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ABSTRACT Unmanned Aerial Vehicle (UAV) has very wide application prospect in aiding terrestrial
cellular network communication, but it remains a challenge to optimize UAV locations and maximize user
service rate during deployment. In this paper, a novel network optimization scheme based on anti-flocking
model and improvedNash Equilibrium (NE) algorithm is proposed by studying the problem of dynamic UAV
deployment and backhaul transmission. Firstly, the UAV-adaptive algorithm based on gray wolf optimization
(U-GWO) is used to predeploy UAVs with limited number of UAVs. Secondly, ground mobile users are
tracked by building a UAV-based anti-flocking (U-AF) model. Then, during the tracking of ground users by
UAV, an improved NE strategy is used to establish the backhaul transmission links between UAVs, ground
BSs and other UAVs to ensure that deployed UAVs can maximize the service rate and effective backhaul
transmission rate of ground users. Simulation results show that the average service rate of User Equipment
(UE) with U-GWO algorithm is improved from 1% to 5.77% compared to other different swarm intelligence
optimization algorithms. And the service rate obtained with U-AF algorithm is 43.2 % improved compared
to the baseline scenario without U-AF algorithm. For UAV backhaul transmission link construction, the
simulation results show that the proposed improved NE strategy improves the average effective backhaul
transmission rate by 12%, the minimum backhaul transmission rate by 84% and the overall iteration number
by 5 % on average compared to a pure NE strategy.

INDEX TERMS Anti-flocking, gray wolf optimization, Nash equilibrium, relay, unmanned aerial vehicles.

I. INTRODUCTION
In the near future, as 5G technology continues to advance,
we can expect our daily lives to be enriched with high-speed
data transmission, minimal latency, and a diverse range
of communication options [1], [2]. At the same time,
the huge demand for data traffic services to meet the
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proliferation of User Equipments (UEs) in hotspots and the
mobility and uneven distribution of UEs in hotspots pose
significant difficulties for UEs serving hotspots [3], [4].
Hotspots can be effectively relieved through the utilization
of aerial base stations (BSs) in the form of Unmanned Aerial
Vehicles (UAVs), which offer exceptional flexibility during
deployment, affordability, and adaptable terrain coverage [5],
[6]. The integration of UAVs featuring Air-to-Ground
(A2G) and Air-to-Air (A2A) capabilities within backhaul
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transmission systems is generating immense interest, owing
to its potential to achieve optimal information transmis-
sion efficiency, minimal data loss, and low transmission
delays.

A. RELATED WORKS
Considering that UAVs can act as mobile aerial BSs, the
problem of maximizing the user coverage area by deploying
a limited number of UAVs needs to be addressed [7], and
thus the deployment of UAV mounted BS (UAV-BS) has
been extensively studied by many scholars [8]. A large
number of studies on maximizing user coverage area aim to
obtain maximum UE coverage rate and optimal UAV flight
altitude. Chen et al. [9] studied the maximum reliability that
can be achieved by placing UAVs. They assessed various
factors such as total power loss, overall outage, and bit error
rate (BER) to evaluate reliability. Their research determined
the optimal flight altitudes for UAVs under both static
and dynamic conditions. Alzenad et al. [10] decomposed the
UAV-BS 3D deployment problem into separate horizontal
and vertical explorations by maximizing UE coverage with
minimal transmission power and constructing the UAV-BS
horizontal deployment as a circular placement and minimum
closed loop model. Yanikomeroglu et al. [11] presented an
equivalent quadratically constrained mixed-integer nonlinear
optimisation problem based on a three-dimensional place-
ment problem with the objective of maximising network
revenue, and proposed a computationally efficient numer-
ical solution for the problem. Lai et al. [12] proposed a
density-aware placement algorithm bymodeling the UAV-BS
coverage problem for arbitrarily distributed UEs as a
NP-complete problem to obtain UEs that maximize coverage
under constraints. In studying the UAV coverage performance
problem, Zhang et al. [13] gave a coverage model of UAV
and used coverage rate as the problem description quantity
and proposed a swarm intelligence optimization algorithm
using Particle Swarm Optimization (PSO) to optimize UAV
deployment to obtain the maximum coverage rate of UE.
Chowdhury and De [14] proposed an improved Reverse
Glowworm Swarm Optimization (RGSO) algorithm to avoid
possible collisions in the motion path of UAVs in their study
of the 3D path planning problem ofUAVs. A hybrid algorithm
based on Improved Manta Ray Foraging Optimization and
Tabu Search (IMRFO-TS) algorithm was proposed by AIT
SAADI et al. [15] to obtain the optimal deployment location
of UAVs in the network to improve its convergence speed and
explore the UAV search area efficiently when studying the
problem of building multi-UAV networks in the context of
smart cities.

After determining the maximum UE coverage, sending the
data information of each UE back to the BS in time becomes
a priority, while establishing a direct link between the UE and
the BS, the power loss of the information is huge for UEs that
are far away from the BS, and the signal strength received
by the BS will be significantly weakened at this time [16],
[17]. To solve such problems, the UAV is used as a relay

between the UE and the BS, and then an optimal backhaul
transmission link is constructed from the UE to the UAV
and from the UAV to the BS, thus improving the efficiency
of information transmission [18]. Fu et al. [19] proposed a
distributed User Cluster (UC) algorithm based on wireless
channel quality to enhance the signal reception strength of BS
by constructing the use of multiple UAVs as a relay between
Internet of Things (IoT) devices and BS. Yang et al. [20]
introduced the concept of line-of-sight (LoS) and non-line-of-
sight (NLoS) transmission of information links using UAVs
as relays to provide data to Ground Robot (GR) with remote
BSs and compared it with existing studies that ignored the
effect of obstacles or assumed uniform obstacle distribution.
The A2G Network Formation (A2G-NF) algorithm and the
Communication Quality-aware UAV Placement (CQA-UP)
algorithm were proposed to optimize the transmission of the
A2G network by considering randomly distributed obstacles
in the urban environment, in contrast to existing studies
that ignore the effect of obstacles or assume a uniform
distribution of obstacles. These algorithms can optimize the
UAVmulti-hop network to increase the amount of transmitted
data and reduce transmission delay.

Recently, with some scholars considering the link com-
position among UAVs under the determination of UE
maximization coverage, i.e., the dynamic composition of
links when UAVs obtain optimal deployment, model con-
struction for this type of problem needs to take into
account the efficiency of UAV deployment and the trans-
mission benefits of the constructed backhaul links, the
temporal sequencing of UAVs for mobile deployment and
link formation actions. Li et al. [21] proposed a flipping
ambiguity avoidance optimization algorithm with gray wolf
optimization (GWO) to improve the positioning accuracy in
the UAV positioning problem. Lyu et al. [22] introduced a
spiral placement algorithm for UAV deployment that reduces
the number ofMobile Base Stations (MBS) needed to provide
wireless coverage to distributed Ground Terminals (GTs)
ensuring that every GT is within range of at least one
MBS, with the MBS starting from the perimeter of the area
containing uncovered GTs and following a spiral path to the
center until all GTs are covered, achieving an optimal number
of deployed UAVs while maintaining overall user coverage.
Shi et al. [23] studied the path and deployment problems of
UAV movement, and proposed an adaptive multi-UAV path
planning method based on the GWO in response to the
slow convergence speed and insufficient flight paths in path
planning.

