
Received 23 August 2023, accepted 6 September 2023, date of publication 15 September 2023,
date of current version 21 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3316031

Is Formal Verification of seL4 Adequate to
Address the Key Security Challenges of
Kernel Design?
MINA SOLTANI SIAPOUSH , (Graduate Student Member, IEEE),
AND JIM ALVES-FOSS , (Senior Member, IEEE)
Center for Secure and Dependable Systems (CSDS), University of Idaho, Moscow, ID 83844, USA

Corresponding author: Jim Alves-Foss (jimaf@uidaho.edu)

ABSTRACT Formal method tools are used in the initial stages of the software development cycle and have
advanced to deal with the design difficulties related to ensuring strong cybersecurity and reliability in high-
assurance systems. Operating system kernels are the security keystone of most computer systems. Their
continuous advances require formal verification that guarantees the accuracy of their functionalities. As the
world’s first microkernel to be provenmathematically secure and functionally correct, seL4 has been adopted
for use in a range of critical systems, including defense, aerospace, and financial services applications.
In spite of the great effort of the seL4 team to present a comprehensive formal verification of the kernels, there
are some security aspects of verification that suffer from a limited scope. From an outsider’s perspective, this
paper aims to evaluate if seL4 formal verification is adequate to address security requirements and surveys
the recent state of the art for seL4 microkernels.

INDEX TERMS Microkernel, seL4, formal methods, correctness verification.

I. INTRODUCTION
One of the critical services of a computer system is to
allow applications to store and protect sensitive data from
any malicious activity. Considering the latest research on
sophisticated and targeted attacks worldwide, it is generally
accepted that the effectiveness of existing security mecha-
nisms for computer systems needs to be improved. Since
there are a lot of examples when the correctness of separate
computer components has been successfully established, the
formal verification of an entire system has drawn lots of
attention. An Operating System (OS) considers the kernel as
the crucial component which provides basic services for all
other parts of the system. It is the main layer between the
OS and underlying hardware devices, the first module of the
OS to be loaded, and the last one to be terminated. Formal
verification of a kernel is a crucial step toward full system
verification.

The associate editor coordinating the review of this manuscript and
approving it for publication was Claudio Zunino.

The security of computer systems and protection of critical
aspects of the computer’s behavior is not new, designers have
been addressing how software components access hardware
and resources for a long time. Processors were designed to
support at least two operating modes: kernel mode and user
mode. Kernel mode enables software to have unrestricted
access to the system’s resources. The OS kernel is loaded into
protected memory space and operates in the privileged kernel
mode. User mode enables applications to load and execute
the program, although not access privileged instructions or
resources. The kernel uses the memory space and resources
for that application’s use and runs the application within that
user memory space.

In contrast to conventional large kernels and OSs that
execute a wide range of functions, a microkernel’s function
is to separate the subjects and resources of a system into
security policy equivalence classes. In microkernels, the user
services and kernel services are implemented in different
address spaces so this reduces the size of the microkernel
compared to recent large kernels. This paper focuses on a

101750 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-3760-0881
https://orcid.org/0000-0002-5125-1470


M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

recent and most secure microkernel, seL4 [1], explains the
procedure of formal verification used to ensure its security,
and investigates its weaknesses and strengths.

A. MOTIVATION
As microkernels have drawn lots of attention in recent years,
we start our research by focusing on the recent and most
secure microkernel, seL4. The seL4 microkernel has been
proven to be mathematically secure and functionally correct,
making it a viable option for use in critical systems, including
defense, aerospace, and financial services applications.
However, the formal verification of seL4 kernels suffers from
a limited scope, making it crucial to evaluate its adequacy
in addressing security requirements. This paper aims to
provide researchers and developers with a comprehensive
understanding of the current state of seL4 formal verification
and its potential application in high-assurance systems. Our
analysis of recent work on seL4 microkernels will help
researchers identify gaps in current research, strengths, and
limitations of seL4 microkernels, and provide insights into
future research directions in a way making them informed
decisions about the suitability of seL4 for their specific
cybersecurity needs.

The rest of the paper is organized as follows. Section II
provides background information on kernels and prelimi-
naries about formal verification. Section III discusses the
drawbacks of seL4 formal verification and how recent
research addresses them. Section IV evaluates existing work
and presents a comparison of research on seL4 formal proof.
Finally, Section V concludes the paper and discusses future
work.

II. BACKGROUND
This section provides some related background about this
research. First, it provides a summary of different types of OS
kernels, the seL4 kernel, formal methods, and then discusses
the formal verification of microkernels.

A. KERNELS
As mentioned earlier, a kernel is the primary layer that
separates the OS and underlying hardware devices, the
first module of the OS to be loaded, and the last one
to be terminated. Kernels are classified into four groups
as described in the following. In this paper, we focus on
microkernels and leave others for future work.

1) MONOLITHIC
A monolithic OS has a large kernel and contains many
services and components; examples include Multics [2],
Unix, Linux, and MSWindows. Monolithic OS kernel These
require hardware privilege states for isolation and to control
I/O access to peripherals. The kernel provides a series
of system calls for processes to ask for services such as
inter-process communication (IPC). System calls are literally
equivalent to function calls but are relatively slower, due to
extra processing required for context switching, a process

of saving application state and restoring the kernel state.
The main drawbacks of monolithic kernels are complexity
and dependencies between system components. The larger
size of a kernel makes it hard to maintain. As illustrated in
Figure 1 monolithic kernels place OS functionality into a
single shared address space executing in kernel mode. As the
kernel provides a wide range of services, the kernel code
typically consists of a sizable quantity of privileged code, all
of which has to be verified.

