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ABSTRACT Modern cyber-physical systems (CPS) are interdependent, mechanical and IT components that
support operations in most of society’s critical infrastructures. Time and again history has proven that CPS
are vulnerable to numerous types of threats, ranging from safety accidents to cybersecurity malicious attacks.
Current research focuses on analyzing the various input vectors in CPS, whether mechanical or IT, to detect
and patch flaws and vulnerabilities to mitigate potential impact in operation. Still, there is little work that can
inherently analyze the software-based implementation of modern CPS with complex behavior and failure
modes. The only vaguely relevant approach involves an operations-based experimentationmethodology from
NetFlix named chaos engineering (CE) that tests use cases on complex Content Delivery Networks (CDN)
to build confidence in their capability to withstand turbulent conditions in production. Conditions can range
from hardware failures to DoS attacks, to a malformed injection appearing in a runtime configuration param-
eter. Yet this approach was only tested on software based CDN, and not on CPS with industrial actuators and
mechanical parts that control physical processes. In this paper, we introduce a novel framework that combines
CE with digital twin (DT) technology to enhance the detection of operational vulnerabilities and increase the
resilience of CPS. To achieve this objective, we integrated CE experimentation into the simulation phase of
DT models using material flow networks. This allows us to assess system resilience during the operational
stage without disrupting critical operations and identify vulnerable flows and processes within the modeled
system. To evaluate the effectiveness of our approach, we conduct experiments on a DT that models a
real-world Liquefied Petroleum Gas purification process from an existing oil refinery in the Mediterranean
area. The results of these experiments demonstrate the method’s effectiveness in capturing the heightened
susceptibility of the Gas purification process to adverse events.

INDEX TERMS Cyber-physical systems, critical infrastructure protection, chaos engineering, digital twins,
resilience, simulation, LPG purification process.

I. INTRODUCTION
Cyber-physical systems (CPS) are complex systems that inte-
grate critical physical processes, computation, networking,
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and information and communication technologies (ICT) [1].
A key requirement for CPS is increased resilience during
operation since most CPS support industrial plants and crit-
ical infrastructure operations. Resilience is defined as ‘‘the
ability of a system to withstand various disruptions, such as
natural disasters, cyber-attacks, equipment failures, or human
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errors, by maintaining an acceptable level of performance,
mitigating the severity of unstable states, and responding to
disruptive events’’ [2].
In spite of their importance, safety and (cyber)security

concerns continue to hinder their deployment [3], [4]. Recent
cyber-physical incidents, such as the Colonial Pipeline shut-
down and Oldsmar’s water treatment cyberattack, have
highlighted the vulnerabilities of CPS, resulting in economic,
social, legal, and political consequences [5], [6].
One of the critical challenges in enhancing CPS resilience

lies in effectively integrating various resilience technologies
to enhance the system’s ability to withstand interference
while minimizing the impact on system availability [6]. Cur-
rent research focuses on analyzing the various input vectors
in CPS, whether mechanical or IT, to detect and patch flaws
and vulnerabilities to mitigate potential impact in operation.
Still, there is little work that can inherently analyze the
software-based implementation of modern CPS with com-
plex behavior and failure modes. Some techniques exist to
assess the resilience of physical systems from an engineering
perspective, including simulation approaches that often rely
on experts to input new parameters, and experimentation
methods, such as hardware-in-the-loop experiments [7], [8],
[9]. These are typically specific to the application and safety
scenarios under test and do not follow systematic experimen-
tation steps nor can they detect vulnerabilities that stem from
the complex nature of such systems [10], [11], [12], [13].

A. THE CHAOS ENGINEERING METHODS
To our knowledge, the onlywork that is slightly relevant to the
presented approach involves an operations-based experimen-
tation methodology from Netflix named chaos engineering
(CE) that tests use-cases on complex Content Delivery Net-
works (CDNs) to build confidence in their capability to
withstand turbulent conditions in production [14]. Condi-
tions can range from hardware failures to DoS attacks, to a
malformed injection appearing in a runtime configuration
parameter. Yet, this approach was only tested on software-
based CDN, and not on CPS with industrial actuators and
mechanical parts that control physical processes.

Our work demonstrates the potential benefits of using
CE to enhance the operational resilience of CPS, providing
decision makers with valuable insights into the weaknesses
of the system.

The CE process involves three basic steps to control testing
(see Fig. 1): (i) Steady state definition, (ii) hypothesis formu-
lation, and (iii) experimentation.

The first step in any CE method [15], [16] is to describe
and model the steady state of the system or under test, which
serves as a baseline for its expected behavior under a wide
range of normal conditions. The second step involves the
formulation of a hypothesis based on this steady-state using
measurable system outputs. The third step involves design-
ing the experiment and varying the inputs to the system to
reflect realistic adverse conditions. Finally, the experiments

FIGURE 1. Key CE experimentation steps.

are run within the system’s production environment to test the
hypothesis and identify any differences between the steady
state and experimental conditions. The main goal of these
experiments is to disprove the hypothesis, highlighting any
weaknesses or vulnerabilities in the system that need to be
addressed to enhance its overall reliability and resilience.

B. DIGITAL TWINS AND MATERIAL FLOW NETWORKS
During the experimentation stage, the CE methodology
requires tests to be conducted in the production environment.
However, testing chaotic variations in real-world critical pro-
cesses is infeasible due to complexity and safety concerns.
Therefore, we performed our CE experiments on a DT model
of the physical system. A DT is a virtual replica of a physi-
cal product or system used to understand and anticipate the
behavior of the original copy [17]. The DT model is built
using Material Flow Networks (MFN), which are directed
graphs with nodes representing the locations of material and
energy transformations and storage areas within a produc-
tion line. The edges connecting these vertices represent the
material and energy flows between them [18], [19]. The DT
is frequently updated with real-time information from the
physical system to enable nondisruptive real-time testing,
allowing for proactive observation of the physical system’s
behavior and performance.