B. MOTIVATION AND CONTRIBUTIONS
This paper investigates the network coverage of mobile UEs
and the composition of a multi-hop backhaul transmission
link between UAVs and multiple BSs in real time. Since
the context of the study is for hotspots, where there is huge
connection pressure and excessive channel loss in BS, direct
connection between UE and BS is not considered here.
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A UAV-based anti-flocking (U-AF) algorithm is proposed
for UAV access deployment1 in a predefined context, where
UE communication quality, UAV bearer capacity and service
range are guaranteed. At the same time, an improved
Nash Equilibrium (NE) strategy [24] is used to construct
multi-hop backhaul links. To promote optimal NE balance
both internally and externally, the randomized gaming
process of a pure NE strategy has been replaced with
a prioritized scheme in which UAVs positioned farthest
from the BS are given preference to participate in the
NE process, while efforts are made to minimize link loss
related to UAVs not participating in the linked construction
process. This scheme solves the UAV backhaul problem
with a better layout for backhaul links. Our algorithm2

consists of three stages. In the first stage, a UAV-adaptive
gray wolf optimization (U-GWO) algorithm is designed. The
U-GWO algorithm can output a better set of results in the
multi-UAV deployment problem for UAV predeployment.
In the second stage, an improved UE-based anti-flocking
model will be designed to capture hotspot UEs, provide
continuous hotspot area services, and avoid adverse effects
such as possible collisions and interference caused by the
proximity of UAVs during UAV deployment [25]. In the
third stage, an A2G channel link preprocessing operation
has been incorporated when it is discovered that, in the
pure NE strategy, using a utility function may impede its
effectiveness. The UAVs have been split into two categories:
resident and nonresident. The former will not involved in the
NE process for backhaul channel alteration. In conclusion,
this paper makes the following primary contributions:

1) The U-GWO-based predeployment algorithm has been
formulated and tested, producing an output of viable
deployment locations based on iterative optimization.
The numerical result is the most comprehensive
coverage across UE service areas that can be achieved
with a finite number of UAVs.

2) The U-AF can be designed to convert the UE’s
movement trend, the distance between UE and UAV,
and the distance between the different UAVs into corre-
sponding strategy effect. With this algorithm, the UAV
can be guided to perform the correspondingmovements
and provide continuous and effective services to UE,
and independently track UEs to determine their optimal
locations.

3) The pure NE strategy is improved to achieve both
internal and external layer equilibrium by introducing

1The problem studied here is in continuous space, not in discrete space,
where the probability of overlapping UAV positions is almost zero. In UAV
pre-deployment, if the UAVs appear in the same location at this time, it will
lead to a reduction in the number of UEs covered by the UAVs, which in turn
will reduce the service rate of the UAVs, and this is something we need to
avoid as much as possible.

2In the context of our setting, we will set up computationally powerful
servers as clouds, which can be local BSs, and use each UAV as an edge-side
device. And we will process complex data calculations that would otherwise
require UAV processing through the cloud.

FIGURE 1. System model.

priority into equilibrium to meet the backhaul trans-
mission link construction of multiple BSs. The findings
from our simulations reveal a clear enhancement in the
performance of backhaul operations with our method,
which has particularly notable effects in improving
local minimum backhaul performance.

4) The UE strategies include two parts, UE distribution
strategy and motion strategy, which aim to adapt to
more algorithms and application scenes.

C. ORGANIZATION
This paper is organized as follows. It commences with an
introduction to the system model and discussion of both the
problem of UAV deployment and backhaul transmission link
construction in Section II. Next, in Section III, we offer a
resolution to the problem formulation. Then, in Section IV,
based on simulation results, the superiority of our entire
solution is demonstrated. Lastly, in Section V, we synthesize
the key findings and summarize the contribution of each
section.

II. SYSTEM MODEL
In this paper, we consider an uplink wireless communication
system in an urban scenario where multiple users transmit
data to a BS via an aerial UAV, consisting of N BSs, K
UEs, and M UAVs, which can be deployed anywhere in the
sky. UEs are ground-based communication devices uniformly
distributed in a 2 km × 2 km two-dimensional rectangular
area, with BSs outside the area. We let N = {1, 2, . . . ,N },
K = {1, 2, . . . ,K } and M = {1, 2, . . . ,M} denote the set
of terrestrial BSs, the set of terrestrial users, and the set of
UAVs serving terrestrial UEs, respectively. It is assumed that
all UAVs, BSs and UEs are equipped with omnidirectional
antennas; for band allocation, it is assumed that BSs and
UAVs operate in two mutually orthogonal bands and that
all UAVs operate in mutually orthogonal bands with no
interference between them. Each terrestrial UE can only be
served by at least one UAV at a time; users have the same
information transmission rate. In terms of the composition of
the backhaul link, it is assumed that at a certain time, the UAV
determines the best service location and can be connected to
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a remote BS through a certain topology to form a multi-hop
backhaul link, as shown in Figure 1, where Ci indicates that
the UAV effectively transmits data traffic at the maximum
transmission rate required for terrestrial users.

A. CHANNEL MODEL
Here we use UAVi and UEk to denote the i-th UAV and the
k-th UE, respectively. For each UAV, the transmission
channel between them in single link where they are directly
connected to the UE is usually an A2G channel, and
their connection may be blocked by obstacles, which can
significantly degrade the transmission quality. Due to the
complex terrain in which the UE is located, the channel
between UAV and UE is typically represented by a LoS and
NLoS probabilistic model [26], [27].

The probability of a LoS link between UAVi and UEk is:

PLoSi,k =
1

1 + a exp
(
−b

(
θi,k − a

)) . (1)

where a and b are the relevant environmental parameters
and θi,k is the pitch angle between UAVi and UEk , which
characterizes the relative altitude between them. θi,k can be
obtained by calculating:

θi,k =
180
π

× arc tan
(
h1 − h0
li,k

)
. (2)

where h1 represents the altitude of the UAV relative to ground
level, h0 represents the altitude of the UE relative to ground
level, and li,k represents the horizontal distance between
UAVi and UEk . Since the UAV flies towards the BS at the
same altitude as the UE, the relative altitude between BSj and
UEk is considered to zero.
The NLoS link probability between UAVi and UEk can

then also be expressed as:

PNLoSi,k = 1 − PLoSi,k . (3)

With both (1) and (3) defined, consequently, the A2G
channel’s link loss function can be represented in the
following manner:

Λi,k = PLoSi,k × PLLoSi,k +

(
1 − PLoSi,k

)
× PLNLoSi,k . (4)

where PLLoSi,k and PLNLoSi,k are the path loss of the LoS link
and the NLoS link, respectively, which can be obtained from
equations (5) and (6) below:

PLLoSi,k = 20 lg ri,k + 20 lg f + 20 lg
(
4π
c

)
+ µLoS . (5)

PLNLoSi,k = 20 lg ri,k + 20 lg f + 20 lg
(
4π
c

)
+ µNLoS . (6)

where µLoS and µNLoS are the mean additional path loss
figures for LoS and NLoS channels caused by free space
propagation loss, respectively. f denotes the carrier frequency
of the channel between UAV and UE. ri,k denotes the

distance between UAVi and UEk , which can be obtained from
equation (7) below:

ri,k =

√
h02 + li,k2. (7)

The absence of interference between UAVs and BSs is
assumed due to the fact that both operate in two orthogonal
frequency bands. UEk can only be served properly if the total
signal-to-noise ratio (SINR) between UAVi and UEk exceeds
the threshold τr . This suggests that the UAVi can guarantee
both the transmission rate and the quality of service (QoS)
for the UEk . The SINR between the UAV and the UE can be
calculated by the following equation:

λi,k =
pi,kGi,k∑

m̸=i pm,kGm,k + σ 2 . (8)

where pi,k indicates the transmitted power between UAVi
and UEk . Gi,k denotes the channel gain of UAVi and UEk .
σ 2 denotes the power of white gaussian noise.
In conclusion, there is an available and complete channel

model that can be employed for analysis and calculation
purposes. The proposed scheme’s validity can be assessed
by comparing it against this model. For ease of computation,
we will utilize this channel model as the fundamental frame-
work for analyzing the construction of backhaul transmission
links.