2) MICROKERNEL
A microkernel is a type of kernel design in which the
user services and kernel services are implemented in
different address spaces, thus reducing the size of kernel
and OS. In microkernels, the foremost services such as
memory management, inter-process communication (IPC),
and CPU-Scheduling are placed in the kernel, while the
remaining services are placed in the user application. This
allows users to communicate with those secondary services
in the user application space. Section II-B provides a more
detailed explanation of microkernels. Some of the better
known microkernels are MINIX3, Fiasco [3], QNX [4],
Fuchsia [5], Nemesis [6], micro-ITRON [7], and seL4.

3) EXOKERNEL
Exokernels present a different mechanism for component
isolation where operations with authority are represented
as compiled libraries for each user program. The libraries
communicate with hardware by secure bindings executing in
a ring which provides an Application Programming Interface
(API) for untrusted libraries. A secure binding is a safety
feature that separates resource authorization from its real
use. Exposing system resources directly to applications and
their untrusted libraries is defined at initial use, which
eliminates the need for privilege validation during runtime
when resources are utilized by applications. Some exokernels
include ExoKernel (MIT’s research project) [8], Genode [9],
Viengoos [10], Nooks [11], and Redox [12].

4) HYBRID
A hybrid kernel is an OS kernel architecture that attempts to
combine aspects and benefits of microkernel and monolithic
kernel architectures. Some known examples are the Polyno-
mial kernel [13], Radial basis function (RBF) kernel [14],
Sigmoid kernel [15], Laplacian kernel [16], ANOVA kernel
[17], Triangular kernel [18], and Stable Spline kernel [19].

B. SECURE MICROKERNEL: SEL4
The main issue with microkernels is that system calls are
often slow mostly because of IPC [20], and there is a lot
of context switching between the User mode and kernel
mode to request a service. To address these problems,
Liedtke proposed L4 [21] to show that IPC can be supper-
fast, a factor of 10–20 times faster than contemporary
microkernels. L4 evolved from an earlier system, L3 which

VOLUME 11, 2023 101751



M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

FIGURE 1. Control flow of different types of kernels.

TABLE 1. Summary of key features of recent microkernels.

was the starting point of the journey into microkernels.
In this design, a service is only allowed inside the micro-
kernel if moving it outside the kernel–allowing conflicting
implementations–prevents the system’s required functional-
ity from being executed. Accordingly, the UNSW/NICTA
group’s research on L4 lead to a model of a third-generation
microkernel called seL4 (Secure L4), which builds on
the strengths of the L4 microkernel design, providing an
extremely reliable and secure system as the ultimate goal [1].
Verification is what makes seL4 distinct; seL4 has been

formally verified (see Section II-C) to provide end-to-
end information flow security, meaning that information
cannot leak from one component to another component in
the system, except through specified channels. This level
of assurance is unique among microkernels. With about
50,000 lines of code backed by rigorously checked, machine-
generated proofs, seL4 is the most dependable OS kernel [1].
This is why seL4 is designed for use in critical systems
that need a high degree of security, such as military and
aerospace systems, medical devices, and financial systems.
As seL4 keeps developing, its formal proofs must be
updated accordingly. The proofs verify a growing list of
properties, including functional accuracy, binary accuracy,
security properties of integrity, confidentiality, and avail-
ability. Some of the verified features include isolation to
separate components within the system to ensure that one
component cannot interfere with or undermine the operation

of another component. SeL4 also offers flexibility, which
makes it a foundation for a variety of systems, ranging from
microcontrollers to complex servers.

In terms of performance, seL4 has been designed for
efficient operation and low overhead, making it suitable for
use in resource-constrained systems. To establish a concept
of trust, the seL4 microkernel reduces the amount of code
executed at higher privileges byminimizing the thread control
block, a data structure that records the information about a
thread, including its current state, stack pointer, and register
contents. Reducing the TCB size is important for establishing
trust because this means that there are fewer opportunities for
bugs and vulnerabilities to be exploited by attackers, as there
is less code that they can potentially target. Furthermore, seL4
highlights formal and mathematical correctness, ensuring
the kernel is bug-free. SeL4 also enhances security through
fine-grained access control using capabilities, which are
tokens that support control over which entity has access to a
certain resource in a system. We summarize the key features
of microkernels in Table 1, which explicitly illustrate seL4
is outstanding compared to other microkernels in terms of
formal verification.

C. FORMAL METHODS IN A NUTSHELL
Formal methods are a set of techniques used to design
and verify computer systems that can guarantee the desired

101752 VOLUME 11, 2023



M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

properties or requirements. These methods rely onmathemat-
ical models and logic to provide a rigorous and systematic
approach to designing and verifying software and hardware
systems, especially in high-security systems. These systems
have strict requirements for security and confidentiality, and
any failure in the system can have serious consequences. One
of the key concepts in designing high-security systems is
the Trusted Computing Base which is the set of functions
and components in a system that are critical to maintaining
security and confidentiality. It is defined by the United
States Department of Defense Orange Book [22] as the part
of the computer system that contains all of the elements
responsible for supporting the security policy and enforcing
the isolation of objects. Hence, by using formal methods,
designers can systematically analyze the system to identify
potential vulnerabilities.

Formal methods are classified into three approaches
i.e., Refinement, Theorem Proving, and Model Checking.
Figure 2 shows the classification of these approaches
according to their application in modeling and defining the
kernels specifications [23].