C. CONTRIBUTION
Our study builds upon previous research on applying CE
principles to CPS [14] and aims to demonstrate the bene-
fits of using CE to enhance a CPS’s operational resilience.
To achieve this objective, we integrate CE experimentation
[15], [16], into the simulation phase of DT models using
material flow networks (MFNs). This allows us to assess
system resilience during the operational stage without dis-
rupting critical operations and identify vulnerable flows and
processes within the modeled system.

To evaluate the effectiveness of the framework, we conduct
experiments on a DT that models a real-world Liquefied
Petroleum Gas (LPG) purification process from an exist-
ing oil refinery in the Mediterranean area. The results of
these experiments demonstrate the methods effectiveness to
capture the heightened susceptibility of the Gas purification
process to adverse events.

In summary, our study makes the following contributions:

1. We propose a novel framework that combines DTs
and CE using an MFNs to evaluate and improve
CPS resilience in CPS without affecting the physical
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system’s normal operations and availability. Specifi-
cally, our approach:

a. Integrates CE experimentation into the simula-
tion phase of DT models to assess the system’s
resilience during the operational stage of CPS
using real-time data.

b. Facilitates the identification and prioritization of
vulnerable flows and network nodes, allowing
operators to prioritize their security efforts and
develop targeted mitigation measures.

c. Supports the validation of the developed miti-
gation strategies and contingency plans through
continuous evaluation and analysis of system
behavior, ensuring the seamless operation of the
system.

2. We validate the effectiveness and reliability of the pro-
posed approach through CE experiments conducted on
a real-world LPG purification unit from a plant operat-
ing in the wider Mediterranean area.

To the best of our knowledge, this study is the first to combine
real-world plant DT and CE using MFNs to evaluate and
improve CPS resilience.

D. STRUCTURE
The rest of the paper is organized as follows. Section II dis-
cusses related work and compares approaches, methods, and
frameworks addressing CPS resilience. Section III describes
the proposed CE application framework. Section IV presents
an implementation of the methodology in a real-world exam-
ple and discusses our findings to validate the methodology.
Finally, the results and potential future research are discussed
in Section V.

II. RELATED WORK
In this section, we examine various approaches, techniques,
and algorithms found in the literature to assess the resilience
of CPS. The primary objective of these methodologies is
to evaluate and understand the effects of adverse events,
including cyber threats, and the multidimensional impact of
disruptive incidents on the resilience of CPS across various
sectors [7], [20].

Resilient CPSs require appropriate metrics for evaluat-
ing their critical components. Reference [21] suggests a
resilience metric that quantifies the ability of the system
to recover from an attack within a fixed time interval,
as well as the cost of recovery. Although this metric pro-
vides real-time awareness of the system’s state, it focuses
mainly on recovery and overlooks other essential capabilities
when evaluating CPS resilience. In contrast, [22] proposed
a resilience metric that considers the resist, sustain, and
recovery phases of an underlying CPS. This metric enables
system operators to take corrective actions to minimize dam-
age and enhance resilience. However, it primarily emphasizes
the resilience of the ICS network against cyber threats,
neglecting the assessment of the resilience, performance, and

operational aspects of the physical system. Furthermore, the
focus on cyber threats limits its assessment to incomplete
cyber-physical threat scenarios, thus restricting the compre-
hensive evaluation of the system’s overall resilience and
potential vulnerabilities.

Graph theory is commonly employed to model CPS and
identify vulnerabilities in ICS. In [23], a framework was
proposed for automating security risk analysis and restruc-
turing complex interconnected sensors and devices, which
identifies critical components using dependency risk graphs,
graph minimum spanning trees, and network centrality met-
rics. Similarly, in [24], a graph theory model was developed
to evaluate the security and resilience of a naval water dis-
tribution CPS by assessing the cascading impact of different
anomalies. However, both these methods lack quantitative
analysis to measure the specific impact of these anomalies on
the system output(s) and performance. Without quantitative
analysis, it is challenging to set appropriate resilience targets
and identify areas for resilience improvement. Furthermore,
graph-based modeling methods face the challenge of deter-
mining the appropriate level of detail for representing the
component relationships.

Simulation-based approaches have been developed to
analyze the reliability and resilience of CPS under attack sce-
narios. For example, [25] proposed a Monte Carlo simulation
method to model an ICS threatened by information attacks,
which can significantly disrupt train operations. However,
one challenge with statistical model checking is estimating
the probability of rare events, which often is unfeasible. Other
approaches utilize data analysis, machine learning, and simu-
lations to ensure CPS can withstand adverse events [26]. For
instance, in [27], the authors suggested usingDT andmachine
learning (ML) algorithms to simulate an operational CPS and
perform real-time analysis for the early detection and mitiga-
tion of cyber anomalies and threats. However, ML algorithms
trained on the steady system state may face challenges in
modeling system processes with values that deviate from nor-
mal operating conditions (i.e., adverse events), as they exhibit
limitations, including a bias towards normalcy and limited
extrapolation capability. Recent approaches have advanced
the concept of DTs by incorporating fundamental aspects of
cognition, leading to cognitive DTs that facilitate produc-
tion resilience [28]. Although this modeling approach shares
similarities with our methodology, it focuses on ensuring
resilience by optimizing the system rather than proactively
studying and evaluating resilience by identifying different
system states before, during, and after disruptions.

Numerous techniques exist to detect faults and attacks
in ICS. Dynamic fault testing approaches involve targeted
technical attacks using test inputs to detect program execution
errors and understand the causal relationships among events
in Programmable Logic Controller (PLC) code, as demon-
strated in [29]. Other approaches deploy network-protocol
attacks and monitor target systems for unexpected behav-
iors [30]. Similarly, [31] suggested an efficient and accu-
rate method for estimating performance errors caused by
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denial-of-service (DoS) attacks in networked controlled sys-
tems. In [32], a new method was introduced to account for
delays in ICS components, proposing an algorithm to ensure
system stability and dissipation using fuzzy logic. Mining
invariant values from ICS devices has also been used for
fault detection. Recent approaches have aimed to extract
operational conditions from system logs using data mining
[33]. However, most proposed approaches use sensor data
as datasets; therefore, manipulating sensors and data is a
concern, as implicit confidence in the obtained data may lead
to cyber incidents.

