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ABSTRACT Machine learning (ML) is a technique that learns to detect patterns and trends in data. However,
the quality of reporting ML in research is often suboptimal, leading to inaccurate conclusions and hindering
progress in the field, especially if disseminated in literature reviews that provide researchers with an overview
of a field, current knowledge gaps, and future directions. While various tools are available to assess the
quality and risk-of-bias of studies, there is currently no generalized tool for assessing the reporting quality of
ML in the literature. To address this, this study presents a new screening tool called STAR-ML (Screening
Tool for Assessing Reporting of Machine Learning), accompanied by a guide to using it. A pilot scoping
review looking at ML in chronic pain was used to investigate the tool. The time it took to screen papers and
how the selection of the threshold affected the papers included were explored. The tool provides researchers
with a reliable and systematic way to evaluate the quality of reporting of ML studies and to make informed
decisions about the inclusion of studies in scoping or systematic reviews. In addition, this study provides
recommendations for authors on how to choose the threshold for inclusion and use the tool proficiently. Lastly,
the STAR-ML tool can serve as a checklist for researchers seeking to develop or implement ML techniques
effectively.

INDEX TERMS Checklist, literature review, machine learning, quality scoring, reporting assessment, research
methodology, screening tool.

I. INTRODUCTION

Machine learning (ML) is a rapidly evolving field encom-
passing a broad range of algorithms designed to perform
intelligent predictions based on data [1], [2]. These datasets
are often large and complex, typically consisting of millions
of unique data points [3], [4]. Recent advances in ML have
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yielded remarkable progress, with some algorithms achieving
a human level of semantic understanding and information
extraction, and sometimes the ability to detect abstract patterns
with greater accuracy than human experts [5], [6], [7], [8],
[9], [10]. By detecting patterns in the data, ML algorithms
can extract information, classify data, cluster similar data
points, and make predictions for unseen data revealing
meaningful insights [1], [11], [12]. These capabilities have
numerous applications in fields such as medicine, engineering,
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and finance [13], [14], [15], [16], [17], [18], [19], [20],
(211, [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31]. Depending on the amount and type of data and the
learning approach, ML algorithms can be categorized into
four major groups, i.e., supervised learning (data labels
provided), semi-supervised learning (data labels are provided
for a small subset of the data, and the rest of the data are
unlabeled), unsupervised learning (no data labels provided),
and reinforcement learning (develops patterns based on
positive and negative rewards) [11], [32].

Supervised learning is a popular and widely used technique
for performing classification or regression when the ground
truth is known [33], [34]. On the opposite end of the
spectrum, in many cases, ground truth labels may not be
readily available, or the goal may be to categorize data
into separable clusters based on inherent features in the
data. In such scenarios, unsupervised learning techniques
are employed [35], [36]. However, semi-supervised learning
lies between supervised and unsupervised techniques, where
methods take advantage of supervised approaches without
needing a complete set of ground truth labels. This method
allows leveraging limited labelled data and plentiful unlabeled
data [11], [37]. Reinforcement learning, on the other hand,
is distinct from supervised learning as it does not require
labelled input and output pairs. Instead, a learning agent
focuses on exploring uncharted territory and exploits known
knowledge through trial and error. It is rewarded for desirable
behavior and punished for undesirable ones, allowing it to
learn and improve over time [11]. Each of these techniques has
unique strengths and applications, making them valuable tools
for resolving a multitude of challenges across diverse domains.

Based on the data and the objective, a suitable ML or
artificial intelligence (AI) algorithm is selected or developed.
Due to the powerful nature of ML algorithms, it has become
increasingly popular in many different fields. With the
increasing number of ML articles in the literature, it becomes
useful on occasion to summarize the current knowledge status
and gaps in particular fields via a review.

The science of review generally involves gathering research,
sifting through it to remove irrelevant or low-quality studies,
and summarizing the best evidence that remains. Despite
recognizing the need for synthesizing research evidence for
over two centuries, it was not until the 20th century that
explicit methods for conducting reviews were developed [38].
Review articles help to assess ‘what is known’ and can aid
in assessing what has been studied and what needs to be
studied. There are many types of review articles one can use
to assess the current state and historical development of the
existing literature. By synthesizing the existing research and
identifying gaps in knowledge, reviews provide foundations
for future research and highlight areas requiring further
investigation [38]. Sutton et al. [39] identified 48 review types
and categorized them into seven families, whereas Grant and
Booth [38] comprised a list of 14 review types, e.g., critical,
narrative summary, systematic, meta-analysis, scoping, rapid,
and umbrella review.
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The objective of a critical review is to demonstrate that the
author has conducted a comprehensive examination of the
literature and critically evaluated its quality. It entails going
beyond a mere description of the literature and encompassing
a high degree of analysis and conceptual innovation. Usually,
a critical review leads to the development of a hypothesis or
model that contributes significantly to the field [38].