1) REFINEMENT
Refinement creates complex systems starting from simple
ones by adding features incrementally as it can adapt
to new and changing requirements. In other words, it is
the verifiable conversion of a high-level abstract formal
specification into a real low-level executable program. The
refinements are complemented with mathematical proofs that
validate them. Refinement has been performed for artifacts
ranging from modeling and design levels like architectures
to implementation and programming levels like source
code [24].

2) THEOREM PROVING
Theorem Proving uses mathematical logic to describe the
system and the intended features. A formal system, which
describes a group of principles and inference guidelines,
provides this logic. Discovering a proof for a feature using the
system’s principles is known as theorem proving. Theorem
provers can be categorized into a spectrum ranging from
highly automated, general-purpose software interactivity
platforms with specialized features. The automated platforms
are beneficial as a complete search process and have a
good track record of solving different complex issues. The
automated formal methods and systematic formal growth of
mathematics have benefited more from interactive systems.

3) MODEL CHECKING
Model Checking depends on creating a finite model of a
system and checking that the specified feature maintains
in that model. Generally, the verification is carried out as
a complete search of state space, which is assured to end
because the model is finite. Designing data structures and
algorithms that enable us to manage search spaces is the

primary challenge in model checking. The application of this
method began with hardware [25]; currently, it is used to
analyze the specifications of software systems. Contrary to
theorem proving, model checking is completely automatic
and fast, often generating an answer in a matter of minutes.
Thus, verifying the accuracy of software designs using model
checking is a helpful technique.

However, due to their greater complexity and scale, it is
less appropriate for confirming the accuracy of software
implementations [26]. For instance, model checking is
usually not applied to programs with more than 10,000
lines of code. Model checking can be combined with other
verification techniques to handle the complexity of bigger
programs. Model checking can be used in combination with
other methods to enhance the testing process and guarantee
the accuracy of intricate software systems.

D. FORMAL VERIFICATION OF SEL4
The downsizing of microkernels has made them more modu-
lar, with various components relying heavily on one another.
However, with the use of advanced methods and thoughtful
design, it is possible to fully verify an OS microkernel,
as stated by the seL4 team. The formal verification of seL4
includes twomain refinement phases: a) between abstract and
executable specification and b) between executable specs and
implementation [28].

1) FIRST REFINEMENT STEP
The first phase of refinement took around 8 person-years
and manually generated 117,000 lines of Isabelle/HOL proof
script. The abstract specification of the OS is transformed into
a more detailed and executable specification. This transfor-
mation involved making decisions about the algorithms and
data structures that will be used to implement the system.
This phase consisted of the conceptual proof and analyzing
the design’s execution safety and correctness of components.
Fundamental prerequisites of the validation are that each
operation is precisely described, that accesses to memory are
properly classified and that objects that are read from do still
valid.

2) SECOND REFINEMENT STEP
During this step, the focus was on developing a systematic
approach to generating invariants and the underlying proof
obligations. This was done to address the significant amount
of proof work required in the first phase, where 80%
of the work was spent on presenting invariants of the
executable levels. The invariants are crucial for establishing
the correlation between the abstract specification and the
implementation of the OS. Furthermore, by developing
a systematic approach to generating invariants, the proof
work required is streamlined and reduces the amount of
manual effort involved. The second refinement step is
essential to ensure the correctness and safety of the OS’s
implementation.

VOLUME 11, 2023 101753



M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

FIGURE 2. Classification of formal methods and tools.

III. WHAT COMPONENTS OF A MICROKERNEL NEED TO
BE VERIFIED?
Generally, microkernel verification should include verifying
essential components including scheduling, exception man-
agement, isolation, access control automation, etc. However,
seL4 has some inherent limitations that make it inefficient
in full verification. For instance, the initial verification of
the seL4 kernel used C and the compiler turned high-level
language into machine code. This resulted in the verification
results not being entirely valid, as there was a risk of the
compiler introducing errors into the code.

To make the seL4 verification process more efficient, some
changes need to be made. One approach is to employ a
formalized verification process based on machine language,
as was done in the team’s most recent study, published in
2017 [29]. This approach is more reliable and accurate than
the initial kernel verification effort using C, as it eliminates
the risk of the compiler introducing errors into the code.
Another approach is to use a concurrent program verification
approach that is suitable for seL4’s coding language. This
will enable the verification of highly concurrent components,
which may not be possible with the current serial program
verification approach.

In the remainder of this section, we discuss recent work
that could boost the formal verification of seL4 and related
kernels, beyond their machine language-based proofs.

A. LAYERED VERIFICATION
While the seL4 kernel is known for its innovative approach
to correctness verification, the process of formally defining
and proving the system’s properties is slow. The seL4
kernel formalization is composed of over 200,000 lines of
Isabelle/HOL code that have undergone a formal definition

and verification process and in excess of 8,700 lines of C
code. The verification process took 20 person-years of work,
highlighting the significant effort and resources required to
ensure the system’s correctness. Layered verification is a
process that separates verification into manageable modules
and therefore could reduce the overall proof effort. The major
goal of layered verification is to allow simplification of the
proof process, especially by abstracting away some lower
level details and also allowing for reuse of specifications
and proofs of modules outside of a layer that is modified.
This section discusses one related project which used layered
verification when verifying kernel scheduling.