B. CONNECTION MODEL
First, we assume thatM1 = {UAVi|i = 1, 2, . . . , nu} denotes
all UAVs serving UEs and K1 = {UEk |k = 1, 2, . . . , ne}
denotes all terrestrial UEs. The SINR between UAVi and UEk
can be obtained according to (8), which can be converted
into units of dB for computational purposes and construct
a two-dimensional SINR matrix of nu × ne, which can be
denoted as ζ S, with element ζ Si,k . We then construct the UE
application tables and UE broadcast tables as two matrices
of nu × ne, which can be denoted as the ζBu and ζBe, with
elements ζBui,k and ζBei,k . Since there is a maximum number of
UAVs and UEs, it is necessary to define two nu×ne matrices,
which can be denoted as ζUm and ζEk respectively to represent
the remaining unconnected slots for each UAV and UE.

The UE application table and the UE broadcast table
will be updated to store a set of UAVi with the largest
SINR per UE and UEk with the largest SINR per UAV,
respectively. Here, we first update the UE application table
by comparing UEk with the SINR of each UAV to get the
largest SINR of UAVi and iterate through each UE. After
this, it is equivalent to each UE sending a connection request
to the UAV with the largest SINR between them, and since
there are only two cases when a connection request is sent or
not, we use 1 and 0 to indicate sent and unsent respectively
for subsequent operations. At this point, the elements of the
UE application table matrix ζBu will represent the connection
between each UAV and UE. Afterwards, we update the UE
broadcast table by comparing UAVi with the SINR between
different UEs to get a set of UEs with the largest SINR
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of UEk , whose number is less than the maximum number
of connections per UAV, and number the UEs obtained
from each UAV according to their SINRs. At this point,
the UE application table and the UE broadcast table have
been updated and a simple sum of these two is all that is
required to determine the connection status of the UAV and
the UE. This is done until the UE application table and the
UE broadcast table are matched with 0, which means that
the UAV and UE connection status will remain unchanged,
i.e. the connection balance will be maintained and no further
connection operations will be performed.

C. PROBLEM FORMULATION
The main optimization objectives of our proposed model are
to increase the UE service rate and maximize the effective
backhaul rate in the region. We have divided the optimization
problem into two problems for discussion as follows.

Problem 1 The optimization objective for increasing the
service rate can be expressed as:

PS : max
M∑
i=1

(
RN
M

× mi

)
. (9)

where mi represents the number of UEs connected to each
UAV. M and RN are both constants, representing the total
number of UAVs and the total demand rate for the region,
respectively.

This section constructs the model with the following
constraints:

S1 : ζBui,k , ζBei,k ∈ {0, 1} . (9a)

S2 : ζU ⩽ nu, ζE ⩽ ne. (9b)

S3 : ζ Si,k ⩾ 0. (9c)

S4 : li,k ⩽ rS , ∀i, k. (9d)

S5 : λi,k ⩾ τr , ∀i, k. (9e)

S6 : nu ⩽ Mmax. (9f)

where (9a) indicates a logical constraint on whether the UE
application table and the UE broadcast table are sent. (9b)
indicates that the number of UAVs and UEs remaining
unconnected should stay within the upper boundary for
both. (9c) indicates that the SINR between UAV and UEmust
be greater than 0. (9d) indicates that the distance between
UE and UAV which connected to UE should be less than the
signal capture range of the UAV, otherwise the connection
between them will not be maintained. (9e) indicates that the
total SINR between the UAV and the UE needs to be greater
than the threshold τr to maintain normal operation of the
UE. (9f) indicates that the number of UAVs in the area does
not exceed the set limit.

Problem 2 For the problem of maximizing the effective
rate of backhaul transmission, we start with a directed graph
of the backhaul network using gi (vi, ci) to represent the
backhaul network that has been obtained, where vi = (xi, yi)
represents the horizontal coordinates of the UAV, and ci =

{j |1 ⩽ j ⩽ N } represents the connected objects of the j

UAVs. From this, the backhaul path to UAVi can be obtained
recursively, expressed as:

Qi =

[
i, ci, cci , . . . , q

−1
i

]
. (10)

where i represents the current UAV itself, as well as the
location information vi and the connection object information
ci, where q

−1
i represents a UAV that cannot be recursively

continued in the backhaul path. Here the length of Qi is set
to L. The factor that restricts the optimization of backhaul
transmission’s effective rate is the maximization of UAV
demand rate, which can be represented as:

UC : max
M∑
i=1

RT ∗
i . (11)

where RT ∗
i denotes the effective backhaul transmission rate

of UAVi. Through the equivalence of RT ∗
i , (11) above can

also be expressed as:

max
M∑
i=1

min
(

min
l=1,2,...,L−1

Ril ,il+1 , SC
)

. (12)

where il represents the l-th UAV in the backhaul transmission
path of UAV, which can be denoted as Qi. L represents
the length of Qi, and Ril ,il+1 represents the maximum
transmission rate between the l-th and (l + 1)-th UAVs. The
constraint for the model constructed in this section is as
follows:

S7 : ci ̸= ∅, 1 ⩽ i ⩽ M . (12a)

S8 : q−1
i = 0, 1 ⩽ i ⩽ M . (12b)

S9 : i /∈ Qj, ∀j (j ̸= i) ∈ Qi, 1 ⩽ i ⩽ M . (12c)

S10 :

∑
i∈{i|ci=0}

RT ∗
i +

∑
j∈{j|cj ̸=0}

RT ∗
j ⩽

∑
i∈{i|ci=0}

Ri,0. (12d)

where (12a) ensures that each UAV has a connection
object. (12b) ensures that the information data transmitted
by the link all reach the BS. (12c) ensures that no circular
links are formed between different UAVs. (12d) ensures that
only data from the A2G channel is transmitted on the A2A
channel.

III. SOLUTION OF THE PROBLEM
A. BASIC IDEAS
To provide continuous and reliable service to the UEs in
the hotspots, we first need to obtain the coordinates of the
UEs in the hotspots. It is assumed here that the locations
of the UEs can all be obtained from the prereleased UAVs.
We then use the U-GWO algorithm to predeploy the UAVs
in the area. After that, a U-AF model is established to
analyze and predict the movement tendencies of the mobile
UEs. In the process of UAV tracking UE motion trend,
A2A and A2G backhaul links will be constructed. Since
the congestion function in the traditional pure NE strategy
considers non-zero values as quantity one, addressing the
problem becomes more complex when using a centralized
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FIGURE 2. Flowchart of the overall solution realization.

approach. Therefore, to solve this problem, we will start
with centralized and local optimization, preprocess the links
first and then construct them with improved NE strategy.
To provide a clearer understanding, the complete process of
this scheme is shown in Figure 2 below.

B. UAV DEPLOYMENT AND MOBILE ALGORITHM
1) U-GWO ALGORITHM DESIGN
a: GWO ALGORITHM
GWO is a packet intelligence optimization algorithm pro-
posed by Mirjalili et al. [28] in 2014, inspiring by the social
intelligence of gray wolf (GW) packs in terms of leadership
and hunting. For each pack of GWs, there is a common social
hierarchy that determines the power and dominance of each
pack member. The GWO algorithm divides the pack into four
classes, namely wolves α, wolves β, wolves δ and wolves ω,
with the strongest, i.e. the one with the most power, being
wolves α, which leads the pack in hunting, migration and
foraging. Weaker than the wolves α are the wolves β, which
assist the wolves α in managing wolves δ and ω, and the
wolves β will lead the pack when the wolves α is not in the
pack, or dies of illness. The remaining wolves and wolves δ,
ω are less powerful, with wolves ω being managed by wolves
δ. This social intelligence is the main inspiration for the
GWO algorithm. Another source of inspiration for the GWO
algorithm is the way GWs hunt. When hunting their prey,
GWs follow an effective set of methodological steps, which
consists of chasing, encircling, harassing and attacking. This
method of hunting allows them to hunt large prey.

b: SPECIFIC STEPS OF THE U-GWO ALGORITHM
For the optimization problem of deploying UAVs to assist
terrestrial cellular networks, operators often need to invest
in multiple UAVs. In order to address this issue, we propose
the U-GWO algorithm, which offers a proficient approach
to solve the UAV deployment problem and yield a range
of optimal solutions. The notation used in this algorithm is
summarized in Table 1.
Step 1: Initialize each parameter by importing the

coordinates of UE.