Narrative summary reviews help identify and summarize
what has been previously published and are great for
addressing one or more questions related to a single topic
with a broader scope [39]. These can be highly useful in
understanding the state of the field depending on the authors’
knowledge and experience.

Meta-analysis is a statistical way of combining the findings
of similar quantitative studies to produce a more precise effect
of the results. By synthesizing and aggregating the data from
multiple studies, meta-analysis can provide a more comprehen-
sive understanding of a particular phenomenon or intervention
than any individual study could achieve [38], [39], [40].

A scoping review aims to identify the nature and extent of
existing research evidence on a particular topic. It typically
presents its findings in a tabular format with some narrative
commentary. By exploring and defining the boundaries of the
topic, it seeks to inform future systematic reviews or primary
research. Ultimately, the goal is to provide a comprehensive
overview of the available literature and identify knowledge
gaps that can guide future research [38], [39].

A systematic review involves systematic literature search-
ing, appraising, and synthesizing research evidence to provide
a robust and evidence-based summary of the state of
knowledge on a specific topic. The review process often
adheres to established guidelines. The aim is to provide a
comprehensive analysis of what is known about a particular
topic, and identify areas of uncertainty around the findings,
including recommendations for practice based on the available
evidence. Additionally, similar to a scoping review, the
systematic review highlights gaps in knowledge and makes
recommendations for future research to fill those gaps [38].
Scoping and systematic reviews are better for collating
evidence to identify, select or critically appraise relevant
primary research for a specific research question as they follow
a standardized protocol.

These reviews typically follow the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
framework that provides a minimum set of items for reporting
in a review. PRISMA follows a multi-stage process where
studies are screened for inclusion/exclusion criteria by at least
two reviewers at a title & abstract review stage and a full text
review stage before proceeding to any meta-analysis of the
studies included in the review [41], [42].

Within the PRISMA 2020 framework, different tools can
be used to screen and assess articles [42]. These can be about
reporting quality, internal or external validation, and risk-of-
bias. These are important factors to consider when collating
evidence to answer a research question with the studies in
the literature, as it allows comparing articles critically with
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confidence [42], [43], [44], [45], [46], [47], [48], [49], [50],
[51]. Currently, there are several tools to assess the method-
ological quality of studies, such as Consolidated Standards
of Reporting Trials (CONSORT) [43], Checklist for Critical
Appraisal and Data Extraction (CHARMS) [51], Quality
Assessment of Diagnostic Accuracy Studies (QUADAS) [49],
[50], [52], but there is no generalized tool to assess the quality
of ML algorithm reporting in the literature.

Given the increasing usage of ML, quality assessment of
articles is essential to maintain high methodological quality
and ensure rigorous standards have been followed [53], [54].
Articles that do not report or incorrectly report their algorithm
can call into question the quality and transparency of the
research. It may also disseminate incorrect or inadequate
information that can hinder the progress of scientific
knowledge. Thus, it is essential that an evidence-based,
validated screening tool be developed to allow for adequate
appraisal of the literature for review articles.

Currently, a few tools are associated with ML, such
as QUADAS-2 [50], [52], TRIPOD-AI [55], PROBAST-
Al [56], STARD-AI [57], SPIRIT-AI [58], CONSORT-AI
[59], DECIDE-AI [60], Radiomics Quality Score [61], but
these are very specific to applications specifically in the
healthcare domain. For example, QUADAS-2 assesses the
quality of diagnostic accuracy studies for systematic Reviews.
TRIPOD-AI, PROBAST-AI, STARD-AI, SPIRIT-AI, and
CONSORT-AI are study design specific, i.e., diagnostic
or prognostic model evaluation, risk-of-bias, and reporting
guidelines for clinical trials involving Al interventions.
DECIDE-ALI s a guideline used to report early stage evaluation
of Al systems as an intervention in live clinical settings
focusing on human factors, clinical utility, and safety [60].
Radiomics Quality Score, on the other hand, is mainly looking
at the feature extraction from images. To the best of our
knowledge, none of these tools can be used generally and/or
applied quickly.