The idea of separation kernel [30] emanates from the
concept of multiple independent levels of security/safety
(MILS) [31]. MILS creates several distinct domains with var-
ious security degrees on the same hardware. Boettcher et al.,
used MILS as a two-level mechanism to provide security to
system architecture [30]. In terms of policies, analysis of a
virtual design is accomplished while inspecting the validated
objects and the transmitting channels. One of the key
goals of MILS systems is layered verification and allowing
a great reduction in proof efforts [32]. Literally, MILS
provides implementation and intercommunication channels,
to exchange resources through communication channels
without threatening the consistency of the system. Thus,
it entails security practices that assure full data isolation
across the domains and minimize the complexity of validated
components.

As a way to provide data isolation features, it is crucial
to certify and check how a kernel’s schedule section has
been implemented. Inappropriate designs of scheduling can
negate necessary separation properties and break down the
whole system. In this regard, Gao et al. [33] presented

101754 VOLUME 11, 2023



M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

a layered verification to verify pointer linked-list through
function ’list_add_tail’ and employ a technique to decouple
data structure that significantly reduces the complexity of
verification. The original code has 320 lines, compared
to 32 lines in the restructured old code (including the
data structure). They first separate the function’s intricate
structure into autonomous functions and then write the
code in Clight code format by using the Clightgen tool
of CompCert [34]. The next step is the creation of the
specification of the abstraction/ implementation layer and
at last, it verifies the integrity of the specifications of the
abstraction/implementation layer and proves the functional
correctness of this function. It would be useful to find
a way to implement this type of layered verification
in seL4.

B. EXCEPTION MANAGEMENT
A vital and time-consuming phase of system development is
detecting and managing exceptions that may occur during
process execution. Formal modeling and verification of
exceptions is a difficult process, and not always well handled
in system verification. It is essential to verify exceptions
and exception handling to ensure that security vulnerabilities
do not exist in this critical part of the system. This section
discusses approaches to formalizing and verifying exception
handling systems.

When a process is invoked, conditions are checked to
validate the invocation context. If a condition is not met,
the process is not executed and an exception is signaled to
the invoker to run proper handling techniques. As a function
module, exception management is generally implemented
in assembly language and is in charge of implementing
unexpected modifications in the control flow to respond
to exceptional events. Unfortunately, to facilitate formal
models, the current verification initiatives either neglect to
simulate how exceptions are handled or employ methodolo-
gies according to the abstraction layer to certify the accuracy
of exception management [35]. seL4 implements an event-
driven model, where exceptions are delivered to a central
handler and processed according to a set of predefined
rules. However, it disables nearly all asynchronous interrupts
during kernel runtime and implements suspend points using
polling. By polling, a program can periodically check for
these signals and then take appropriate action based on the
results.

There is some research that leverages conceptual specifi-
cations to explain how the system behaves against exception
management in C [37]. Liu et al. [38] attempted to employ
an approach that uses multi-threaded proof to show the cor-
rectness of their work. Because there are no formal semantic
support for interrupts, their proposed model involves defining
the meaning of an interrupt using the same semantics as
threads. However, there is some slight distinction between
interrupts and threads, so it can be hard to explain the interrupt
semantics.

Micro-certified OS kernel (mCertiKOS) [39] is another
approach that is designed to be more modular and flexible
than seL4, which makes it easier to extend and adapt to
different use cases. In mCertiKOS, exceptions and interrupts
are managed by a small set of kernel code, which is isolated
from the rest of the OS and subject to formal verification.
This design helps to ensure that exceptions and interrupts
are handled securely and reliably, without compromising
the rest of the system. When an exception or interrupt
occurs, the relevant handler in the mCertiKOS kernel is
executed to handle the event. This may involve altering the
state of the system, generating an error message, or taking
other actions to respond to the exception. The handling of
exceptions and interrupts is designed to help to ensure that
the system remains reliable and responsive even in the face
of unexpected events.

Ma et al. proposed verification of Real-Time Exception
Management SPARCv8 (EMS) [40] which focuses on
improving the performance of exception handling in a
computer system and verified based on Hoare logic. It is
a hybrid mechanism that combines the hardware exception
handling approach with software exception handling. The
idea is to offload some of the overhead of hardware exception
handling to software, while still preserving the benefits of
hardware-based exception handling, such as low latency
and high reliability. The EMS approach has been shown
to provide significant performance improvements compared
to traditional hardware exception-handling approaches. seL4
and the EMS approach differ in their goals, with seL4
focusing on security and the EMS approach focusing on
performance, but both aim to improve the handling of
exceptions in OS.

C. I/O SEPARATION
I/O separation is a design principle used in microkernels,
which involves separating Input/Output (I/O) operations from
other system functions and moving them into separate, user-
space processes or servers. While formal verification of the
seL4 microkernel can provide a high level of confidence in
its ability to isolate I/O, it is not adequate by itself to ensure
that I/O separation is foolproof. If the separation fails, this
can lead to security vulnerabilities. This section discusses an
approach to formalizing I/O separation, even for commodity
devices, and also uses a layered approach similar to that used
in Section III-A.
As I/O separation depends on some factors beyond just

the code of the microkernel. For example, the hardware
architecture and configuration can affect the ability of the
system to provide I/O separation. In case the hardware is not
properly configured, or if there are bugs or vulnerabilities
in the hardware, then this can compromise the ability of the
software to provide I/O separation.