CE experiments address the limitations of functional charts
and specifications for capturing the scale and complexity
of user behavior in modern distributed systems. In addi-
tion, by treating the entire system under test as a single
entity, CE experiments uncovered previously unknown and
unwanted execution states [15]. While CE experiments may
employ fuzzing techniques for input, they do not target spe-
cific software or components but instead consider all ICS
components and field devices as a unified system, observing
the effects of real-world, high-level input on the ICS bound-
ary. In addition, unlike fault analysis and testing techniques
that rely on binary assertion logic or predefined restric-
tions, CE experiments generate new input data and identify
previously unrecognized system states, diverging from the
traditional true/false evaluation approach [15], [34].

Regarding existing CE approaches, the authors of [15]
first introduced CE techniques to verify the reliability of
distributed systems experimentally. They achieved this by
manipulating the boundary state of the components and ana-
lyzing system behavior using an internally developed service
called Chaos Monkey. The concept of Chaos Monkey was
also utilized in [35], where researchers proposed a balanced
use of the service to introduce varying levels of failure into
the network while maintaining its connection and evaluating
its performance based on network-invariant metrics. Other
research has focused on using CE to analyze the execution
states of infrastructure-as-a-service (IaaS) cloud platforms.
For instance, CloudStrike implemented CE principles by
introducing system failures and defects to cloud resources
to study cybersecurity breaches caused by human errors and
misconfigured resources [36], [37]. In [38], the authors intro-
duced an information technology (IT) service management
framework that integrates CE techniques with DTs to test
the resiliency of complex IT services deployed in hybrid
cloud scenarios. This integration allowed them to assess the
robustness of deployed IT services and identify potential
weaknesses. Overall, CE techniques have proven effective in
identifying vulnerabilities, enhancing system resilience, and
providing valuable insights into IT and software systems.

The use of CE experiments in industrial CPS is new,
and to the best of our knowledge, it was first introduced in
[14]. In their approach, the authors effectively applied CE
principles to an industrial CPS testbed, demonstrating its
capability to predict environmental changes and implement

mitigation measures that control the severity of adverse
events. However, significant challenges still need to be
addressed when conducting CE experiments on real-world
operational CPS without disrupting normal operations and
system availability. Similar to the work in [14], our approach
employs CE to assess industrial CPS resilience by conducting
experiments that introduce random and unpredictable behav-
iors into the system. We built upon this previous work by
incorporating MFN to create a DT model of the production
system. DT enable us to execute CE experiments in a safe
and controlled environment without any negative impact on
the operating CPS [28]. Additionally, drawing on insights
from [39], the use of MFN enables us to model the under-
lying CPS, simulate real-world operational conditions, and
quantitatively evaluate system responses and performance
[18], [19]. Finally, acknowledging the importance of opti-
mal control strategies for CPS resilience [40], we integrate
this process into a framework that guides decision-making
for resilience mitigation, enabling the enhancement of CPS
resilience.

Consequently, existing approaches primarily focus on ana-
lyzing faults and their impacts on ICS components and
networks. However, they lack a comprehensive evaluation
of industrial CPS resilience, including proactive testing,
cyber-physical threat scenarios, and quantitative insights into
physical processes and system outputs. A more holistic
approach is needed to bridge these gaps and analyze the
resilience of industrial CPS against adverse events under real-
world conditions. To address these challenges, we present a
resilience management framework that integrates into oper-
ating industrial CPS. Our approach simulates interconnected
physical components by considering potential failures and
flow disruptions caused by cyber-physical threats. With the
ability to quantitatively evaluate the system responses and
performance, our approach facilitates the identification and
prioritization of vulnerable flows and processes, enabling
operators to prioritize their security efforts and develop tar-
geted mitigation measures.

III. A CHAOS ENGINEERING FRAMEWORK FOR LPG
SYSTEMS
The work presented in this paper demonstrates the use of
CE by testing a system that purifies LPG, a valuable energy
product consisting of a mixture of liquefied hydrocarbon
gases C3-C4 (propane and butane). LPG is widely used in
various industries and in transportation. It is produced as a
by-product of refinery processes such as Crude Distillation
(CDU), Hydrocracking (HYC), and Fluid Catalytic Crack-
ing (FCC). However, LPG contains impurities that must be
removed through purification. The main purification pro-
cesses involve:

(i) removing naphtha (C5) using debutanizer columns,
(ii) removing ethane using deathanizer columns, and
(iii) removing hydrogen sulfur compounds (H2S).
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FIGURE 2. High-level overview of the proposed CE application framework for chemical processes (i.e.,
LPG purification processes).

Our framework models this process into a DT and then
implements the CE methodology onto this LPG purification
process using the following steps (Fig. 2):

1. Initially, we identify the system processes, specifica-
tions, and operational limits from the plant and create an
MFN that enables the simulation of the CPS operation.

2. Next, we code a DT model of the physical system
by mapping the sensor data and control inputs to the
processes within theMFN. The DTmodel replicates the
steady-state and nominal operation of the system.

a. The sensor data, control inputs and mathematical
model for the LPG mechanical process serve as a
reference point for subsequent analysis and com-
parison with adverse conditions.

b. The DT model is instantiated with ICS process
signals to simulate the steady state of the physical

system and establish a baseline understanding of
its expected behavior under normal conditions.

3. Next, we formulate potential hypotheses on the created
DT.

a. Various hypotheses are developed as scenarios
to test the system’s behavior under steady-state
conditions, as modeled during step 2.

