FIGURE 4. Failure detection of network by using group testing.

By sending the m probes, we obtain the vector y :=

[ y1 y2 · · · ym ]⊤ ∈ [0, ∞)m. Then, from (1), we have

y = Cx, (2)

where x := [ l(v1) l(v2) · · · l(vn) ]⊤ ∈ [0, ∞)n, and C is an
m × n, {0, 1}-valued matrix, called the measurement matrix,
whose (i, j)-element cij represents whether vj is in path i or
not, i.e.,

cij =

{
1 vj ∈ Pi,
0 vj /∈ Pi.

For example, consider the network in Fig. 4. Suppose that
the administrator specifies four paths, for which P1 =

{v1, v4, v6}, P2 = {v1, v2, v5}, P3 = {v2, v3, v6}, P4 =

{v3, v4, v5}. Then the measurement matrix is given by

C =


1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 0 0 1
0 0 1 1 1 0

 . (3)

Since the administrator has information onC and y, (2) can
be regarded as a linear equation with the unknown x ∈

[0, ∞)n. If we can uniquely determine x by solving (2), the
administrator can locate the failure vertices in the network.

In general, the number of measurements is less than the
number of vertices in group testing, that is, m < n. It implies
that the equation is underdetermined, and there are an infinite
number of solutions of (2). Meanwhile, it is reasonable to
assume that only a few vertices fail simultaneously, that is, x
has very few nonzero elements. By assuming this, the failure
vertex vector x may be uniquely determined from (2). The
group testing is to find the failure vertices by solving the
linear equation in (2) under the assumption that there exist
at most f failure vertices.

For exact detection, it is important to appropriately choose
probes, i.e., to design C . A promising method is given by
the notion of f -identifiability for the matrix C . If a vector
x ∈ Rn has at most f nonzero elements, the vector x is said
to be f -sparse. Let S(f ) denote the set of f -sparse vectors
in Rn. The following notion is concerned with the measure-
ment matrix C .
Definition 1 (f -Identifiable Matrix): Consider the linear

equation (2). ThematrixC ∈ Rm×n is said to be f -identifiable
if (2) has a unique solution on S(f ). □
If we can construct an f -identifiable matrix and set it to C ,

the failure vertices are uniquely determined. Now, how do we
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construct an f -identifiable matrix? An answer is given by the
binary correlation matrices [14], [15], [16], [17], [18].
Definition 2 (Binary Correlation Matrix): Consider a

matrix C ∈ {0, 1}m×n, and let ci ∈ {0, 1}m denote the
i-th column vector of C . The matrix C is called a binary
correlation matrix if c⊤i cj ≤ 1 holds for every (i, j) ∈

{1, 2, . . . , n}2 such that i ̸= j. □
We obtain a sufficient condition for a binary correlation
matrix to be f -identifiable [21].
Lemma 1: Consider a binary correlation matrix C ∈

{0, 1}m×n and a nonnegative integer f . Let d(C) :=

mini∈{1,2,...,n} ∥ci∥2. If

d(C) > f , (4)

then the matrix C is f -identifiable. □
Therefore, if C is a binary correlation matrices satisfying (4),
C is f -identifiable.

C. PROBLEM FORMULATION
This paper aims at analyzing the performance limitation of
group testing based on the binary correlation measurement
matrix. Our problem is formulated as follows.

LetG(n) be the set of the networks with n vertices, consider
a network G ∈ G(n), and assume that there are at most
f failure vertices in G. Let C(G) be the set of all binary
correlation measurement matrices of G. Let m(C) denote the
row size of C . This is the number of measurements of group
testing when employing measurement matrix C ∈ C(G) in
network G. Then, the performance index of group testing is
defined as the minimum number of measurements of group
testing for a given network G, i.e.,

m(G, f ) := min
C∈C(G)

m(C) s.t. (4). (5)

Thus, the performance limitation of group testing in network
detection is represented as follows:

m∗(n, f ) := min
G∈G(n)

m(G, f ). (6)

Let G∗ denote the optimal solution to the minimization
problem in (6), andm∗(n, f ) is given by the minimum number
of measurements of network G∗.

The problem we would like to address in this paper is as
follows:
Problem 1: Consider the set of networks with n vertices,

that is, G(n), and assume that there are at most f failure
vertices in each network in G(n).