Thus, this paper describes a generalized screening tool
(Screening Tool for Assessing Reporting of Machine Learning;
STAR-ML) that can assess the quality of reporting of ML in
research articles quickly and consistently. It also recommends
a suitable location for use in the PRISMA framework when
reviewing ML-related studies. This paper presents STAR-
ML’s development, the questions, instructions on use, and
its application (pilot) in a scoping review on ML in chronic
pain. The tool is intended for quick screening of ML studies
but can also be utilized as a guideline when drafting a new
manuscript to improve the reporting quality of ML techniques.

Il. METHODS

A. DEVELOPMENT OF STAR-ML

The literature was reviewed for existing reporting guidelines
and tools for ML studies (e.g., QUADAS-2, CHARMS) [42],
[44],[45],[47], [48], [49], [50], [51], [52]. It was identified that
two main aspects of ML were significant for any application:
data and algorithm. These aspects were determined through
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expert consensus as it is important that the data is adequately
reported in combination with the rationale and performance
of the algorithm. This would enhance reproducibility,
improve the use of the algorithms, and encourage knowledge
translation. From this perspective, the screening tool was
developed with a focus on assessing the implementation of an
ML algorithm and identifying if they were reported correctly
in the articles.

Through an iterative process, questions in STAR-ML were
first developed by expert consensus (RK, AK, DK, TD). These
resulted in two versions of STAR-ML with the main changes
between the iterations being improvement of the language
of the questions and the inclusion of an additional question.
These first versions were then piloted in two rounds to assess
the functionality of the screening tool [53]. Three independent
raters participated in that pilot process.

B. OVERVIEW OF STAR-ML

The set of questions encompassed crucial aspects necessary
for reproducing and comprehending the results of the ML
algorithm based on the data and parameters used.

1) DATA DOMAIN

The questions in this section pertained to reporting on input
features, data quality, and distribution. The origins of data
quality issues can be traced back to the early days of
computing. High-quality data is crucial for successful ML,
as the algorithm’s accuracy is dependent on the quality of the
data used for training [62], [63]. Providing an algorithm with
bad, irrelevant, or faulty data will lead to the ML algorithm
reaching an incorrect solution. On the other hand, high-quality
data can improve the performance of the ML model and allow
for more complex tasks to be solved [64].

2) ALGORITHM DOMAIN

The algorithm section of STAR-ML focuses on the reporting
of implementation, training, and performance metrics of the
ML algorithm to ensure repeatability. Proper reporting is
crucial, as an incorrectly trained or improperly used algorithm
can lead to misrepresented results (e.g., higher accuracy due
to train-test contamination leading to data leakage) [65], [66],
[67], [68], [69].

C. STAR-ML QUESTIONS
Table 1 presents the list of questions in STAR-ML with a
summary explanation of each question’s focus.

1) DATA DOMAIN

Question 1: “Did the study report the data used?” Focuses
on whether the input features of the algorithm are known. It is
important to know exactly what is used in the algorithm to be
able to understand and reproduce results seen in a particular
study.

Question 2: “Did the study report data quality or data pre-
processing?” Focuses on data pre-processing and whether
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steps were taken to address issues with the data, such
as handling missing values, duplicate entries, incorrect,
corrupted, or incorrectly formatted entries. Proper data
pre-processing is essential to ensure the validity and reliability
of study results [70], [71].

Question 3: “Did the study report data distribution and if
imbalanced did they handle it?” Focuses on the reporting
of the distribution of data and whether any steps were
taken to address imbalances (if any). ML models trained
with imbalanced data can lead to incorrect insights and
overestimated generalizable performance, making it vital for
taking into consideration [72], [73], [74].

Question 4: “Did the study report data normalization?”
Focuses on whether the features of the data were transformed
into some standard range or space. Though data normalization
is considered one of the pre-processing steps, attention was
given with a dedicated question given its importance to model
performance. The absence of feature normalization can result
in issues where certain features carry more weight than others,
particularly in algorithms that utilize distance-based metrics
such as k-nearest neighbors [75], [76].

2) ALGORITHM DOMAIN

Question 5: “Did the study report any rationale behind
their choice of algorithm?” Focuses on whether there was
any rationale for the choice of ML algorithm. Except
for the cases of novel algorithms being developed and
described in a study, different ML techniques have strengths
and weaknesses depending on the data and problem. For
example, support vector machines (SVM) are designed to
provide the best boundaries between classes even when
there is a limited amount of data. However, SVMs are less
practical in multi-class problems as the number of decision
boundaries increases with the number of classes [77], [78],
[79]. A convolutional neural network (CNN), on the other
hand, can take image or video data as input. Howeyver, since a
CNN is more complex, it may require more training examples
to be able to provide an adequate solution [80], [81]. Thus, the
rationale behind the choice of algorithm is crucial, as different
ML algorithms are designed for different purposes.