SeL4 can maintain static I/O isolation but typical Com-
modity I/O hardware often cannot distinguish between the
isolated program code, and the transfers between I/O. Despite

VOLUME 11, 2023 101755



M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

employing outstanding hardware, systems often compromise
separation guarantee in favor of improved performance.
To address this, Yu et al. [40] developed a formal model for
I/O separation, which highlights a separation policy based
on the authorization of I/O transfers and independent of
hardware. Drivers are separated by I/O kernels in various
methods; some do it within the I/O kernels, while others do
it within the applications. Device activation is supported by
some I/O kernels while static activation only is supported
during system startup. Thus, Yu et al.’ layered design, which
lists important I/O components followed by descriptions of
the abstract state, provides a general overview of devices,
drivers, and I/O objects, and results in a verified assembly
implementation. The components can communicate with
one another using a variety of I/O methods. For example,
CPUs can read/write memory using Direct Memory Access
(DMA), read and write devices using Memory-Mapped
I/O (MMIO), and stop the current execution of CPUs via
interrupts.

D. AUTOMATING CAPABILITIES
Formal verification of a system validates that the system
behaves as specified. However, useful systems are pro-
grammable/configurable to allow for deployment for many
applications. We can verify that a system supports the
configured security policy, but do we know that the configure
policy is actually the policy we want? This section discussed
automating the configuration of capabilities in seL4 to assist
in this process.

After the seL4 system boots up, it hands a set of
capabilities to the initial user process, referred to as the
root task. Generally, the root task is responsible for starting
new processes and assigning capabilities to them. However,
manually setting up the capability-based access control
managed by the kernel can be time-consuming and prone
to mistakes. To address these issues, Kuz and colleagues
introduced the Capability Distribution Language (CapDL),
a language designed to simplify the process of distributing
capabilities [41]. Accordingly, Boyton et al. presented a
formal verification for the root task, that enables the starting
of a system using a CapDL specification [42] and helps to
ease the workload for developers.

One of the visions of seL4 is to use component archi-
tectures and also the possibility to verify entire systems.
To achieve this, the language called Component Architectures
for Microkernel Embedded Systems (CAmkES) [43] was
developed by Kuz et al. This architecture description
language enables system engineers to write a description of
a seL4 system’s process, task, and component architecture
in a concise form. The CAmkES tool takes this description,
generates the necessary RPC stub code for implementing
seL4 communication scheme, and produces a CapDL spec-
ification for the root task. With the help of CAmkES,
components can be set up to communicate according to
seL4 patterns, allowing for sending and receiving and calling

and replying. It will determine the required number of
threads and endpoints and set up the virtual memory for
components.

Later, Fernandez et al. extended the capabilities of
CAmkES to generate machine-checkable proofs using
Isabell/HOL [44]. This marked significant progress in
the effort to build a fully verified system. With three
elements in place: 1) proven binary correctness of seL4,
2) proven accurate beginning of CapDL, and 3) Machine-
verifiable proofs of the RPC stub code for CAmkES, system
engineers only need to demonstrate that the ‘‘business
logic’’ of their parts is accurate. However, writing CapDL
specifications can still be challenging, due to their size and
complexity.

E. APPLICATION DEVELOPMENT
Formal verification of a system such as seL4, only verifies
the system as shipped. When developers build applications
on top of that system, there is a need for some validation
that those applications are secure. We know that a developer
can build a simulator of an insecure system on top of any
secure system. This section surveys approaches to verifying
application development, which benefit from using a layered
approach knowing that the application is built on top of a
secure OS kernel.

Since the efficient functionality of seL4 makes it amenable
to high-assurance design, developers may need to create
mixed-criticality systems where all of the components
are not required to be verified to the highest degree of
criticality. Moreover, regarding the system architecture,
a firm separation foundation can facilitate modification,
without solely involving the recertification of other objects.
However, it dictates that they typically only offer lower-level
configuration methods, with a focus on memory blocks,
functions, etc. Thus, although the use of seL4 is for a full
system, the separation assurance of the kernel is not adequate;
understanding application logic properly, security policies,
and practices for design is significantly challenging.

Several code generation approaches tried to address this
issue [45], [46], [47], [48]. As an example, consider the
Refinement of AADL Models for Synthesis of Embedded
Systems (RAMSES) tool [47]. The refinement phases are
directed by developer-defined properties for the desired sys-
tem, through analyzing the objects and resources that evaluate
features versus necessities and platform capabilities. After
reaching an adequate model, RAMSES creates a C compo-
nent infrastructure, that can be placed on Linux, nxtOSEK,
and POK. It has been employed in avionics, railway, and
robotics domains. In the aeronautics area Cofer et al. [48]
have proposed a formally verified implementation of aerial
vehicles using multiple tools; for instance, jKind model
checker [49], which assures the correctness of components
and Isabelle/HOL theorem prover to guarantee that system
execution semantics is according to the model. As another
example, Trusted Build [47] was proposed in the DARPA

101756 VOLUME 11, 2023



M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

TABLE 2. Comparison of research on different features of seL4 formal verification.

High Assurance Cyber Military Systems (HACMS) Program
by Collins Aerospace. This approach created a framework for
seL4 fromAADL using the CAmkESmodeling language and
was crucial in outlining the model-based creation for seL4
perspective.

In recent work, Hatcliff et al. [50], introduceHAMR (High-
Assurance Model-based Rapid engineering) for embedded
cybersystems which is built using AADL. HAMR is a
component of the larger set of tools known as BriefCASE,
which Collins Aerospace [51] presented. TheModel-founded
Systems Engineering (MBSE), on which BriefCASE is
founded, uses models as the primary means of communi-
cation and comprehension between the groups in charge of
the system’s design. Moreover, Model-driven Development
(MDD) models in BriefCASE are counted as the initial
approach applied for analysis, testing, verification, and
generating source code.

Question: Is formal verification of seL4 adequate to
address security challenges?