TABLE 1. Symbols used in the U-GWO algorithm.

Denote the maximum number of iterations, the number of
GW populations and the maximum range of UAV services
as Imax, ng and rser , respectively. Initialize parameters Imax,
ng, rser and nu. Construct a matrix ξ of 1 × ne to represent
the contributions of all UEs, with each element of the matrix
representing the contribution of the corresponding UE, and
let the initial contribution of each UE be 1. Then construct
a matrix ψ of ne × ng, with element ψk,q to represent
the normalized distance relationship between each UE and
the GW. If the distance between UEk and GWq is less
than the maximum service distance of the UAV, rser , then
ψk,q = 1, and vice versa ψk,q = 0.
Step 2: Calculate the fitness function values for all

individuals in the GWs population.
We use the vector G to represent the fitness of GWs, and

for ease of representation, which can be calculated from the
following equation (24):

G = ξ · ψ . (13)

Step 3: Consider the deployment locations of UAVs with
the highest fitness function values as wolves α, β and δ.

To obtain the best UAV deployment location, wolves need
to be positionally guided, and since each wolf has a different
ability to perceive the external environment, here wolves α, β
and δ have a better perception of prey, which can be reflected
in their higher fitness function values and more reliable to use
as guides.
Step 4: GWs surrounding process.
During hunting, encircling prey can be represented by the

following model:

D =
∣∣C · xprey (tit) − x (tit)

∣∣ . (14)

x (ti + 1) = xprey (tit) − D · A. (15)
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where D represents the distance between prey and GW.
xprey (tit) and x (tit) represent the position vectors of prey
and GW at the tit -th iteration, respectively. C and A are the
coefficient vectors, which can be calculated by the following
equations, respectively:

C = 2 · r1. (16)

A = 2a · r2 − a. (17)

where |r1| and |r2| are the random numbers in the interval
[0, 1]. In GWO algorithm, the convergence factor a has an
initial value of 2 and decreases linearly to 0 according to a =

2 −

(
tit
Imax

)
after entering an iteration. The relative distances

of wolves ω to wolves α, β and δ can be calculated from the
model constructed by (14) and (15) during GWs encirclement
process. Dα , Dβ and Dδ are the relative distances of wolves
ω to wolves α, β and δ. Since wolves α, β and δ all travel
different distances towards the target point and converge in
different ways, the next positions of wolves ω are the average
positions of wolves α, β and δ, respectively.
Step 5: GWs tracking process.
Since position updates of wolves ω during hunting are

guided by wolves α, β and δ, the behavior of prey tracking
can be described as:

Dα = |C1 · xα − x|
Dβ =

∣∣C2 · xβ − x
∣∣

Dδ = |C3 · xδ − x|
(18)

where Dα , Dβ and Dδ represent the distances from wolves ω

to wolves α, β and δ, respectively. C1, C2 and C3 are vectors
of coefficients of random numbers generated in [0, 1]. xα , xβ ,
xδ and x are vectors of the current positions of wolves α, β,
δ and ω, respectively. In each iteration, the positions of the
wolves ω are updated and improved based on the positions of
wolves α, wolves β and wolves δ:

x1 = xα (tit) − DαA1

x2 = xβ (tit) − DβA2

x3 = xδ (tit) − DδA3

(19)

x (tit + 1) =
x1 + x2 + x3

3
. (20)

where (19) specifies the direction and step size of the
movement of wolves ω to wolves α, β and δ, and
(20) indicates the final position of wolves ω.
Step 6: Output the optimal solution position.
After updating all positions of wolves ω, we recompute the

fitness function for all wolves ω and can obtain the optimal
three solutions in the tit -th iteration, as expressed in the
following equation:

ji,1 = argmax
j∈J

(G)

ji,2 = argmax
j∈
{
J∩ji,1

} (G)

ji,3 = argmax
j∈
{
J∩ji,1∩ji,2

} (G) (21)

Algorithm 1 The U-GWO Algorithm.
1: Initialize tit = 0.
2: Initialize the GW population GWq.
3: Initialize a, A and C.
4: for j = 1 : nu do
5: Calculate the fitness of each search agent.
6: Xα = The best search agent.
7: Xβ = The second-best search agent.
8: Xδ = The third-best search agent.
9: for tit = 1 : Imax do

10: for
11: each search agent do
12: Update the position of the current search agent

according to (15).
13: end for
14: Update a, A and C.
15: Calculate the fitness of all search agents.
16: Update Xα , Xβ and Xδ .
17: Let tit + +.
18: end for
19: The best position Xα obtained is assigned to Xu (j).
20: end for
Output: Xu.

where ji,1, ji,2 and ji,3 denote the positions of the wolves ω

for the tit -th iteration, respectively. The set of all positions
of wolves ω is defined as J =

{
1, 2, . . . , ng

}
. Then, until

the maximum number of iterations is reached, we replace
the previous positions of wolves α, β and δ when a better
solution appears in the iteration. When the maximum number
of iterations is reached at Imax, the optimal solution is the
location of the wolves α, and the set of corresponding UAV
locations is finally output as Xu.

2) DESIGN OF U-AF MODEL
The anti-flocking model [29] is derived from the fact that
creatures in nature are used to living alone, such as brown
bears, leopards, lynxes, spiders and etc. Different from the
clustering behavior of ants, bees and wolves, which prefer
to live and hunt apart from each other and own their
own living space. At the same time, if an outsider enters
their living space, they will react to defend their living
space. To more effectively track and predict moving targets
in mobile surveillance systems, Miao et al. [30] described
solitary organism habits as anti-flocking and summarized it
in two properties:

1) Profitability. Solitary organisms will maintain their
hunting habits for the greatest possible gain without outside
interference.

2) Avoidance. Solitary organisms spatially avoid as many
adverse effects on themselves as possible, such as foreign
organisms or other obstacles.