4. We experiment on the DT using the formulated
hypotheses. During the experimentation, the following
automated procedures are performed:

a. We execute these hypotheses in the form of use
cases by automatically modifying ICS process
signals to observe and analyze the DT’s response
to the introduced adverse events, including evalu-
ating stability and indications of vulnerability or
failure.
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FIGURE 3. Conceptual representation of CPS. We assume that the system
is in a steady-state, with no anomalies in the send-control and
received-measurement signals, c ′

i and z ′

i , respectively, when c ′

i = c and
z ′

i = zi , i ∈ 2.

The performance of our approach relies on the computational
complexity of the mass balance calculations performed dur-
ing the simulation of the physical system’s operation using
the MFN during Step 2 (see Section III-A for more details).
Fig. 2 illustrates the overall steps and workflow of the pro-
posed roadmap for implementing CE using DTs in industrial
processes. This roadmap guides engineers and experts to
evaluate resilience during the operational phase of CPS and
identify weak points and vulnerabilities for implementing
mitigation measures. It is important to note that the devel-
opment of mitigating measures and the improvement of the
system is not covered in this study. However, it is intended
that the results of this study are used as input for those steps.
In the following sections, we discuss how we incorporate CE
experimentation into the simulation phase of DT models in
alignment with the fundamental principles of CE.

A. STEP 1: STEADY STATE DEFINITION
The first step in implementing CE is to determine the steady
state of the system. This involves establishing setpoints and
relevant flow states to maintain specific system properties
within a defined range. To do this, we need to identify the
system boundaries that define the processes requiring anal-
ysis in terms of material and energy flows. Our objective is
to model the processes and flows of the system, simulate its
operation, and accurately define its steady state. In Figure 3,
we illustrate a generic LPG purification infrastructure with a
number (N) of interconnected processes (Pi, i ∈ 2).
These processes are assumed to be controlled by local

controllers (C i, i ∈ 2). In this system, the controllers send
control-vector signals c = [c1 . . . cN ]T to the processes and
receive sensor measurements z = [z1 . . . zN ]T from them.
The CPSmodel can be seen as a nonlinear equation system

in the following state-space form:

ẋ (t) = g (x (t) , c (t) , z (t)) (1)

1y (t) = h (x (t) , c (t) , z (t)) (2)

where the state x (t) ∈ Rn with x (0) = x0, the measurement
output deviations 1y (t) ∈ Rm, the control input values
c (t) ∈ Rm that represent the set points for state regulation
during LPG purification, and z (t) ∈ Rn denotes the vector
of measurement signals including disturbances, measurement

noise, and unknown control variables. The system is assumed
to be defined over domains V ⊆ Rm

× Rn andW ⊆ Rn for
which [14]:

• g and h are Lipschitz continuous functions onW × V ,
• a Lipschitz is a continuously differentiable function ϕw
on W where ϕw : V → W and ∀ (c, d) ∈ V satisfies
g (ϕw (c, z) , c, z) = 0, with ϕw (c, z) ∈W

• there exist constants cj > 0, j ∈ N : j ∈ [1, 4], and
• a Lyapunov continuously differentiable function f in

(x, c), f : W × V → R≥0, (x, (c, z)) 7−→ f (x, c, z)
for which ∀x ∈W and ∀ (c, z) ∈W .

The above formulation forms a singular perturbation
problem in which relaxation and other variants exist. Addi-
tionally, the input-output equilibrium mapping 1ȳ (c, z) =

h (ϕw (c, z) , c,w) : V → Rm has the form of:

h (ϕw (c, z) , c,w) =

(
1
γ

)
∗ Im ∗

(
I⊤m c̄− d

)
(3)

where γ > 0, Im represents the indicator function of size m,
and d ∈ R is an unmeasured constant disturbance. Eq. (3)
demonstrates that synchronization of output measurements is
possible in steady-state conditions, with the deviation being
the same at all ICS components [14].
Steady State in LPG Purification:
In our approach, we establish the steady state of the system

by considering a network of processes that represent the
LPG purification unit. This network is a directed graph G =

(V ,E,A) with nodes V = {1, . . . , 12}, which consists of
two hydrocrackers, one fluid catalytic cracker, three debu-
tanizers, two deethanizers, three DEA absorption units, and
one storage tank. The edges E ⊆ V × V within the graph
indicate the flows of various resources (i.e., materials and
energy) and capture the consumption rates (i.e., input flows)
and production rates (i.e., output flows) of these resources.
To quantify the material flows within the LPG purification
unit, such as LPG, C2, C5, and S, we expressed them as
volumetric or mass flow rates. These flow rates are measured
in cubic meters per second (m3/s) or kilograms per second
(kg/s). By augmenting this graph with resource flows, we cre-
ate an MFN that accurately models the LPG purification unit
and its processes.

To determine the material flow rates of the LPG purifica-
tion processes, we combine the debutanizer and deethanizer
into a single column with one feed and two products, along
with a reboiler and condenser. To achieve this, we employ a
mechanistic model based on first principles, which incorpo-
rates a set of algebraic equations known as MESH equations.
The MESH equations, introduced by Wang and Henke [41],
consist of material balances (M), equilibrium relationships
(E), summation equations (S), and heat or enthalpy balances
(H). These equations are provided in detail in Appendix A.
In addition, we refer to the debutanizer/deethanizer specifi-
cation data (Table 1).
Using the input flow of LPG, along with temperature,

pressure, and reflux rate, the model calculates the resulting
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TABLE 1. Debutanizer-3 (P5) specification data.

flow rate of purified LPG and the remaining impurity flows
(such as C2 or C5).

The flow rate of a material (e.g., C2) in the distillation
column depends on the flow rates of the input materials
and process variables (i.e., temperature, pressure, and reflow
variables). Therefore, we can consider the flow rate of the
material G as the output of a distillation column with a single
input flow (i.e., LPG mixed with impurities) ck > 0, ck ∈ N
and three distillation variables: cp > 0, cp ∈ N : p ∈ [1, 3].
This is achieved by controlling the process using a vector
signal c = [c1 . . . c4]T and by receiving sensor measurements
z = [z1 . . . z4]T from the process.