The answer to this question depends on what functionality
you need from seL4. If we look at the work discussed in this
section, we see that researchers feel there are areas that need
improvement. According to the fact that seL4’s focus is on
providing a strong foundation for building secure systems
by low-level security guarantees, a high-level functionality
is required to address the features used in this section. For
instance, supporting application development in embedded
cyber-systems needs libraries, tools, and application pro-
gramming interfaces for developing applications. As another
example, automating capabilities and exception management
may require a more advanced process management system
that can enforce fine-grained access control policies. In addi-
tion, MILS scheduling may require real-time scheduling
capabilities that do not exist in seL4. Similarly, I/O separation
may require a more sophisticated I/O subsystem that can
isolate different components and prevent malicious actors
from accessing sensitive information. Table 2 illustrates
a detailed overview of verification efforts proposing an
improvement of seL4 which is sorted based on the time of
release.

IV. FUTURE WORK
Determining which direction will be taken on sel4 formal
verification depends on the priorities and goals set by
the researchers and developers. However, here are a few
possibilities based on current trends in the field:

• Expanding coverage. There is ongoing work to formally
verify more parts of the seL4 system, including device
drivers, libraries, and protocols.

• Improving scalability. As seL4 systems grow in scale
and complexity, there is a need to improve the scalability
of formal verification methods to handle larger andmore
complex systems.

• Enhancing security. Formal verification is essential to
ensure the security of seL4. Focusing on verifying
security properties, such as confidentiality and integrity,
and ensuring the absence of vulnerabilities should be
considered.

• Integrating with other tools. Integrating seL4 formal
verification with other tools, such as automated testing
and code generation, to improve the overall development
process and increase the efficiency of verification could
be another promising work in this field.

Although this paper presents an overview of what prop-
erties of enhancement to seL4 and related formal methods,
some of the features have not been completely addressed, i.e.
automating capabilities.

V. CONCLUSION
The use of formal method tools in the initial stages of the soft-
ware development cycle has proven crucial in ensuring strong
cybersecurity in high-assurance systems. Operating system
kernels are a vital component of most computer systems,
and their continuous advances require formal verification
to guarantee the accuracy of their functionalities. While
seL4 has been provenmathematically secure and functionally
correct, there are still some security aspects of verification
that suffer from a limited scope. This paper evaluates
the adequacy of seL4 formal verification in addressing
security requirements and surveys recent work that presents
an expansion on seL4 formal verification. Based on our
research, it is evident that seL4 is well-suited for building
secure systems by providing low-level security guarantees.
However, high-level functionality such as libraries, tools, and
APIs are required to address the features used in this section,
such as supporting application development in embedded
cyber-systems. Therefore, whether seL4 formal verification
is adequate to address security challenges depends on the
specific functionality required from seL4. Nonetheless, the
continuous advances in microkernel development require a
comprehensive approach to formal verification to guarantee

VOLUME 11, 2023 101757



M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

the accuracy of the system’s functionalities and ensure strong
cybersecurity in high-assurance systems.

REFERENCES
[1] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,

D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, ‘‘SeL4: Formal verification of an OS kernel,’’ in Proc.
ACM SIGOPS 22nd Symp. Operating Syst. Princ., Oct. 2009, pp. 207–220.

[2] M. D. Schroeder, D. D. Clark, and J. H. Saltzer, ‘‘The multics kernel design
project,’’ ACM SIGOPS Operating Syst. Rev., vol. 11, no. 5, pp. 43–56,
Nov. 1977.

[3] M. Hohmuth and H. Härtig, ‘‘Pragmatic nonblocking synchronization for
real-time systems,’’ in Proc. USENIX Annu. Tech. Conf., Gen. Track, 2001,
pp. 217–230.

[4] (2022). QNX. [Online]. Available: http://www.qnx.com/
[5] (2022). Fuchsia Overview. [Online]. Available: https://fuchsia.

dev/fuchsia-src/concepts/
[6] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,

R. Fairbairns, and E. Hyden, ‘‘The design and implementation of an
operating system to support distributed multimedia applications,’’ IEEE
J. Sel. Areas Commun., vol. 14, no. 7, pp. 1280–1297, 1996.

[7] K. Sakamura, ‘‘ITRON: An overview,’’ in TRON Project 1987 Open-
Architecture Computer Systems: Proceedings of the Third TRON Project
Symposium. Tokyo, Japan: Springer, 1987, pp. 29–34, doi: 10.1007/978-4-
431-68069-7_3.

[8] C. L. Coffing, ‘‘An x86 protected mode virtual machine monitor for
the MIT exokernel,’’ Doctoral dissertation, Massachusetts Inst. Technol.,
Cambridge, MA, USA, 1999.

[9] (2023). Genode. [Online]. Available: https://genode.org/
[10] N. H.Walfield, ‘‘Viengoos: A framework for stakeholder-directed resource

allocation,’’ in Proc. EuroSys Conf. Nuremberg, Germany, Apr. 2009.
[Online]. Available: https://api.semanticscholar.org/CorpusID:55777526

[11] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers, ‘‘Nooks:
An architecture for reliable device drivers,’’ in Proc. 10th Workshop ACM
SIGOPS Eur. Workshop, 2002.

[12] (2022). Redox. [Online]. Available: https://www.redox-os.org/
[13] J. Fan, N. E. Heckman, and M. P. Wand, ‘‘Local polynomial kernel

regression for generalized linear models and quasi-likelihood functions,’’
J. Amer. Stat. Assoc., vol. 90, no. 429, pp. 141–150, Mar. 1995.