As UAVs operating in the air need to track the location
of UEs on the ground to maximize service coverage,
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FIGURE 3. Two rules of anti-flocking algorithm: a) Profitability, b)
Avoidance.

there may be interference or collision risks between UAVs
that are too close to each other, we design a user-aware
anti-flocking model for UAV deployment as shown in
Figure 3 below. Clearly, there are similarities between
the behavior of normally operating UAVs and the habitat
characteristics of solitary organisms, so it is reasonable to
apply the anti-flocking model to the multi-UAV movement
and deployment model. The following section will describe
the composition and construction of the U-AF model.

a: UE HUNTING STRATEGY
Firstly, each UAV has its own range of prey, Rh, and the UAV
can sniff out all UEs which exist in this range and record
the number of these UEs. The total count of UEs and the
vectorial sum of the individual vectors directed from UAV to
UEs can be denoted as mpy1 and P1, respectively. Secondly,
as UEs move, the UAV updates the total count of UEs in its
own hunting range Rh and the vectorial sum of the individual
vectors directed from UAV to UEs, can be denoted as mpy2
and P2, respectively.
We assume that the hunting effect parameter of UAV is

h1, then the effect of hunting strategy of UAV subject to the
direction of the motion trend of UE can be expressed as:

H = h1 ×
P

mpy1
. (22)

where P is the sum of the vectors P1 and P2.

b: UAV HIDING STRATEGY
Since each UAV will respond to other UAVs that enter its
hunting range at Rh and are not larger than its safe distance,
the stress here is expressed as a repulsion between UAVs to
avoid possible negative effects of being too close. We assume
that each UAV can sniff out other UAVs that come into
the range of Rh. The safe distance between two UAVs is
assumed to be Rser and the avoidance parameter is h3. The
direction vector between UAVs with a distance less than Rh,
can be set to D. Then the amount of hiding strategy of the
UAV to avoid the impact from other UAVs can be expressed
as:

E =

 h3

(
1 −

Rser
|D|

)
×

D
|D|

, (|D| < Rser )

0, (Rser ⩽ |D|)

(23)

c: UAV SELFISH STRATEGY
For each UAV, if no other UAV enters its hunting range
Rh when it is tracking UE, i.e. executing the UE hunting
strategy, it will have no effect on its original strategy and
the UAV will maintain its previous movement to maximize
the coverage of UE. If a situation arises while executing UE
hunting strategy that causes the UAV to evade, it will execute
UAV hiding strategy until the conditions for the execution of
UAV hiding strategy are no longer satisfied and will again
commit to the execution of the UE hunting strategy. Thus, the
UAV selfish strategy serves to make the UAV hiding strategy
and the UE hunting strategy executable in succession.
Meanwhile there is no needs to constrain the execution of
the two main UAV strategies in terms of time and order of
execution.

d: UAV STRATEGY EFFECT PROPAGATION SPEED
Given that the UAV has a limited speed, we asso-
ciate the received strategies with the speed of the UAV
through a mapping. Here, let’s suppose that the UAV
has a maximum speed of Vmax, and receives the sum
of strategies is S at any given moment. The speed at
which the strategy effect propagates can be calculated
as:

v =
2
π

× Vmax × arc tan (|S|) ×
S
|S|

. (24)

C. BACKHAUL TRANSMISSION SCHEME
1) LINK PREPROCESSING
Considering that the utility function is not optimal for the
construction of backhaul links, e.g. UAVi and BSj get closer
together until Ri,j is larger than PSi , there may still be ci = 1.
Obviously, this will reduce the value of PSi when it comes to:

M∑
i=1

RT ∗
i =

∑
j∈{j|cj ̸=0}

RT ∗
j +

∑
i∈{i|ci=0}

RT ∗
i . (25)

Therefore, this paper categorizes UAVs into two groups,
resident UAVs and non-resident UAVs, which can be
expressed as:

US
=
{
i|Ri,j ⩽ PS , 1 ⩽ i ⩽ M

}
. (26)

U IS
= M − US . (27)

where US and U IS denote resident UAV and non-resident
UAV, respectively.

2) BACKHAUL TRANSMISSION LINK COMPOSITION
ALGORITHM BASED ON AN IMPROVED NE STRATEGY
In 1944, von Neumann andMorgenstern published their sem-
inal work, ‘‘Game Theory and Economic Behaviour,’’ which
pioneered the interdisciplinary field of game theory. Since
then, game theory as a study of strategic decision-making has
been widely used not only in various disciplines but also in
our daily lives. As a key concept for noncooperative games,
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Algorithm 2 UE Tracking Based on the U-AF Algorithm.
1: Initialize Tmax, Rh, Vmax and vue.
2: Initialize a, b, nu and ne.
3: Initialize t = 0, n = 0.
4: for n = 1 : nu do
5: UAV hunts all UEs within the range of Rh.
6: UAV records mpy1, P1 and the number of all captured

UEs.
7: end for
8: for t = 1 : Tmax do
9: for n = 1 : ne do

10: All UEs move at vue.
11: end for
12: for each UAV do
13: UAV records mpy2, P2 and calculates P.
14: UAV calculates the effect of hunting strategy

according to (22).
15: UAV calculates the effect of hiding strategy accord-

ing to (23).
16: end for
17: for each UAV do
18: UAV hunts all UEs within the range of Rh.
19: UAV records mpy1, P1 and the number of all

captured UEs.
20: end for
21: Record and update the service rate in this iteration.
22: end for

NE, which denotes an action profile in which no player can
gain more payoff by changing its own action provided that
the rest of the players keep their actions, has been widely
adopted to depict the outcome of strategic interactions for
noncooperative games ever since the seminal result. Game
theory describes NE as a process of game formation in
which the NE represents the execution of all individuals
in the execution of their strategies, meaning that the whole
system reaches NE when all individuals believe that there
will be no change that is more appropriate for them while
the environment they are in remains the same, and individuals
will be satisfiedwith their current strategies [31].Wewill find
the NE point of the backhaul transmission efficiency obtained
by the UAV, that is, updating the combination of backhaul
links constructed by the non-resident UAV until we find the
NE point of the objective function. Therefore, it is necessary
to find a useful function to determine whether the system
under study has reached a NE point. This utility function [32]
is denoted as:

ui (g) =

√
min

l=1,2,...,L−1
Ril ,il+1

Γi,Qi (g)
0.3 . (28)

where g is a simplified representation of g (v, c). Γi,Qi (g)
represents the level of congestion on the UAVi backhaul

path Qi, which can be expressed as:

Γi,Qi (g) =

∑
l=1,2,...,L−1

(
ρil + 2

(
Ril ,il+1 − ρil

)
2R2il ,il+1 − 2ρilRil ,il+1

)
. (29)

where ρil indicates the rate of data received by the l-th UAV
in the backhaul transmission path Qi. Note here that if Ril ,il+1

is less than ρil , Γi,Qi (g) under any (il, il+1) belonging to Qi
will be assigned with -1 to signify that the result is not valid.

The connection information of UAVi, which can be
denoted as ci, can be considered as the current connection
strategy for UAVi, so that the overall strategy with local NE
for UAVi can be expressed as:

cNE =

(
cNEi , cNE

−i

)
=

(
cNE1 , cNE2 , . . . , cNEM

)
. (30)

The equation here represents a state in which UAVi does
not change its current connection strategy ci while the
connection strategies of other UAVs, c−i stay consistent,
and concurrently, the connection strategies of other UAVs,
c−i cannot change considering the current situation.

Subsequently, the connection strategy can be integrated
with the NE algorithm through the utility function. The
connection strategy that maximizes utility function of each
UAV can be identified as the target strategy to determine
the NE point for each UAV. Given that only UAVs that are
not resident in a specific location are considered in the NE
strategy process, this can be mathematically expressed by the
following equation:

cNEi∈U IS =

{
argmax ui (g) if ∃ui (g) ⩾ 0
ci else

(31)

In the process of determining the NE point for each
UAV, the UAVs will establish connections with other UAVs
sequentially in a circular manner through contact composi-
tion until (31) above is satisfied. When a particular UAVi has
obtained its NE point, there is (ci, c−i) ⇒

(
cNEi , c−i

)
, where

cNEi satisfies (31). Consequently, regardless of the situation,
as long as the other UAVs maintain their existing connection
strategies c−i, cNEi will not change. In turn, when all UAVs
have satisfied the NE, this means that the last UAV has also
found its NE, at which point all UAVs will remain in NE, i.e.
c =

(
ci, cNE−i

)
⇒ cNE =

(
cNEi , cNE

−i

)
, here cNEi for all i ∈ U IS ,

satisfying (31), and thewhole systemwill reach a steady state.
Due to the requirement of maintaining the environment

invariant feature for NE strategies of each UAVs, only one
UAV can be involved in the NE process at a time, i.e.
only one ci finds the corresponding cNEi at a time. We use
ct =