Output deviations 1y (t) in the output material G and con-
trol inputs cj (t) for state regulation are defined as members
of the same set Rm. V ⊆ Rm

× Rn includes the nominal
control input ranges that induce acceptable states/members
of the set W ⊆ Rn. These control input ranges are limited
by the constraints of the LPG purification processes, which
operate within specific domains as shown in Table 2. Table 2
presents the shutdown ranges for Debutanizer-3 (P5), which
represent the limitations on the physical aspects of the LPG
purification unit. Therefore, at each time t , the state xj (t) of
the jth process (e.g., Debutanizer-3) that participates in the
LPG purification exists within the state space Rn, which is
represented by the normal and shutdown values of the four
control vector signals that control the process variables and
input flow rate (Table 2).
The process variables and operating constraints listed in

Table 2 were determined through a combination of manufac-
turer data, past sensor readings, and information provided by
the oil refinery plant operators and engineers. The selection of
these variables was based on the capabilities of the physical
system. Typically, variables that are related to monitoring,
control, and optimization of the process are considered suit-
able candidates, as they directly influence its operation and
performance.

The shutdown operating limits for each process are estab-
lished based on the equipment specifications and operating
guidelines provided by the manufacturer. These specifica-
tions include the recommended operating ranges and limits
for various process variables such as temperature, pressure,
flow rates, and other relevant parameters.

The normal operating limits for each process were derived
from past sensor readings. These readings provide historical
data on the range of values observed during normal operation.
By analyzing these readings, we can establish the typical

TABLE 2. Debutanizer-3 (P5) operating constraints.

boundaries within which the process variables operate under
normal conditions.

B. STEP 2: DT DEVELOPMENT FOR STEADY STATE
SIMULATION
To simulate the operation model of the physical system
described above, we utilize a DT in the form of a solver
that enables us to compute the flows for all the modeled
processes within the system. This includes tracking the pro-
duction flows of the system output over time, which allows
us to capture the state of the system. Our solver employs an
iterative approach to implement and analyze the flows within
the Mass Flow Network (MFN). The algorithmic steps used
in our solver are as follows:

1. Mass balance calculation: For each process in the
MFN the solver performs a mass balance calculation
using specified equations. This calculation ensures that
the inputs and outputs of each process are properly
accounted for in terms of mass.

2. Energy balance calculation: In addition to the mass
balance, the solver computes the energy balance for
each process in the MFN. This calculation takes into
account the energy inputs and outputs of each process,
utilizing the defined equations.

3. Flow aggregation: Following the calculation of the
mass and energy balances for each process, our solver
consolidates the results to provide an overview of the
material and energy flows throughout the MFN. This
step combines the individual process calculations to
give a comprehensive view of the overall flow patterns
within the system.

The overall time complexity required to solve all processes
in the network depends on the complexity of each process.
For instance, if each process takes a constant time to cal-
culate its outputs using simple equations with constant time
complexity, the total time complexity to solve all processes
would be O(P+ F), where P is the number of processes in the
network, and F is the number of flow dependencies between
the processes.

However, if each process employs nonlinear equations and
iterative methods, such as Newton’s method, to calculate
output flows, the time complexity can be approximated as
O(I ∗P ∗F ∗ n2), where I represents the number of iterations
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required for convergence, P represents the number of pro-
cesses, F is the number of flow dependencies between the
processes, and n represents the size of the problem (i.e.,
number of variables or equations).

In a CE experiment, operational metrics such as the input
or output flow rate of a process material (e.g., C5 and C2)
can be utilized to monitor possible deviations yt during the
process operation. Similar metrics can also be used to capture
the state of a system, which encompasses a network of pro-
cesses. In our case study, the main activity was the removal
of impurities from the LPG. Therefore, the concentrations
of C2, C5, and S in the tank are suitable candidates for the
CE operational metrics. Because we focused on the debu-
tanizer and deethanizer columns, we utilized the C2 and C5
concentrations in the tank to capture the steady state of the
system and detect possible deviations during our experimen-
tation. Specifically, the C2 and C5 concentrations in the tank
were calculated using steady operating values for the system
process variables and input flows. To that end, variations
within acceptable ranges may still occur in the C2 and C5
concentrations of the system, even if the process operating
variables are within their normal limits (Table 2).

C. STEP 3: FORMULATING HYPOTHESES ON THE DT
Once the metrics and steady-state behavior of the ICS are
determined and simulated, the next step is to define explicit
hypotheses that clearly articulate the expected outcomes of
the experiment, focusing on the selected metrics of C2 and
C5 concentrations. The objective is to assess the system’s
response when different events are introduced into the ICS
of the LPG purification unit.

In our experimentation, we formulate a CE hypothesis
by assuming that the controllers of the LPG purification
processes follow a Distributed Averaging Proportional Inte-
gral (DAPI) control, which is often deployed in multi-agent
networked systems to control a system’s output towards a
consensus objective based on the error between the desired
value and the actual value [42]. This requires that state vectors
xj (t) are considered as a linear combination of control inputs
cj (t), where j ∈ N = {1, . . . , n}, and N represents the index
set of the processes. The outputs 1y (t) are observed with a
sampling period of 1t = 1 sec, computed from data from the
initial startup of the LPG purification unit.

Based on these assumptions, we hypothesize that, given
that the system’s control inputs remain within their shutdown
operational limits, the concentrations of C2 and C5 in the
final LPG output flow will remain within acceptable bounds
(i.e., the system will remain stable) (see Table 3). Table 3 lists
the product specifications of the LPG mixture. C5 hydrocar-
bons must contain no more than 2% of the LPG volume and
the sum of C2 + C5 hydrocarbons must not exceed 5% of the
LPG volume.