Question 6: “Focusing on modeling, did the study report
any measure/s to address their model bias?” Bias can
occur during data collection, data pre-processing, data
selection/splitting, model training, and model evaluation. The
bias observed in a resulting or final AI/ML model is model bias
or algorithmic bias [82], [83], [84], [85]. Several sources of
bias can occur throughout the pipeline, from the data collection
to the developed ML model. This can affect the performance of
the model and the conclusions that the model learns [82], [86].
For example, bias in the data collection can lead to learned
features in only certain conditions; if all examples come from
females, it may draw incorrect conclusions when observing
an example that is male. Thus, it is important to ensure that
biases are “kept in check”.

Question 7: “Focusing on reproducibility, did the study
report their model parameter/s?” Focuses on whether the
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parameters of the ML model(s) are reported. Model parameters
are important to be able to reproduce the results reported in
a particular study. Without the parameters, it is extremely
difficult to nearly impossible to train a similar model
depending on the ML algorithm [87]. For example, if a CNN
was used to classify images of cats vs. dogs, deciding the
parameters to reproduce the results would be challenging.
A CNN used for image classification requires many tunable
parameters, such as architecture (i.e., number of layers,
number of neurons), activation function, loss function, and the
number of filters, among other parameters [87], [88].

Question 8: “Focusing on model training, did the study
report validation technique(s) for the model?” Model
validation in ML is the process of evaluating how well
a trained model performs on unseen data (e.g., test set),
in order to ensure that the model is able to generalize to
new data. Model validation helps to assess the reliability
of the model’s predictions and to identify any issues such
as overfitting, underfitting, or bias that may impact the
model’s performance [89], [90], [91], [92]. There are several
techniques for model validation in ML, including holdout
validation, cross-validation, leave-one-out validation, and
bootstrapping [93]. By using these techniques, ML models can
be assessed in terms of performance, and informed decisions
can be made about improving them.

Question 9: “Focusing on model test/validation, did the
study report any performance evaluation metric of the
used algorithm?” Focuses on how ML model(s) performed
on the task based on a new example and/or dataset. The
model’s effectiveness can be understood by assessing the
measures like accuracy, precision, recall, F1 score, and other
relevant performance metrics of the model(s) [94]. It is also
crucial for determining the suitability of the model(s) for the
intended application and making informed decisions regarding
improving performance [95].

D. INSTRUCTIONS FOR USE

1) SCORING

Each question can be answered with either a Yes (1 point) or
No (0 points).

Question 1: A score of 1 should be given if the data features
were reported in the study. Otherwise, a score of O should be
assigned.

Question 2: A score of 1 should be given if any data cleaning
or pre-processing was reported in the study. Otherwise, a score
of 0 should be assigned.

Question 3: A score of 1 should be given if the data
distribution is reported (e.g., descriptive statistics) and
information is provided regarding data imbalance or if there
were data imbalances, but it was reported that techniques
were used to address that. Otherwise, a score of O should
be assigned.

Question 4: A score of 1 should be given if the input
features were transformed into a standard or normalized range.
However, in special cases (i.e., all features have the same unit,
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TABLE 1. Screening tool for assessing reporting of machine learning (STAR-ML): An overview of the questions and the explanations for each question.

Domain Questions Explanation
Data
01 Did the study report the data used? Which or what data were used in the study while describing data features.
02 Did the study report data quality or data pre-processing? To assess the study’s validity and reliability of the data analysis. It also

03 Did the study report data distribution and if imbalanced did they

addresses if the missing data handling and outlier removal steps were
considered by the authors.
The data distribution should be reported with descriptive statistics and

handle it? how the authors handled the data imbalance if there was any.
04 Did the study report data normalization? Data or feature normalization is a necessary step from which most of the
AI/ML algorithms can benefit, including the model’s numerical stability.
Algorithm
05 Did the study report any rationale behind their choice of algo-  Except in the case of tailored/novel AI/ML algorithms, the rationale for
rithm? which the particular algorithm was used should be stated.
06 Focusing on modeling, did the study report any measure/s to ML model biases should be addressed to get reliable performance.
address their model bias?
o Focusing on reproducibility, did the study report their model = Model parameters or hyperparameters should be reported for repro-
parameter/s? ducibility of the result as most of the ML algorithms have tunable
parameters.
08 Focusing on model training, did the study report validation = Model validation is an integral part of any ML model and is expected to
technique(s) for the model? be reported.
09 Focusing on model test/validation, did the study report any  Different algorithms have different evaluation metrics based on their

performance evaluation metric of the used algorithm?

fundamental design and it is a major way to evaluate the performance of
the model on the particular data.

the reason why the data were not standardized or normalized
is mentioned), a score of 1 should be assigned. Otherwise,
a score of 0 should be assigned.