(
cti , c

t
−i

)
=

(
ct1, c

t
2, . . . , c

t
M

)
to denote the global

connectivity strategy at time t . Then for any time t + 1, there
is only one UAV that is non-resident and takes part in the NE
process ct =

(
cti∈U IS , c

t
−i

)
⇒ ct+1

=

(
cNEi∈U IS , c

t+1
−i

)
, here

ct+1
−i = ct

−i, and c
NE
j∈US ⊆ ct

−i.
Based on the arguments for global strategies under

time-varying games in [33], we can obtain that under time-
varying games, there exists a time t∗ such that the system
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reaches a NE, when the global strategy can be expressed as:

ct
∗

=

(
ct

∗

1 , ct
∗

2 , . . . , ct
∗

M

)
= cNE =

(
cNEi , cNE

−i

)
. (32)

In the NE process, from time t to t + 1, there is ct =(
cti∈U IS , c

t
−i

)
⇒ ct+1

=

(
cNEi∈U IS , c

t+1
−i

)
and UAVi gets its

NE point. However, when goes from time t + 1 to t + 2,
there is ct+1

=

(
ct+1
j∈U IS , c

t+1
−j

)
⇒ ct+2

=

(
cNEj∈U IS , c

t+2
−j

)
, and

the environment changes due to ctj ∈ ct
−i, i.e. c

NE
j ∈ ct+1

−i

and there may be ct+1
i ̸= cNEi at this point. This leads to

an unsuccessful NE, requiring the UAV to undergo the NE
process once more. To address this issue, we define the sum
of one NE process involving each non-resident UAV as one
iteration, and denote the backhaul transmission link after the
iteration as gtit (v, c).

Since only one UAV participates in the NE process at
each time t is added, we will use the probability density
approach within the hybrid NE strategy to ensure the
systematic engagement of all UAVs in the process [31].
Moreover, considering that each non-resident UAV is limited
to participating in the NE process only once during each
period, we can establish the following definition. We denote
Φ (t) as all sequences of UAVs waiting to participate in the
NE process at time t in each iteration. Then each UAVi
participation is followed by Φ (t) = Φ (t − 1) − i with
initialization of Φ (0) = U IS . Here p

(
cti
)
denotes the

probability that UAVi participates in the NE process as time
t increases. Since p

(
cti
)
is introduced here, it is also obvious

that a corresponding restriction needs to be introduced here:

M∑
i=1

p
(
cti
)

= 1. (33)

Furthermore, A2A links are accessible only when the
maximum demand rate of UAVs is completely fulfilled in the
NE process. Even if the maximum demand rate of most UAVs
can be met by an A2A link, it still cannot be accessed and
will be rejected if the overall maximum demand rate is not
satisfied. Here we denote such UAVs that cannot be accessed
as URJ , and those that can access the link as UNRJ . In the NE
process, only UNRJ can contribute positively to improving
the optimization of backhaul transmission rate. Here we can
obtain a form of maximizing the transmission rate:

UC : max
g(v,c)

∑
i∈UNRJ

SC . (34)

Here, since the maximum service rate SC will be
determined under UAV deployment determination and UNRJ

is obtained after gtit (v, c) is determined, this problem is
equivalent to maximizing UNRJ , specifically, as long as the
non-resident UAVs participating in the NE process meet the
following criteria as time t increases during each iteration:{

p
(
cti∗
)

= 1, i∗ = argmax
∥∥(xi, yi) −

(
xj, yj

)∥∥
p
(
ct
−i∗
)

= 0
(35)

Algorithm 3 Backhaul Transmission Link Composition
Algorithm Based on Improved NE Strategy.
1: Initialize gtit (v, c).
2: Initialize tit = 0, ci = 0, i ∈ M .
3: Categorize UAVs intoUS andU IS according to (26)(27).

4: Initialize Φ (t = 0) = U IS .
5: while Φ (t) ̸= ∅ do
6: Get the value of i∗ that is involved in NE process as

derived from (35).
7: Calculate the strategy associated with i∗ once it

achieves NE according to (31).
8: Update strategy ct =

(
cti∗ , c

t
−i∗
)

⇒ ct+1
=(

cNEi∗ , ct+1
−i∗

)
.

9: Let t + +.
10: Obtain Φ (t) = Φ (t − 1) − i∗.
11: end while
12: Let tit + +.
13: Store the backhaul transmission link gtit (v, c) formed by

this iteration.
14: Until ∃tit∗ < tit , gtit (v, c) = gtit ∗ (v, c).
Output: gtit (v, c) and U

RJ .

where (xi, yi) and
(
xj, yj

)
denote the two-dimensional coordi-

nates of UAVi and BSj, and i ∈ Φ (t). This strategy suggests
that the NE process will prioritize the participation of the
UAV located farthest away from the BS.

With the probabilistic allocation strategy shown in (35),
subsequently, a sequence of non-resident UAVs is determined
through the NE process in each iteration. Based on this
sequence, the connection strategy for each of the participating
UAVs in the NE process is updated by (31) until Φ (t) ̸=

∅. Afterwards, the iteration cycle continues until the newly
established backhaul transmission link matches the same as
the previously established backhaul transmission link.

IV. PERFORMANCE SIMULATIONS
In this section, we evaluate the performance of the UAV
access deployment algorithm by first comparing the impact
of using different swarm intelligence optimization algorithms
on the UAV predeployment results, i.e. the differentiation
of the UAV user service rate. In addition, we also compare
the maximum UE service rate under different algorithms,
considering the different switching speeds and number of
UEs in the hotspots where the movement occurs. To evaluate
the efficiency of UAV backhaul transmission link information
transmission, we compare the influence of various scenarios
on the backhaul performance of the system and offer
a comprehensive analysis. Here, we consider UEs are
distributed in an area of 2 km × 2 km, and moving at vue,
the average effective backhaul rate of the system is Rav, the
minimum effective backhaul transmission rate is Rmin and
the signal transmission power of the UAV is Ptrans. Here
Rav represents the improvement in the overall performance
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TABLE 2. Simulation parameters.

of the system and Rmin represents the improvement in the
balanced performance of the system. The algorithms are
evaluated using Windows 11 and MATLAB. All simulations
are conducted on a laptop equipped with an AMD Ryzen 5
6600H CPU with Radeon Graphics, running at a clock
speed of 3.3 GHz. The simulation parameters are shown in
Table 2.

A. EFFECTIVENESS OF UAV DEPLOYMENT BASED ON
U-GWO ALGORITHM AND COMPARISON WITH OTHER
ALGORITHMS
Considering that the primary evaluation metric for assessing
the performance of the UAV access deployment algorithm
is the service rate of UE in the region, we will calculate
the average value based on multiple simulations. This
approach ensures the accuracy of the results obtained.
As shown in Figure 4 below, we have the purely dispersed
distribution, mixed centralized-decentralized distribution and
purely centralized distribution of UEs, with their result
maps after predeployment by the U-GWO algorithm, respec-
tively. Since we study UAV deployment in hotspots, the
results of the subsequent experiments are all based on the
mixed centralized-decentralized distribution of UEs. First,
we investigate the deployment performance of U-GWO.
In the experiments conducted for this paper, we create three
hotspot areas within the target region. Each hotspot area
has a different radius and contains a varying number of
UEs. The remaining vacant area is populated with dispersed
individuals. We set the total number of UEs and the total
number of deployable UAVs in the region to 400 and 10,
respectively. The randomly generated UE distribution map
of the hotspot area and the resulting UAV deployment map
implemented according to the U-GWO algorithm are shown
in Figure 4. Figure 4 (a) shows the randomly generated UE
distribution map, wherein the blue dots indicate UEs, while
Figure 4 (b) shows the result map after predeployment by
the U-GWO algorithm, wherein the UEs in Figure 4 (a)

are indicated by blue dots and the red circles indicate the
predeployed UAVs.