Since we are interested in the concentrations of C2 and
C5 in the storage tank, we introduce a key performance indi-
cator, denoted as Impurity Concentration Divergence (ICD),

TABLE 3. Product specification thresholds of LPG.

to quantify the difference between the steady-state of the
system and the experimental outcomes:

ICD (t) = 0.5
(
CC2 (t) − C ′

C2 (t)
C ′

C2 (t)

)
+ 0.5

(
CC5 (t) − C ′

C5 (t)
C ′

C5 (t)

)
(4)

where CC2, CC5 represent the steady-state concentrations of
C2 and C5 in the storage tank and C ′

C2, C
′

C5 represent the
concentrations of C2 and C5 during the experiment. When
the system is in a normal operating condition, the ICD will be
close to zero because there will be no or negligible deviation
between the steady-state concentrations of C2 and C5 and
those observed during the experiment. However, any variation
from the steady state (i.e., major deviation in the ICD value)
indicates that the system has moved towards an unwanted
state with a deviation in production output (i.e., the concen-
trations of C2 and C5).

The concentration of each impurity in the final LPG output
stored in the tank can be represented as a single output vector
zt in Rm. These vectors are determined using the MESH
equations based on the constraints and specification data pro-
vided in Tables 1-2. This formulation leads to a closed-form
solution, ensuring that the system behavior remains close to
steady-state conditions unless an adverse event affects the
system. Therefore, we utilize the ICD indicator to detect
any deviation, positive or negative, from any steady-state
operation of the system toward a state that does not satisfy
the nominal system output. In the case of an adverse event,
the ICD indicator will allow us to detect any deviation in
the concentrations of C2 and C5 during our experiment, and
validate our hypothesis, thus, the assumption of stability.

D. STEP 4: TESTING HYPOTHESES AS EVENTS
Lastly, we want to test executions of processes with the aim
to intentionally induce controlled failures or disruptions in
the system and subsequently analyze the resulting outcomes.
An example list of such experiments includes but is not
limited to the following:

• Physical process failures
• Overload, or failure (either software or mechanical) of
individual components (e.g., RTU) to test the overall
system reaction

• Malicious data injections on sensory inputs or inconsis-
tencies in measurement signals
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• Environmental disturbances impacting the system’s
operation (e.g., temperature variations, electromagnetic
interference)

• Human operator errors or incorrect configuration
settings

Such disruptions can be simulated by manipulating the
system’s control signals, c′i. We introduce an offset 1ci to
the control signals ci corresponding to a process variable.
Consequently, a vector 1c = [1c1 . . . 1cN ]T is defined,
where the entries are nonzero for the manipulated signal and
zero for all other signals. By incorporating this manipulation,
a general model for the control signals received by the control
elements of the processes can be expressed as c′i = ci + 1ci.
Typical disruption experiments last 24-48 hours to capture

information and calculate the relevant CE operational metrics
[43]. In our case, the CE experiment lasted 24 h, whereas
the control signal manipulation started at t0 and lasted 12 h.
During the simulation, each system process evolved accord-
ing to the state vector x (t) and control signals c (t). Using
(5), we can effectively simulate fluctuations as step changes
in a chemical process [14], [44]. By manipulating the ICS
control signals in this manner, we can simulate the effects of
an adverse event that causes the system to enter an unstable
or undesired state. The 1ci (t) is calculated as the difference
between the nominal control signal ci (t) and a random value
R (t) selected from the range between the upper and lower
shutdown operating limits of the control variables.

c′i (t) =


ci (t) , t < t0
ci (t) + 1ci (t) , t0 ≤ t < (t0 + 6h)
ci (t) − 1ci (t) , t0 + 6h ≤ t < (t0 + 12h)
ci (t) , t ≥ (t0 + 12h)

(5)

The random value R (t) is determined using the upper shut-
down operating limits during the first six hours of signal
manipulation and the lower limits for the remaining hours.
For example, considering the temperature operating con-
straints (Table 2) for process P5 and a nominal temperature
control signal of 52◦C, the manipulated control signal could
be 105◦C during the initial 6 hours of signal manipulation.

The ICS incorporates hardware and software mechanisms
to ensure the reliable operation of LPGpurification processes,
even in the presence of failures or disruptions. However,
it is essential to note that if certain variable thresholds are
surpassed in processes within the LPG purification unit,
the system may be unable to maintain its intended nominal
output.

To establish seamless execution of events between virtual
and physical spaces, engineers and experts must consider the
following key aspects upon DT execution of events:

• Sensors and data acquisition systems: The physical sys-
tem must be equipped with sensors and data acquisition
systems capable of communicating over protocols, such
as Modbus, OPC UA, and MQTT.

• Establishing connectivity: A reliable and secure con-
nection must be established to enable real-time

communication between sensors, data acquisition sys-
tems, and DT. Depending on the application require-
ments, this can be achieved by using wired or wireless
connections.

• Data processing and storage: The DT must be able to
process and store data received from the physical system
in real-time. This can be achieved using cloud-based or
edge-computing solutions that can handle large volumes
of data and provide real-time analytics.

• Monitor and troubleshoot: Regular monitoring and trou-
bleshooting must be performed to ensure that the
communication between the physical system and DT is
functioning correctly. This can include the use of moni-
toring tools to detect issues (e.g., communication errors
or data inconsistencies) and taking corrective actions
when necessary.

Engineers and experts can ensure that the DT receives
real-time updates from a physical system. Furthermore, val-
idating the consistency between the DT and physical system
is essential to ensure that the DT accurately represents the
behavior and performance of the physical system.

Therefore, when the DT model retrieves data from the
physical system, it should request these data through a secure
connection to the relevant endpoint on the server. This request
includes any required authentication credentials and param-
eters that define the data (i.e., sensor measurements) to be
retrieved. In this manner, the DT can securely communicate
and continuously update to reflect changes in its physical
counterpart [45], [46], [47].