Question 5: A score of 1 should be given if a rationale was
provided for the ML algorithm used in the study. Otherwise,
a score of 0 should be assigned.

Question 6. A score of 1 should be given if model bias
handling was reported in the study. Otherwise, a score of
0 should be assigned.

Question 7: A score of 1 should be given if parameters
needed to build the ML models were reported. Otherwise,
a score of 0 should be assigned.

Question 8: A score of 1 should be given if ML model
training and validation techniques were reported in the study.
Otherwise, a score of 0 should be assigned.

Question 9: A score of 1 should be given if performance
evaluation metrics were reported in the study. Otherwise,
a score of 0 should be assigned.

2) ASSESSING A SPECIFIC STUDY USING STAR-ML
The PRISMA framework [41] is a widely used tool to help
authors improve the reporting of systematic or scoping reviews.
While using the PRISMA 2020 flow diagram [42] template
(e.g., systematic reviews), STAR-ML can be used for screening
at the “Reports assessed for eligibility” stage to only include
well-reported research into the full text review.

However, STAR-ML can be used independently or in
conjunction with other frameworks to assess the reporting
quality of a study that used ML.

E. PILOT LITERATURE REVIEW
STAR-ML was piloted in a scoping review on the topic of ML
in chronic pain.

VOLUME 11, 2023

1) SEARCH STRATEGY

Search terms were developed in Ovid MEDLINE and then
adapted for other databases. The search string was developed
and finalized after multiple reviews and iterations with
subject-matter experts and the assistance of a health science
librarian specialized in conducting literature searches. The
searches were carried out across 4 electronic databases from
2012-2022:

1) MEDLINE

2) Web of Science Core Collection
3) ACM Digital Library

4) IEEE Xplore

The final search was conducted on February 28, 2022. The
final search string for Ovid MEDLINE can be found below:

1) artificial intelligence/ or exp machine learning/ or natural language
processing/ or neural networks, computer/ or cluster analysis/
2) artificial* intelligen*.ti,ab,kf,kw.
3) machine learning.ti,ab,kf,kw.
4) (deep learning or convolutional neural network or artificial neural
network).ti,ab,kf kw.
5) (cluster analysis or (unsupervised adj2 learning)).ti,ab,kf,kw.
6) natural language processing.ti,ab,kf,kw.
7) computer neural network*.ti,ab,kf,kw.
8) or/1-7
9) Chronic Pain/
10) ((Chronic* or Recurrent or Persistent*) adj3 pain*).ti,ab,kf kw.
11) or/9-10
12) 8and 11
13) limit 12 to english language
14) not (animals/ not (humans/ and animals/))
15) limit 14 to journal article
16) limit 15 to (“review articles” or meta analysis or “systematic review”’
or comment or editorial)
17) 15not 16
18) exp Neoplasms/
19) 17 not 18
20) remove duplicates from 19
21) limit 20 to yr="2012 -Current”
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2) INCLUSION & EXCLUSION CRITERIA
Studies were included if they satisfied the following criteria:
1) Studies published in English
2) Studies involving only human participants/data
3) Original research article, i.e., not a review article or
letter
4) Peer-reviewed
5) Studies focused on chronic pain
6) Used ML methods
7) Studies focused on physically adults (17+)
8) Studies excluding only healthy participants or synthetic
data
9) Studies scored 6 or more in STAR-ML

F. EVALUATION

In this scoping review, STAR-ML was used as one of the
exclusion criteria at the “Reports assessed for eligibility stage”
during full text review. In total, 4 raters, i.e., 2 experienced
and 2 less experienced ML raters scored articles and articles
meeting the threshold for inclusion were included for data
extraction (after applying all other exclusion criteria).

Out of the 289 studies considered in the full text screening
phase, 111 were excluded based on the other pre-defined
exclusion criteria. The remaining 178 studies were divided
among four raters and screened using STAR-ML. As STAR-
ML achieved high inter-rater reliability (0.93, lower bound:
0.83, upper bound: 0.97), which was computed based on
a mean-rating (n = 3), absolute-agreement, 2-way mixed-
effects model for the total scores between 3 raters in the
previous study [53], a single rater was used to score the
assigned set of articles. Prior to working on the articles in
the scoping review, the raters underwent training on a set of
10 articles to align the level of understanding.