1) Derive m∗(n, f ).
2) Find G∗.
3) For the network G∗, find an f -identifiable measurement

matrix C ∈ {0, 1}m
∗(n,f )×n. □

III. PERFORMANCE LIMITATION OF GROUP TESTING IN
NETWORK FAILURE-VERTEX DETECTION
In this section, we present a solution to Problem 1 in
Section II-C. Our main result is as follows.

FIGURE 5. Performance limitation of group testing based on the binary
correlation matrix in network failure-vertex detection.

Theorem 1: Consider the networks in G(n), and assume
that there are at most f failure vertices in a network. Let

m−
=

⌈√
(f + 1)nf +

1
4

+
1
2

⌉
, (7)

m+
=

⌈
(f + 1)

√
nf +

1
4

+
1
2
(f + 1)

⌉
. (8)

1) The relation

m−
≤ m∗(n, f ) ≤ m+ (9)

holds. If there is a binary correlation matrix C ∈

{0, 1}m
−

×n with d(C) = f + 1, then m∗(n, f ) = m−,
i.e., m− is the solution of 1) of Problem 1.

2) Consider a network G ∈ G(n). If

δ(G) ≥ n−
1
2

⌊
(f + 1)n
m+

⌋
, (10)

then G is the solution to 2) of Problem 1.
3) Let G∗ be a network satisfying (10). A binary

correlation measurement matrix C ∈ {0, 1}m
∗(n,f )×n

with d(C) = f + 1 is a solution to 3) of Problem 1.
Proof of Theorem 1: See Appendix. ■
Theorem 1 1) gives the performance limitation of group

testing based on the binary correlation matrix, whose upper
and lower bounds in three cases of different f are shown
in Fig. 5. It demonstrates that for a fixed f , the detection
efficiency, evaluated by n/m∗(n, f ), increases as the network
scale, i.e., n. Theorem 1 2) provides a sufficient condition for
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FIGURE 6. Network G and its detection scheme.

networks, under which the administrator can construct an f -
identifiable measurement matrix with optimal performance
for the network, and the measurement matrix is given in
Theorem 1 3). For example, consider the case of n = 20 and
f = 1. From Theorem 1, we have m−

= 7 and m+
= 10.

Fig. 6 shows an example of a network G satisfying (10) and its
measurement matrix C ∈ {0, 1}7×20, where the black square
in the i-th row and j-th column in Fig. 6 represents cij = 1,
and the blank represents cij = 0. The matrix is constructed
by the progressive edge-growth (PEG) algorithm, which
is a promising method for constructing binary correlation
matrices [14], [15], [16], [17], [18].

IV. NUMERICAL EXAMPLE
In this section, we show an example of the application of
Theorem 1 to network failure detection. More specifically,
we show a detection example that performs group testingwith
optimal performance for a network satisfying (10) by using
the proposed measurement matrix.

A. SIMULATION CONDITIONS
Consider the network in Fig. 6(a). In this example, there is a
failure vertex v13 with l(v13) = 0.55 as shown in Fig. 7(a),
where each dot represents the delay at a vertex.

Then, perform the group testing with the measurement
matrix in Fig. 6(b), and the estimated results are obtained by
solving the following optimization problem:

min
x∈Rn

∥x∥1 s.t. (2). (11)

It is a popular approach for inferring a sparse vector from a
linear equation, which can be cast as a linear programming
problem and efficiently solved [22], [23], [24], [25].

FIGURE 7. Delay vector of network G.

The simulation was coded by Python and executed by the
personal computer with CPU Intel (R) Core (TM) i7-1065G7,
1.30 [GHz] and memory 16.0 [GB].

B. DETECTION RESULT
Fig. 7(b) presents the estimated delay vector by the
group testing. The computation time to estimate x was
0.003 seconds. From this result and Fig. 7(a), we see
that the failure vertex can be identified accurately and
efficiently.

This example suggests that by using our proposedmeasure-
ment matrix, the administrator can exactly detect the failure
vertices in the network with optimal performance.