IV. EXPERIMENTS
The oil refinery under study comprises more than 20 physical
processes. Process specifications and shutdown operational
limits are assigned based on thorough literature research
on similar systems and the information provided by system
operators [48], [49], [50]. To ensure security, the company’s
name, and all associated data and component names were
anonymized and sanitized. The flow network model utilized
in this study represents a typical LPG purification unit found
in oil refineries [51]. In the following sections, we discuss
our CE experiment on the DT of the LPG purification unit in
detail.

A. STEP 1: MODEL DEFINITION
Based on the data provided by the system operators, we iden-
tified eight internal processes, three internal inputs, and
one output node for the LPG purification unit (Table 4).
In addition, 44 flows of resources were identified (Table 5).
We then created an MFN that modeled the LPG purifica-
tion unit (Fig. 4). Table 4 lists the MFN nodes and process
variables. The depicted MFN nodes use generic terms and
ID. In Table 5, we list the modeled flows, their respective
resources, and the measuring units.

Next, we gathered the shutdown operational limits and
constraints associated with the physical components and
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TABLE 4. Mapped MFN nodes and node IDs’ associations with their
respective variables.

equipment used for each mapped process. Finally, for each
process, we mapped the sensors of the LPG purification unit
to the flows and process variables, thereby creating the DT of
the physical system (see Section III-D).

Table 6 illustrates the mapping between the MFN process
attributes (i.e., variables and flows) and the physical system
sensors. Virtual space refers to a digital representation of the
physical system that is used to monitor and optimize produc-
tion. On the other hand, physical space refers to the actual
physical environment in which the ICS (Industrial Control
System) is deployed [52], [53].

The ICS relies on the interaction between virtual and phys-
ical spaces to detect and react to real-time changes in the
physical environment. In our CE approach, real-time data
from mapped sensors were used to capture the steady state of
the system. Access to real-time data is essential for creating
an accurate DT, as it can significantly improve its effective-
ness in analyzing physical systems.

B. STEP 2 AND 3: STEADY STATE AND HYPOTHESIS
FORMULATION
The DT model simulates the operation of the LPG purifi-
cation unit. The sensor data from the ICS had a frequency
of 1 data point per second. In our simulation, we utilized a
one-hour time step. The selected time step is short enough
to capture the system behaviors of interest and sufficiently
long to allow for reasonable execution times [54]. To pro-
cess the data, we calculated an hourly average from the
stored one-second sensor readings. The overall simulation
time was 24 hours. First, the DT model flows and process
variables (i.e., control signals) were updated before each sim-
ulation cycle based on the mapping in Table 6. Specifically,
we updated the process variables for all processes (i.e., set
the ICS control signals) and the input LPG flows for pro-
cesses P1, P2, and P3 using the API in each cycle. Fig. 5a-5b
illustrate the nominal control signals for the temperature,
pressure, and reflow variables for Debutanizer-3 (P5) used in
our CE experiment.

TABLE 5. Modeled MFN flows, associated resources, and units.

In each simulation cycle, our solver computed the output
flows for each process, as explained in Section III-A. In our
CE experiment, we used the concentrations of C2 and C5
that accumulated in the initially empty storage tank (O1)
as our operational metrics to monitor potential deviations.
Therefore, after each simulation cycle, our solver deter-
mined the concentrations of C2 and C5 in the storage tank.
Figures 6a-6b illustrate how these concentrations changed
over time, indicating the system’s steady state.

The results consistently showed that the levels of C2 and
C5 concentrations (see Fig. 6) remained below the limits
specified for LPG products in Table 3. These results were
confirmed through an internal audit using LPG specification
thresholds and prior laboratory measurements from the tank,
providing confidence in the accuracy of our process specifi-
cations and sensor mappings.
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FIGURE 4. Graphical representation of the material flow network (MFN).

TABLE 6. Mapping between the material network flows and process Variables with the physical system sensors.

However, it is important to recognize that the con-
centration values obtained in our simulation displayed
minor deviations, approximately ±5%, compared to pre-
vious laboratory measurements taken from the tank. This
variation is expected, given that the DT model covers
only a part of the entire plant and accounts for the
time difference between the simulation and laboratory
measurements.

Despite the variations observed, the DT model provides
an accurate representation of the unit’s general performance,
as shown in Table 3. This allows us to estimate the overall
operational state of the plant, as explained in Section III-C.

As per our initial CE hypothesis outlined in Section III-B,
it is crucial that the levels of C2 and C5 in the storage
tank (O1) closely match the values illustrated in Fig. 6. This
hypothesis remains valid even when we make adjustments to

106182 VOLUME 11, 2023



P. Dedousis et al.: Enhancing Operational Resilience of Critical Infrastructure Processes Through CE

FIGURE 5. Nominal time-series data for pressure, temperature (a) , and
reboiler (b) variables from the system ICS sensors.

FIGURE 6. DT model steady-state individual (a) and cumulative (b)
concentration values of C2 and C5 in the storage tank (O1) over time. The
red line indicates the LPG product specifications for C2 and C5.

the ICS control inputs for any process variable within their
shutdown limits.

C. STEP 4: VARYING ICS PROCESS EVENTS
In this step, we are replicating real-world events that can
impact the stability of the system and examining how they

affect the levels of C2 and C5 in the storage tank. To achieve
this, we adjusted the settings for temperature, pressure,
and reflow related to the P1-P5 processes (as detailed in
Section III-C). We initiated these adjustments at 06:00 (t_0=

6) and continued them for 12 hours. You can see the graphical
representation of these adjustments for Debutanizer-3 (P5)
in Figures 7a and 7b. Similar adjustments in temperature,
pressure, and reflow settings were made for all the other
processes we are studying (namely, P1-P5). It’s important to
note that the rest of the processes and their settings were not
affected by these changes.

We repeated the simulation of the LPG purification unit,
this time using the adjusted control signal values in our DT
model. This simulation helped us recalculate the concentra-
tions of C2 and C5 in the storage tank (O1). Since these
concentrations were determined with the adjusted control
signal, they reveal an unstable state. You can see the updated
C2 and C5 concentrations in the storage tank (O1) over time
in Figures 8a and 8b.