Initially, experts agreed that during full text review, a study
should be included if the STAR-ML score is more than 50%,
which corresponded to a > 5 out 9 [53]. A score of 6 or more
was chosen for the pilot review to ensure that included studies
were better than the minimal score determined initially by the
experts.

After the full text screening, the studies that were included
for data extraction were then scored by a second rater whose
experience depended on the experience of the initial rater of
the included study (i.e., if the initial rater had ML experience,
then the second rater was less experienced, and vice-versa).
The group of raters was the same in the two steps. This was
to understand better how the scoring would be affected by
varying ML experiences. These raters were blinded to whether
the studies were included or not.

In addition, the quality of the reporting of the ML techniques
was also examined. One experienced rater and an independent
expert (i.e., not one of the four raters) assessed the quality of
each included study on the reproducibility and the correctness
(i.e., rigorous methodology) of the described ML techniques
and procedures.

A study was deemed reproducible if, with the given
information, one could likely reproduce the pipeline and
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expect to get a similar result; it was deemed not reproducible
if there was missing information that would be required to
reproduce the procedure, e.g., the exact input features to the
ML algorithm was not reported, no architecture reported for
neural network based models, no performance metrics to
compare results, etc. Similarly, a study was deemed correct
if the study used appropriate procedures given the data;
otherwise, it was deemed incorrect. For instance, if a study
had imbalanced data and the study only used classification
accuracy as a performance metric, this would overestimate
the performance, and the study would be deemed not correct
(i.e., implementation procedures were not adequate). While
STAR-ML was primarily designed to assess the quality of
reporting of ML studies, being able to correlate the score
with the quality of the work would allow for a more informed
decision on setting the threshold for including studies based
on quantitative data. This would also provide examples of
the types of ML studies that could be included at different
threshold levels, helping to guide researchers in selecting
appropriate studies for their works.

Lastly, the time required to use STAR-ML to screen studies
was evaluated for raters with varying levels of experience in
ML. Raters 1 and 3 were experienced in ML, while Raters
2 and 4 had basic experience. This provided insights into the
feasibility and efficiency of using STAR-ML as a screening
tool for ML studies in terms of helping to make informed
decisions on allocating resources for conducting reviews or
for independent use.

IIl. RESULTS

Fig. 1 presents the distribution of STAR-ML scores for all
studies included in the scoping review, as well as the scores
assigned by pairs of raters (i.e., Raters 1 and 2, and Raters
3 and 4) for subsets of the studies. The mean and standard
deviation of STAR-ML scores for all studies were 5.640 £+
2.054. The mean and standard deviation of scores for each
rater on the subsets of the included studies were 7.909 +
0.707,8.091 £+ 1.071,7.519 £ 0.935, and 7.667 £+ 1.494,
respectively.

Table 2 shows the number of studies that would have been
included at each score level from 6 to 9, along with the number
of studies that were deemed reproducible and/or done correctly
by experts on our team. As expected, the number of studies
to be included decreases as the score threshold increases.
Interestingly, the percentage of reproducible and rigorous
studies peaks at a score of 8. Table 3 provides the number
of studies for each rater that would have been included at
each score level from 6 to 9, along with the number of studies
that were deemed reproducible and/or done correctly by the
experts on our team. These results are also visualized in Fig. 2
and Fig. 3.

Fig. 4 shows a comparison of the average time it took to
screen a study in this work and in [53]. The mean and standard
deviation of the average time was 4.733 £ 2.101 minutes
and 4.701 £ 0.644 minutes for the former study [53] and the
current pilot, respectively. The average time of each rater was
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TABLE 2. Number of included studies by STAR-ML thresholds that were deemed reproducible, implemented correctly or both (reproducible and

implemented correctly).

STAR-ML Score Number of Studies
Threshold Included in Review  Reproducible ~ Correctness Both
6 60 42 (70.00%) 46 (76.67%) 34 (56.67%)
7 37 27 (72.97%) 30 (81.08%) 23 (62.16%)
8 19 15(78.95%) 17 (89.47%) 13 (68.42%)
9 5 3 (60.00%) 5(100.00%) 3 (60.00%)

TABLE 3. Number of included studies by STAR-ML thresholds and Raters that were deemed reproducible, implemented correctly or both (reproducible and

implemented correctly).