As shown in Figure 4, after deploying the target area with
U-GWO algorithm, UAVs are deployed reasonably evenly in
hotspots, where more UAVs will be deployed for hotspots
in clusters with a larger number of UEs, fewer UAVs will
be deployed for hotspots in clusters with a smaller number
of UEs, and for areas that are more dispersed or contain no
UEs. In order to further illustrate the effectiveness of the
U-GWO algorithm, we conduct a comparative analysis with
other cluster intelligence optimization algorithms. The metric
used for comparison in this study is the UE service rate.

Here we begin with a brief description of the algorithms
that will be compared. The algorithms compared include
Sparrow Search Algorithm (SSA), Whale Optimization
Algorithm (WOA), Slime Mould Algorithm (SMA), and
Chimpanzee Optimization Algorithm (ChOA). Here, we do
an analogous treatment of these algorithms to the U-GWO
algorithm so that they are applied to UAV deployments, they
can be noted as U-SSA, U-WOA, U-SMA and U-ChOA,
respectively, as shown in Figure 5.

As can be seen from Figure 5 (a), when the number of UEs
in the hotspot is 400, the U-GWO algorithm is more stable
and superior when the number of UAVs varies between 5 and
10 compared to the algorithm used for comparison. When the
number of UAVs varies, the U-GWO algorithm can guarantee
maximum UE service rate. As can be seen from Figure 5 (a),
the overall service rate of the algorithms tested here is close
when the number of UAVs is set to 7 and below, but when the
number is increased to 8 and above, the difference between
the algorithms becomes apparent. U-ChOA is more effective
than U-SSA when the number of UAVs is 8, but less effective
than U-SSA when the number of UAVs reaches 9. The
overall observation is that the results obtained by the U-GWO
algorithm tend to grow linearly when the number of UAVs
increases from 5 to 10, and when the the total number of
UAVs reaches 9, the maximum service rate obtained by other
algorithms is saturated, while U-GWO still shows a growing
trend, and in the subsequent experiments, we increase the
number of UAVs to 16 and above before the results obtained
by UAVs reach saturation. This is a good indication of the
effectiveness of the U-GWO algorithm in deployment.

From Figure 5 (b), it can be seen that when the number of
UEs in the hotspot area is 400 and the number of iterations
of the algorithm varies between 50 and 400, the service rate
obtained using the U-GWO algorithm is 80 % of the largest
one and 71.2 % when the number of iterations is 50. The
overall service rate shows an increasing trend as the number
of iterations increases. The other algorithms show results
that are less effective than the proposed U-GWO algorithm.
U-SMA is relatively stable but has a low service rate of 65
%. U-SSA, U-WOA and U-ChOA have a maximum service
rate of 75.2 % (U-WOA) and a minimum value of 67.4 %
(U-ChOA), but are still less effective and less stable than the
U-GWO algorithm. Overall, the U-GWO algorithm we have
chosen is more effective and stable than the other algorithms.
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FIGURE 4. The UE distribution map. (a) before deployment of the U-GWO algorithm. (b) after deployment of the U-GWO
algorithm.

FIGURE 5. Service rate of UEs with different deployment algorithms.

As can be seen from Figure 6, when the number of UAVs
in the hotspot area is fixed at 10, the U-GWO algorithm is
more stable and superior when the number of UEs varies
in the interval from 100 to 600 compared to the algorithm
used for comparison. Considering that the test environment
is a 2 km × 2 km rectangle, the number of UEs can directly
reflect the UE density in the area, so here we use the change in
the number of UEs to characterize the change in UE density.
The U-GWO algorithm can guarantee the maximum service
rate of UE to be high when the number of UEs varies. From
Figure 6, it can be seen that the overall service rates of the
algorithms tested here are close when the number of UEs

is set to 200 and below, but when the number exceeds 200,
the gap between the algorithms becomes evident. When the
number of UEs is less than 200, the difference in service
rates obtained by the algorithms is not significant, because
the number of UAVs is sufficient to cover the current number
of UEs with a sufficient distribution of locations in the region
to clearly demonstrate the superiority of the predeployment
algorithms. However, as the number of UEs increases, the
performance of each algorithm tends to diminish. The service
rate obtained by U-GWO is greater than the results of the
other algorithms, and the minimum value is still available at
65.3 %. When the number of UEs is at 600, the maximum
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FIGURE 6. Service rate of UE with different UE number.

FIGURE 7. Service rate of UEs with different UAV tracking strategies
(vue = 1 m/s).

value of the service rate obtained with the other algorithms
is 63.1 % and the minimum value is 52.6 %. This shows
that U-GWO is more adaptable and effective than the other
algorithms when the number of UE changes.

B. EFFECTIVENESS OF U-AF STRATEGY IMPLEMENTATION
IN UE HOTSPOT AREAS
In order to examine the effectiveness of the U-AF strategy
on UEs in the hotspot area, we create a larger hotspot by
combining three smaller hotspots with varying numbers of
UEs. As the hotspot moves, the average service rate of UEs
in the target area changes in response to the varying number
of UEs. Figure 7 below shows the results of predeployment
with the U-GWO algorithm, with different combinations of
U-AF strategies during UE movement.

Figure 7 shows the effect of using different combinations of
strategies on the UE service rate for a certain number of UEs
moving within the target area, moving with 1000 s in total.
The final results show that at the early stage of UEmovement,
i.e. when the UEmovement time is less than 100 s, the service
rate results obtained for the three strategies compared are
similar. This is because the UE speed is limited and the UE
moves a smaller distance in a shorter period, the position of
the UE after movement obtained at this time is close to the

FIGURE 8. Average service rate of UEs with different number of UEs
(vue = 1 m/s).

position where the UE does not move, making the UAV less
effective in tracking the UE. When the UE movement time
reaches 200 s, there is a greater gap between the solution
without U-AF strategy and the solution with U-AF strategy,
and the minimum gap is 6 %. When the UE movement time
reaches 300 s and above, the maximum service rate obtained
by the solution with both U-AF hunting and hiding strategies
is higher than that of the solution without U-AF and the
solution with only U-AF hunting strategy. Comparing with
the scheme without U-AF and the scheme using only U-AF
hunting strategies, the maximum service rate obtained by
the scheme with both U-AF hunting and hiding strategies
is 25.4 % and 11.4 % higher, respectively. This shows
that U-AF is effective in achieving the maximum service
rate in the case of UE movement, and further demonstrates
the need to use both hunting and hiding strategies in
U-AF.

The graphical representation in Figure 8 shows how
different combinations of strategies affect the average service
rate of UEs as they move in the target area, considering
variations in the number of UEs. The final results show that
the average UE service rate is improved by 37.7% and 43.2%
with only the hunting strategy in U-AF and with both hunting
and hiding strategies in U-AF, respectively, comparing to
U-GWO predeployment without U-AF. When the number
of UEs is around 100, the results are similar with U-AF or
not at this time because when the number of UEs is small,
there will still be more UEs in the predeployed UAV range
after the UAV predeployment has been executed, considering
the UE movement speed limit. However, when the number
of UEs exceeds 100, it becomes apparent that the average
service rate of UEs without U-AF strategy will decrease
significantly, while the results with U-AF vary more steadily.
When the number of UEs reaches 450, a clear inflection
point in the curve with the U-AF strategy is noticed, which
indicates that UAV can use the U-AF strategy to capture
the movement trend of UEs if the number of UEs increases
significantly, or when there is a large influx of UEs, so that
the hotspot movement can be tracked effectively. As a result,

VOLUME 11, 2023 100599



T. Wang et al.: Novel Network Optimization Scheme Based on Anti-Flocking and Improved NE Algorithm

FIGURE 9. The average and minimum backhaul transmission rate of dynamic backhaul links under different schemes.

the connection pressure on the terrestrial BSs can be relieved
to a large extent.