[14] S. H. Javaran, N. Khaji, and A. Noorzad, ‘‘First kind Bessel function
(J-Bessel) as radial basis function for plane dynamic analysis using
dual reciprocity boundary element method,’’ Acta Mechanica, vol. 218,
pp. 247–258, May 2011.

[15] H. T. Lin and C. J. Lin, ‘‘A study on sigmoid kernels for SVM and the
training of non-PSD kernels by SMO-type methods,’’ Neural Comput.,
vol. 3, p. 16, Mar. 2003.

[16] R. Kondor and H. Pan, ‘‘The multiscale Laplacian graph kernel,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–9.

[17] M. O. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins,
and J. Weston, ‘‘Support vector regression with ANOVA decomposition
kernels,’’ in Advances in Kernel Methods: Support Vector Learning.
Cambridge, MA, USA: MIT Press, 1999, pp. 285–292.

[18] F. Fleuret and H. Sahbi, ‘‘Scale-invariance of support vector machines
based on the triangular kernel,’’ in Proc. 3rd Int. Workshop Stat. Comput.
Theories Vis., 2003, pp. 1–13.

[19] T. Chen, ‘‘Continuous-time DC kernel—A stable generalized first-
order spline kernel,’’ IEEE Trans. Autom. Control, vol. 63, no. 12,
pp. 4442–4447, Dec. 2018.

[20] D. Kuznetsov and A. Morrison, ‘‘Privbox: Faster system calls through
sandboxed privileged execution,’’ in Proc. USENIX Annu. Tech. Conf.,
2022, pp. 1–16.

[21] J. Liedtke, ‘‘Improving IPC by kernel design,’’ in Proc. 14th ACM Symp.
Operating Syst. Princ. New York, NY, USA: Association for Computing
Machinery, 1993, pp. 175–188.

[22] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan, ‘‘Trusted
computer system evaluation criteria: A general model of wireless
interference,’’ in Proc. MobiCom, Montréal, QC, Canada. New York, NY,
USA: Association for Computing Machinery, 2007, pp. 171–182, doi:
10.1145/1287853.1287874.

[23] R. C. Bhushan and D. K. Yadav, ‘‘A survey on formal verification of
separation kernels,’’ Recent Adv. Comput. Sci. Commun., vol. 15, no. 6,
pp. 832–850, Jul. 2022.

[24] A. Cavalcanti, A. Sampaio, and J. Woodcock, Refinement Techniques
in Software Engineering: First Pernambuco Summer School on Software
Engineering, vol. 3167. Recife, Brazil: Springer, 2006.

[25] E. M. Clarke and J. M. Wing, ‘‘Formal methods: State of the art and future
directions,’’ACMComput. Surveys, vol. 28, no. 4, pp. 626–643, Dec. 1996.

[26] D.M.G.María and P.Merino,Model Checking Software. Berlin, Germany:
Springer, 2018.

[27] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser, ‘‘Comprehensive formal verification of
an OS microkernel,’’ ACM Trans. Comput. Syst., vol. 32, no. 1, pp. 1–70,
Feb. 2014.

[28] G. Klein, P. Derrin, and K. Elphinstone, ‘‘Experience report: SeL4:
Formally verifying a high-performance microkernel,’’ in Proc. 14th ACM
SIGPLAN Int. Conf. Funct. Program., Aug. 2009.

[29] G. Klein, J. Andronick, G. Keller, D. Matichuk, T. Murray, and
L. O’Connor, ‘‘Provably trustworthy systems,’’ Philos. Trans. Royal Soc.
A, Math., Phys. Eng. Sci., vol. 375, Oct. 2017, Art. no. 20150404.

[30] J. M. Rushby, ‘‘Design and verification of secure systems,’’ ACM SIGOPS
Operating Syst. Rev., vol. 15, no. 5, pp. 12–21, Dec. 1981.

[31] J. A. Foss, P. W. Oman, C. Taylor, and W. S. Harrison, ‘‘The MILS
architecture for high-assurance embedded systems,’’ Int. J. Embedded
Syst., vol. 2, p. 239, Jan. 2006.

[32] C. Boettcher, R. DeLong, J. Rushby, and W. Sifre, ‘‘The MILS component
integration approach to secure information sharing,’’ in Proc. IEEE/AIAA
27th Digit. Avionics Syst. Conf., Oct. 2008, pp. 1.C.2-1–1.C.2-14, doi:
10.1109/DASC.2008.4702758.

[33] Y. Gao, X. Yang, W. Guo, and X. Lu, ‘‘Verification of MILS partition
scheduling module using layered methods,’’ Int. J. Future Comput.
Commun., vol. 10, pp. 45–52, Dec. 2021.

[34] R. Krebbers, X. Leroy, and F. Wiedijk, ‘‘Formal C semantics: CompCert
and the C standard,’’ in Interactive Theorem Proving. Berlin, Germany:
Springer, 2014.

[35] Z. Ma, L. Qiao, M.-F. Yang, S.-F. Li, and J.-K. Zhang, ‘‘Verifica-
tion of real time operating system exception management based on
SPARCv8,’’ J. Comput. Sci. Technol., vol. 36, no. 6, pp. 1367–1387,
Dec. 2021.

[36] H. Chen, X. Wu, Z. Shao, J. Lockerman, and R. Gu, ‘‘Toward
compositional verification of interruptible OS kernels and device drivers,’’
in Proc. 37th ACM SIGPLAN Conf. Program. Lang. Design Implement.,
Jun. 2016.

[37] F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, and Z. Li, ‘‘A practical
verification framework for preemptive OS kernels,’’ in Proc. Int. Conf.
Comput. Aided Verification. Toronto, ON, Canada: Springer, 2016,
pp. 59–79.