Rater 1
STAR-ML Score Number of Studies
Threshold Included in Review  Reproducible Correctness Both
6 10 9 (90.00%) 6 (60.00%) 6 (60.00%)
7 4 4 (100.00%) 3 (75.00%) 3 (75.00%)
8 1 1 (100.00%) 0 (0.00%) 0 (0.00%)
9 0 0 (NA) 0 (NA) 0 (NA)
Rater 2
STAR-ML Score Number of Studies
Threshold Included in Review  Reproducible Correctness Both
6 23 19 (82.61%) 17 (73.91%) 15 (65.22%)
7 18 14 (77.78%) 13 (72.22%) 11 (61.11%)
8 11 10 (90.91%) 10 (90.91%) 9 (81.82%)
9 2 2 (100.00%) 2(100.00%) 2 (100.00%)
Rater 3
STAR-ML Score Number of Studies
Threshold Included in Review  Reproducible Correctness Both
6 10 3(30.00%) 7 (70.00%) 3(30.00%)
7 2 1 (50.00%) 2 (100.00%) 1 (50.00%)
8 1 1 (100.00%) 1 (100.00%) 1 (100.00%)
9 0 0 (NA) 0 (NA) 0 (NA)
Rater 4
STAR-ML Score Number of Studies
Threshold Included in Review  Reproducible Correctness Both
6 17 11 (64.71%) 16 (94.12%) 10 (58.82%)
7 12 8 (66.67%) 12 (100.00%) 8 (66.67%)
8 6 3 (50.00%) 6 (100.00%) 3 (50.00%)
9 3 1 (33.33%) 3 (100.00%) 1(33.33%)

4.932 +1.934,5.500 £ 1.487,4.085 + 0.905, and 4.286 +
1.235 minutes in the current pilot.

IV. DISCUSSION
This paper presents the development and instructions for using
anovel screening tool for assessing the reporting quality of ML
studies, called STAR-ML. Additionally, the study provides
valuable insight into determining the appropriate threshold for
inclusion, along with the expected quality of ML studies that
may be observed at each level.

As expected, setting a higher threshold for inclusion leads

to a decrease in the number of studies meeting the criterion.

Notably, Table 2 shows that the number of studies deemed to
be done correctly (based on expert opinion) increases as the
threshold increases, while reproducibility follows the same
trend until a score of 9. An ‘elbow’ point is observed at a
score of 8 out of 9. However, further investigation in Table 3
reveals that the largest percentage of studies’ ML techniques
are identified as done correctly in each rater’s pool of studies
when a threshold of 7 out of 9 is used, except notably in Rater
2’s pool.
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This would suggest that raters with a good understanding of
ML could use a threshold of 7 out of 9 for inclusion, as it will
result in studies that are mostly deemed to be done correctly.
However, if raters have different levels of experience with
ML, then a threshold of 8 out of 9 should be used as this
correlated with almost every study’s ML techniques being
identified as being implemented and used appropriately. It is
important to note that the appropriate threshold for inclusion
may vary depending on the specific context and research
question.

In addition, the finding suggests that STAR-ML scores
seem to associate well with algorithm implementation, correct
use, and reproducibility of the described algorithms by the
authors (i.e., a higher percentage of included studies increased
as STAR-ML score increases) with the exception of the
percentage of included studies for the ‘Reproducible’ category
at STAR-ML score of 9. Arguably, correct implementation
and use are of more importance in collecting evidence
for a scoping or systematic review, as the findings of a
review must be based on results from correctly implemented
approaches.
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FIGURE 1. a) Distribution of the STAR-ML scores of all screened studies during full text review. b, c, d, €) STAR-ML score distribution of each rater on their
subset of studies included for data extraction. Raters 1 & 2 and 3 & 4 reviewed the same subset of studies. Mean and standard deviations of each rater:
Rater 1: 7.909 + 0.707; Rater 2: 8.091 + 1.071; Rater 3: 7.519 & 0.935; Rater 4: 7.667 + 1.494.
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FIGURE 2. a) Shows the aggregated number of studies in terms of included studies, reproducibility, correctness, and Both (Reproducible and Correct). b,
¢, d, e) Shows the number of studies by each rater in terms of Included Studies, reproducibility, correctness, and Both (Reproducible and Correct).

It is important to note that the reproducibility and
correctness score of each study was reached through a
consensus and discussion among experts on our team for each
study included in the data extraction of the review. Although
the results suggest that the STAR-ML score is associated with
reproducibility and correctness (i.e., a higher STAR-ML score
leads to a higher likelihood of reproducibility and correctness),
this analysis was not performed using a validated critical
appraisal tool for ML, as there is no such tool to our knowledge.
Therefore, further investigation and/or development of such
a tool will be necessary to better assess the validity of the
ML techniques used for their reproducibility and appropriate
use/implementation. Nonetheless, the analysis explained
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here suggests that a higher STAR-ML score generally
indicates a higher reproducibility and appropriate use of ML
techniques.