V. CONCLUSION
In this study, the performance limitation of group test-
ing based on the binary correlation measurement matrix
was investigated, where the performance is evaluated by
the number of needed measurements for network failure
detection. We derived the upper and lower bounds of the
minimum number of measurements needed for network
detection. Moreover, we proposed a sufficient condition
of network topology, under which the failure vertices in
the network can be detected with optimal performance,
and we also provided a detection scheme with guaranteed
exactness for the network. Numerical example indicates
that for the network that satisfies the proposed sufficient
condition, the administrator can exactly detect the failure
vertices with optimal performance by using our proposed
detection scheme.

APPENDIX PROOF OF THEOREM 1
Theorem 1 is proved in this section. Table 1 summarizes the
notations about the number of nonzero entries in matrix C
that will be used in the proof.
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TABLE 1. Summary of notations about the number of nonzero entries in
matrix C ∈ {0, 1}m×n.

A. THEOREM 1 1): DERIVING m∗(n, f )
1) PREPARATION
We first prepare the following lemmas from [17], [26].
Lemma 2: Consider a binary correlation matrix C ∈

{0, 1}m×n. Let dri(C) and dcj(C) denote the number of
nonzero entries in the i-th row vector and j-th column vector
of C , respectively, and let t(C) denote the total number
of nonzero entries in C , i.e., t(C) =

∑m
i=1 dri(C) =∑n

j=1 dcj(C). Let p(C) = mini∈{1,2,...,m} dri(C). If d(C) ≥

2 and p(C) ≥ 2, then

m ≥

2∑
k=0

(
t(C)
n

− 1
)⌈

k
2

⌉ (
t(C)
m

− 1
)⌊

k
2

⌋ . (12)

□
For example, consider the binary correlation matrix C

in (3), in which m = 4, n = 6, and t(C) = 12. The term on
the right side of (12) is equal to 4. It is clear that the relation
in (12) holds.
Lemma 3: Consider three positive integers dr , dc, and m.

If

log
(
mdr −

mdr
dc

− m+ 1
)

log ((dr − 1)(dc − 1))
− 1 ≥ 1, (13)

then there exist an m× n binary correlation matrix with

max
i∈{1,2,...,m}

dri(C) = dr , (14)

max
j∈{1,2,...,n}

dcj(C) = dc. (15)

□
For example, consider dr = 3 and dc = 2, there exist an

6 × 7 binary correlation matrix given as follows

C =



1 0 0 1 0 0 1
1 0 0 0 1 0 0
0 1 0 1 0 0 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 1 0 0 1 1


, (16)

and it is constructed by the PEG algorithm.

2) PROOF
Let C(n) = {C ∈

⋃n
i=1{0, 1}

i×n
| C is a binary correlation

matrix}, and let

dmin = min
C∈C(n)

d(C) s.t. (4). (17)

Then, the statement 1) of Theorem 1 is the consequence of
the following four facts:
(a) dmin = f + 1

(b) m∗(n, f ) ≥

⌈√
dminn(dmin − 1) +

1
4 +

1
2

⌉
(c) m∗(n, f ) ≤

⌈
dmin

√
n(dmin − 1) +

1
4 +

1
2dmin

⌉
(d) If there is a m × n binary correlation matrix C with

m =

⌈√
dminn(dmin − 1) +

1
4 +

1
2

⌉
and d(C) = dmin, then

the equality holds in (b).
Next, we prove the four facts.
Proof of (a): Consider a matrix C ∈ C(n). Since d(C) ∈

Z+, then (4) implies that

d(C) ≥ f + 1. (18)

Thus, we obtain fact (a).
Proof of (b): Consider an m × n matrix C ∈ C(n) with

d(C) ≥ 2 and p(C) ≥ 2. It is clear that

t(C) ≥ nd(C). (19)

From Lemma 2, we have

m ≥ 1 + (d(C) − 1) + (d(C) − 1)
(
nd(C)
m

− 1
)

, (20)

which implies

m ≥

√
d(C)n(d(C) − 1) +

1
4

+
1
2
. (21)