C. EFFECTIVENESS OF CONSTRUCTING THE BACKHAUL
TRANSMISSION NETWORK WITH IMPROVED NE
STRATEGY
Considering that during the UE movement, the UAV will
adopt U-AF strategy to track the UE position to obtain the
maximum service rate, but at this time, due to the movement
of UAV, the distance between it and our preset BS will
change, making the demand rate of each UAV be different,
thus leading to the change of the effective transmission
rate of the backhaul transmission link constituted by the
UAV at the current moment. To validate the reliability
and effectiveness of our proposed algorithm for dynamic
backhaul transmission link establishment, we positioned two
BSs at fixed coordinates (1000, 1800) and (1200, 1200)
within the designated area. The UEs will make movements
away from the BSs and, therefore, the UAVs will also
move away from the BSs, at which point we compare here
the average effective backhaul transmission rate and the
minimum effective backhaul transmission rate using different
backhaul transmission link construction methods. The results
of this comparison are shown in Figure 9.
As shown by the results in Figure 9, both the average

effective backhaul transmission rate Rav and the minimum
effective backhaul transmission rate Rmin decrease as the
UAV gradually moves away from the BS. As shown in
Figure 9 (a), during the movement of the UAV, the average
effective backhaul transmission rate Rav shows a decreasing
trend for both the scheme with a directly connected BS
and the scheme with an improved NE strategy, but the
overall effect of the scheme with an improved NE strategy is
better than that of the scheme with a directly connected BS,
where the minimum value of the scheme with an improved
NE strategy is 1.8 Mbps, which is 125 % higher than
that of the scheme with a directly connected BS, which is
0.8 Mbps. In Figure 9 (b), the minimum effective backhaul

transmission rateRmin for both compared schemes also shows
a decreasing trend, but the decrease is higher for the direct
BS scheme than the improved NE scheme, and the minimum
value for the former is 0.6 Mbps and the latter is 1 Mbps,
which is 67 % higher than the former, indicating that the
improved NE scheme is more stable and achieves a higher
effective backhaul transmission rate. The effective backhaul
transmission rate is greater and the results are better, which
also proves the superiority of our proposed scheme.

After comparing the direct BS connection scheme under
multiple BSs with our proposed improved NE strategy
scheme, to further verify the superiority of our proposed
strategy in the set context, we will cut the link between one of
the previously set multiple BSs and the UAV, and implement
the UAV and a single BS to construct a backhaul transmission
link. Here we switch off the BS at (1000,1800) and all
UAVs build a backhaul transmission link only with the BS
at (1200,1200). The original direction of motion and speed
of motion of the UAVs remain unchanged, and they continue
to move away from the BS. At this point, we compare the
average effective backhaul transmission rate and the small
effective backhaul transmission rate obtained from the single
BS link and the multi-BS link under both the improved NE
strategy. The comparison results are shown in Figure 10.
As shown in the results of Figure 10, the average effective

backhaul transmission rate Rav and the minimum effective
backhaul transmission rate Rmin both decrease as the UAV
gradually moves away from the BS. The results of our
proposed multi-BS link compared to the single BS link
proposed in the paper by Liu et al. [33] are as follows.
As shown in Figure 10 (a), the average effective backhaul
rate Rav decreases due to the increasing distance between
the UAV and the BS under both the UAV and single BS
construction links and the multi-BS construction link, but the
effect obtained is more obvious for the multi-BS link than for
the single BS link, and the difference between the average
effective backhaul rates of the two can reach a maximum
of 1.7 Mbps and a minimum of 0.9 Mbps. This is because
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FIGURE 10. The average and minimum backhaul transmission rate of dynamic backhaul links with different number of BSs.

FIGURE 11. The average and minimum backhaul transmission rate of dynamic backhaul links with U-AF strategy or not.

our proposed strategy is more effective and applicable under
multi-BS construction link. The minimum effective backhaul
rate Rmin obtained in Figure 10 (b) is higher than the single
BS link, with a minimum value of 0.3 Mbps. This makes
our proposed enhanced NE strategy more effective in the
multi-BS link, and further demonstrates the feasibility of our
proposed scheme in a multi-BS context.

Liu et al. [33] use a purely random distribution of UAVs
without incorporating any algorithms to implement UAV
tracking of motion of UEs. To verify whether our proposed
U-AF model has any effect on the results obtained by the
improved NE algorithm, we compare the results obtained
with and without the U-AF model, as shown in Figure 11.
From Figure 11 (a) and (b), we can find that when the
UE’s movement time is within 100 s, the differences of Rav
and Rmin between the two are small, only 0.28 Mbps and
0.3 Mbps, respectively. When the UE’s movement time is
200 s and above, a significant gap appears between the results
compared, and themaximum gap ofRav can reach 1.41Mbps,
while the maximum gap of Rmin can reach 1 Mbps. This

is because without the U-AF model, the UAV cannot track
the UE in real time, and therefore cannot make reasonable
updates to the UAV position. This reduces the user demand
rate per UAV, which in turn affects Rav and Rmin. This
demonstrates why the U-AF model and the improved NE
algorithm are essential for achieving the maximum effective
backhaul transmission rate, and also further validates the
superiority of the U-AF model from the perspective of the
improved NE algorithm.

V. CONCLUSION
This paper presents a network optimization scheme based
on the anti-flocking and improved NE algorithm which opti-
mizes the deployment of UAVs and realize the composition
of multi-hop backhaul links, aiming to obtain the maximum
service rate of UEs and the effective UAV backhaul trans-
mission rate. The contribution of this paper is categorized
into three main sections: 1) Predeploying UAVs in hotspots
by applying the U-GWO algorithm; 2) Establishing a U-AF
model to enable UAVs to track hotspot UEs in real time and
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prevent UAVs to be too close; 3) Proposing an improved NE
strategy to build backhaul links between UAVs and multi-
BSs. The results show that the average service rate of UEwith
U-GWO algorithm is improved from 1% to 5.77% compared
to other different swarm intelligence optimization algorithms.
And the service rate obtained with U-AF algorithm is 43.2 %
improved compared to the baseline scenario without U-AF
algorithm. For UAV backhaul transmission link construction,
the simulation results show that the proposed improved NE
strategy improves the average effective backhaul rate by 12
%, the minimum backhaul rate by 84 % and the overall
iteration number by 5 % on average compared to a pure NE
strategy.

The algorithms in this paper are based on the premise that
the UAVs are at the same altitude and the ground BS locations
are randomly distributed. Since our proposed model is based
on a set simulation context. But in practical application
scenes, the situation to be considered is more complex, and
it may reduce the performance of the algorithms proposed.
Therefore, in future research, more factors of 3D space need
to be added to investigate the UAV deployment tracking
algorithm and UAV backhaul transmission link construction
algorithm in 3D space more thoroughly. Specific elements
that may need to be taken into account are also the size
and complexity of the network, the availability of resources,
and the dynamic nature of the network. In most practical
cases, the environments of the backhaul transmission links
we have constructed are relatively poor, and this will offset
the relevance of our proposed scheme among some good
backhaul environments. This also needs us to explore the
relationship between positional migration and backhaul of
UAVs in future studies. In terms of network resource
utilisation, we need to artificially design the utility function.
This also means that the process of designing a utility
function requires a lot of effort and the utility function
obtained, is not guaranteed to be efficient. Therefore we
need more in-depth research on adaptive models of utility
functions in the future.
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