[38] H. Liu, H. Zhang, Y. Jiang, X. Song, M. Gu, and J. Sun, ‘‘IDola: Bridge
modeling to verification and implementation of interrupt-driven systems,’’
in Proc. Theor. Aspects Softw. Eng. Conf., Sep. 2014.

[39] (2017). mCertiKos. [Online]. Available: https://github.
com/zjusbo/mcertikos

[40] M. Yu, V. Gligor, and L. Jia, ‘‘An I/O separation model for formal
verification of kernel implementations,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2021, pp. 572–589.

[41] I. Kuz, G. Klein, C. Lewis, and A. Walker, ‘‘CapDL: A language for
describing capability-based systems,’’ in Proc. 1st ACM Asia–Pacific
Workshop Workshop Syst., Aug. 2010, pp. 31–36.

[42] A. Boyton, J. Andronick, C. Bannister, M. Fernandez, X. Gao,
D. Greenaway, G. Klein, C. Lewis, and T. Sewell, ‘‘Formally verified
system initialisation,’’ in Formal Methods and Software Engineering.
Queenstown, New Zealand: Springer, 2013, pp. 70–85.

[43] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, ‘‘CAmkES: A component model
for secure microkernel-based embedded systems,’’ J. Syst. Softw., vol. 80,
no. 5, pp. 687–699, May 2007.

[44] M. Fernandez, J. Andronick, G. Klein, and I. Kuz, ‘‘Automated verification
of RPC stub code,’’ inFM2015: FormalMethods. Oslo, Norway: Springer,
2015.

[45] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, ‘‘Ocarina: An environment
for AADL models analysis and automatic code generation for high
integrity applications,’’ in Proc. Int. Conf. Reliable Softw. Technol. Brest,
France: Springer, 2009, pp. 237–250.

[46] M. Sudvarg and C. Gill, ‘‘A concurrency framework for priority-aware
intercomponent requests in CAmkES on seL4,’’ in Proc. IEEE 28th Int.
Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2022,
pp. 1–10.

[47] E. Borde, S. Rahmoun, F. Cadoret, L. Pautet, F. Singhoff, and
P. Dissaux, ‘‘Architecture models refinement for fine grain timing analysis
of embedded systems,’’ in Proc. 25nd IEEE Int. Symp. Rapid Syst.
Prototyping, Oct. 2014, pp. 44–50.

101758 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-4-431-68069-7_3
http://dx.doi.org/10.1007/978-4-431-68069-7_3
http://dx.doi.org/10.1145/1287853.1287874
http://dx.doi.org/10.1109/DASC.2008.4702758


M. S. Siapoush, J. Alves-Foss: Is Formal Verification of seL4 Adequate

[48] D. Cofer, A. Gacek, J. Backes, M. W. Whalen, L. Pike, A. Foltzer,
M. Podhradsky, G. Klein, I. Kuz, J. Andronick, G. Heiser, and D. Stuart,
‘‘A formal approach to constructing secure air vehicle software,’’
Computer, vol. 51, no. 11, pp. 14–23, Nov. 2018.

[49] A. Gacek, J. Backes, M. Whalen, L. Wagner, and E. Ghassabani,
‘‘The JKind model checker,’’ in Proc. Int. Conf. Comput. Aided Verifica-
tion. Oxford, U.K.: Springer, 2018, pp. 20–27.

[50] J. Hatcliff, J. Robby, and T. Carpenter, ‘‘HAMR: AnAADLmulti-platform
code generation toolset,’’ in Proc. Int. Symp. Leveraging Appl. Formal
Methods. Rhodes, Greece: Springer, 2021, pp. 274–295.

[51] D. Cofer, I. Amundson, J. Babar, D. Hardin, K. Slind, P. Alexander,
J. Hatcliff, G. Klein, C. Lewis, E. Mercer, and J. Shackleton, ‘‘Cyberas-
sured systems engineering at scale,’’ IEEE Secur. Privacy, vol. 20, no. 3,
pp. 52–64, May 2022.

MINA SOLTANI SIAPOUSH (Graduate Student
Member, IEEE) received the M.S. degree in soft-
ware engineering from Islamic Azad University,
Iran, in 2018. She is currently pursuing the
Ph.D. degree in computer science with the Center
for Secure and Dependable Systems, University
of Idaho. Since Fall 2022, she has been a
Research Assistant with the Center for Secure
and Dependable Systems, University of Idaho.
Her research interests include dependable systems,

formal verification, software-defined networking (SDN), and big data.

JIM ALVES-FOSS (Senior Member, IEEE)
received the B.S. degree in physics and mathemat-
ics and computer science and the M.S. and Ph.D.
degrees in computer science from the University
of California at Davis, Davis, CA, USA, in 1987,
1989, and 1991, respectively.

He has been a Professor with the University of
Idaho, since 1991, taking a two-year sabbatical
with the University of California at Davis,
from 2001 to 2003. Since 1999, he has been the

Director of the Center for Secure and Dependable Systems, University of
Idaho. He is currently a Distinguished Professor of computer science with the
University of Idaho. His research interests include the design and analysis of
secure systems, including formal methods, automated vulnerability analysis
and repair tools, and secure software development practices.

Dr. Alves-Foss was the Team Captain of one of the seven finalist teams in
the DARPACyber Grand Challenge, held from 2014 to 2016. His two-person
team competed against several larger teams in the development of automated
software vulnerability analysis and patching tools.

VOLUME 11, 2023 101759