From (21), a small value of d(C) improves the bound of m.
Because dmin is the smallest integer that satisfies (4), then
by regarding dmin as d(C) in (21), from Lemma 1, we have
fact (b).
Proof of (c): The condition in (13) can be simplified to

m ≥ dc + dc(dc − 1)(dr − 1), (22)

from which small values of dr and dc improve the bound
of m. Then, let us consider a binary correlation matrix
C ∈ {0, 1}m×n with dc nonzero entries per column and at

most
⌈
ndc
m

⌉
nonzero entries in each row. From Lemma 3,

a sufficient condition for the existence of such C is

m ≥ dc + dc(dc − 1)
ndc
m

, (23)

that is,

m ≥ dc

√
n(dc − 1) +

1
4

+
1
2
dc, (24)
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Therefore, by regarding dmin as dc in (24), we have a sufficient
condition for there exist an m × n, f -identifiable matrix
C ∈ C(n) is

m ≥ dmin

√
n(dmin − 1) +

1
4

+
1
2
dmin. (25)

This proves fact (c).
Proof of (d): Let C(n, dmin) = {C ∈ C(n) | d(C) ≥ dmin}.

In other words, C(n, dmin) is the set of binary correlation
matrices of column size n that satisfy (4). By the definition
of C(n, dmin) and m∗(n, f ), we have

m∗(n, f ) = min
C∈C(n,dmin)

m(C). (26)

Next, let us consider an m × n binary correlation matrix C

with m =

⌈√
dminn(dmin − 1) +

1
4 +

1
2

⌉
and d(C) = dmin.

It is clear that the matrix C ∈ C(n, dmin). Then, from fact (b),
we have fact (d).

B. THEOREM 1 2): FINDING G∗

1) PREPARATION
We prepare a lemma from [27] and [28] that will be used to
prove our result.
Lemma 4: Consider a graph G = (V,E) with |V| = n and

a nonnegative integer q. If

δ(G) ≥
n+ q
2

, (27)

then for each set of vertices Q ⊆ V such that |Q| ≤ q, the
subgraph of G induced by V \ Q has a Hamiltonian path. □

2) PROOF
The statement 2) of Theorem 1 is the consequence of the
following two facts:
(e) Consider a network G ∈ G(n) and a matrix C ∈ C(n). If

δ(G) ≥ n−
p(C)
2

, (28)

then C ∈ C(G).
(f) There is an m∗(n, f ) × n matrix C ∈ C(n, dmin) with

p(C) ≥

⌊
n(f + 1)
m+

⌋
. (29)

Facts (e) and (f) are proved as follows, respectively.
Proof of (e): Consider a matrix C ∈ C(n), let Si(C) denote

the index set of the nonzero entries in the i-th row of C .
Regard C as the measurement matrix of network G ∈ G(n),
and let Ti(C) = {vj ∈ V | j ∈ Si(C)}. In other words,
Ti(C) is the set of the vertices to be measured by probe i.
From Lemma 4, if (28) holds, then for each set of vertices
T ⊆ V such that |T| ≥ p(C), there is a Hamiltonian path
in GT. Because |Si(C)| = |Ti(C)| ≥ p(C) holds for each
i ∈ {1, 2, . . . ,m}, we have for each i ∈ {1, 2, . . . ,m}, there
is a Hamiltonian path in GTi(C). By the definition of the
Hamiltonian path, there is a path that traverses each vertex
in Ti(C) exactly once. The administrator can send a probe

along this path and the measurement for the probe is the sum
of the delay of the vertices in the path. It indicates that the
matrix C is feasible in the network G, that is, C ∈ C(G). This
proves fact (e).
Proof of (f): From [18], there is an m∗(n, f ) × n matrix

C ∈ C(n, dmin) with

d(C) = dmin (30)

p(C) =

⌊
t(C)

m∗(n, f )

⌋
. (31)

By the definition of C(n, dmin) and fact (a), we have for the
matrix C ,

t(C) ≥ n(f + 1), (32)

which implies

p(C) ≥

⌊
n(f + 1)
m∗(n, f )

⌋
. (33)

Then fact (c) and (33) prove fact (f).

C. THEOREM 1 3)
In this section, we find an f -identifiable measurement matrix
for network G∗.
From facts (a), (e), and (f), there is a binary correlation

matrix C ∈ {0, 1}m
∗(n,f )×n with d(C) = f +1 inC(G∗). From

Lemma 1, the matrix C is f -identifiable, and this completes
the proof of Theorem 1 3).
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