It was also observed that novice ML raters tend to score
papers higher on average than experienced raters, i.e., Rater
1: 7.909 vs. Rater 2: 8.091; Rater 3: 7.519 vs. Rater 4: 7.667.
This could be due to novice ML raters being more cautious
and giving the benefit of the doubt to the papers when they
are unsure if a study meets certain criteria. Combining this
information with what was observed in Table 2, this provides
a strong case for setting the threshold at 8 or above. This can
balance the trade-off between the number of papers included,
the quality of the paper and the differences in ML experience
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FIGURE 4. a) The average time taken by the raters to rate articles using STAR-ML. b) Average times of each rater. The left bars
represent timing information from the former study [53] & the right bars represent the current pilot scoping review results.
Note: Raters with the same colour are indicating the same rater in both studies.

of the raters. Thus, we recommend using a threshold of
8 to balance the number of papers included, maintain a high
likelihood of high-quality papers, and account for potential
differences in the raters’ experience with ML. However, this
threshold can be adjusted based on the researcher’s objective
and research question.

The time required to screen a paper using STAR-ML was
consistent with what was observed in the previous study [53].
On average, raters tended to screen papers within 4-5 minutes,
indicating the tool’s feasibility for rapid screening of studies
that use ML, especially in a review. Two raters, novices in
ML, from the previous work [53] also screened papers in this
pilot and showed consistently faster screening time, closer to
the observed average time of 4.70 minutes (Fig. 4b: red and
yellow bars). This suggests that with an initial ‘orientation’
of the tool, even novice raters can use the tool to screen
studies as quickly as more experienced raters. An additional
empirical observation was made that raters might initially be
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more lenient with their scoring as they become familiar with
the tool, and after calibration, are better able to understand the
full spectrum of the score, e.g., what types of studies would
score low versus what types of studies would score high. Thus,
it is recommended to have an initial calibration period with
five to ten articles to familiarize raters with the tool.

As noted above, STAR-ML is a tool mainly to assess the
quality of reporting of ML algorithm in an article. STAR-ML
will best be used in combination with a validated ML quality
assessment tool. STAR-ML would screen papers and include
those that are likely of high quality in terms of reproducibility
and correctness, where a quality assessment tool can then
determine if they are indeed of high quality. This would allow
for rapid screening of articles as STAR-ML would take a much
shorter time than directly assessing the quality of every single
article.

STAR-ML can also be used by researchers to self-assess
their research manuscripts and improve the reporting of their
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work related to ML. Additionally, it can act as a guide
or checklist for researchers developing or applying ML
techniques. The comprehensive set of criteria included in
the tool ensures that researchers consider all relevant factors
and best practices when working with or developing ML
algorithms. As aresult, using the tool can lead to more accurate
and robust ML models, improving the quality and reliability of
research findings. Thus, STAR-ML can play a significant role
in facilitating best practices in the field of ML, accelerating
progress and advancing knowledge in the field.

Further work is currently underway by the authors to
analyze the tool in various domains, as the study was only
piloted in the chronic pain domain. Additionally, work is
in progress to assess the generalizability of the tool in
terms of ML users from different educational backgrounds
and geographic regions. The current version (version 2)
of STAR-ML is being published to enable researchers to
only include high-quality ML research papers in scoping
and systematic reviews to draw accurate conclusions and
disseminate high-quality knowledge. Additionally, ongoing
efforts will focus on validating the findings presented here
and improving the tool to better meet the needs of researchers
in the field.

V. CONCLUSION

This paper presents the development of a new generalized
tool for assessing the reporting quality of ML in studies that
can be used for screening studies during full text screening in
reviews. The instructions on using the tool and selecting the
threshold for inclusion have been investigated. Depending on
the researcher’s objective and research question, the results of
this study suggest that a score of 7 or 8§ on the STAR-ML tool
will increase the likelihood that studies included in reviews
are of high quality in terms of correctness and reproducibility.
The average time required to screen a study using the tool is
about 4 — 5 minutes, and it is best used by researchers with
scientific and ML experience. An initial calibration period
to familiarize with the tool before use is also recommended.
Additionally, the tool can help new researchers improve the
reporting of ML in their manuscripts. Furthermore, the tool
can serve as a practical checklist for researchers seeking to
develop or implement machine learning techniques effectively,
thus promoting best practices in the field and improving the
quality and reliability of research findings.
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