The results indicate that when we manipulated the control
signals, there was a significant impact on the concentrations
of C2 and C5 in the storage tank, as shown in Figure 8. Specif-
ically, the concentration of C2 decreased notably between
06:00 and 11:00, followed by an increase from 11:00 to 17:00,
and then a gradual decline until the end of the experiment.
Conversely, the concentration of C5 steadily increased from
07:00 to 17:00 and then gradually decreased until the end of
the experiment. Additionally, the cumulative concentrations
of C2 and C5 followed a similar pattern, increasing from
11:00 to 17:00 and then decreasing thereafter.

It’s important to note that the C2 concentration exceeded
the specified limits, as depicted in Figure 8a. However, the
combined concentrations of C2 and C5 remained within
acceptable ranges, as shown in Figure 8b. This observation
confirms that manipulating the control signals in the system
disrupts the operation and performance of the LPG purifica-
tion unit.

D. RESULTS
We utilized the C2 and C5 concentrations obtained from
both the stable and unstable system states to compute the
ICD indicator, which serves as a measure of the system’s
departure from its stable state (see Section III-B for details).
The ICD indicator provided us with a means to assess and
evaluate the system’s ability to withstand operational-level
alterations. The resilience curve, as illustrated in Figure 9,
was generated using the ICD indicator. This curve illustrates
how the operational level evolves over time as the system
transitions through various phases: commencing from a sta-
ble state, moving towards an unstable state, and ultimately
recovering.

Based on our findings, we observed that the ICD indicator
remained stable, nearly zero, from 00:00 to 06:00, indicat-
ing minimal variation in impurity concentration and system
stability during this period. However, from 06:00 to 23:00,
the ICD indicator became negative, reaching a minimum of
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FIGURE 7. Time series data of manipulated temperature, pressure (a) ,
and reboiler (b) control signals for Debutanizer-3 (P5). Signal
manipulation started at 06:00

(
t0 = 6

)
and lasted for 12 hours.

−0.41. This marked departure from the stable state signified
a substantial deviation from the expected impurity concen-
tration. It’s essential to note that lower ICD values represent
more significant observed deviations. Thus, during this time-
frame, impurity concentration diverged from the stable state,
contradicting our initial CE hypothesis (see Section III-B).
This finding emphasizes the critical need to consider broader
system effects, even when individual processes remain within
their operational limits. Crossing certain thresholds can lead
to a situation where the system’s production and operational
state deviate from expected output.

The slope of the ICD indicator curve between 06:00
and 17:00 reflects the system’s ability to withstand adverse
events. A sharp decline in the ICD indicator between 06:00
and 07:00 and between 11:00 and 17:00 indicates adverse
events during these periods negatively affecting impurity con-
centration. Despite the ICD indicator reaching a minimum of
−0.12, relatively stable ICD values recorded from 07:00 to
11:00 indicate effective system resistance to adverse events.

The slope of the ICD indicator curve between 17:00 and
23:00 illustrates the system’s ability to recover from adverse
events. The increasing ICD indicator during this period sug-
gests gradual recovery from earlier adverse events. However,
within the chosen experimental timeframe, full recovery may
not occur. Nevertheless, with undisturbed operation, impu-
rity levels will eventually return to normal, and the system
will recover, returning to its stable state. The ICD indicator

FIGURE 8. DT model unstable state individual (a) and cumulative (b)
concentration values of C2 and C5 in the storage tank (O1) over time. The
red line indicates the LPG product specifications regarding its impurities
(i.e., C2 and C5).

FIGURE 9. The systems resilience curve as produced by the ICD indicator.

enables experts to monitor impurity concentration devia-
tions over time, assessing the system’s capacity to resist and
recover from adverse events.

Analyzing the critical flows, we noticed a recurring pattern
where certain network nodes, specifically O1, appeared mul-
tiple times as targets. This pattern suggests that these nodes
play a crucial role in the system’s resilience but are sus-
ceptible to disruption during CE experiments. Additionally,
flows involving C2 exhibited the most substantial deviations
from the steady state. An attack on processes responsible for
removing C2 could lead to significant disturbances in the
system’s operation, causing the concentration of C2 in storage
tank (O1) to exceed specified limits. This would render the
stored LPG unsellable due to noncompliance with required
specifications (see Fig. 8a). This observation highlights the
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TABLE 7. Top five critical flows from the resilience analysis step. Peak
deviation refers to the maximum difference between the steady-state
flow (normal operating condition) and the flow observed during the
experiment.

heightened sensitivity and potential impact of these flows on
overall system performance and stability. Experts can use
this information to identify critical system flows above a
threshold value, with a particular focus on flows originating
from nodes P5 and P1, considered high-priority targets for
mitigation measures.

Additionally, applying the ICD indicator at the process
level allows us to identify significant deviations in system pro-
cesses. This analysis prioritizes vulnerable processes based
on their highest deviation from the steady state. Negative
ICD values indicate notable deviations from the steady-
state process, signaling potential vulnerabilities and areas for
improvement. Table 8 lists the top three critical processes
based on this approach.

Based on our findings, the most critical process is
Debutanizer-3 (P5), which has a significant impact on the
flow of both C2 and C5 resources. The ICD value for this
process is −0.25, indicating a substantial deviation from
the steady-state flow conditions. Debutanizer-1 (P1) is the
second-ranked critical process, primarily affecting the C2
output flow. It exhibits an ICD value of −0.17, signifying
a significant departure from normal operating conditions.
Debutanizer-2 (P4) is the third-ranked critical process, also
influencing the C2 output flow, but to a lesser extent, with
an ICD value of −0.10. These findings emphasize the vul-
nerability of these processes in terms of their impact on
system output flows. Experts can use this information to
identify crucial system processes surpassing a predefined
threshold. Based on our analysis, we prioritize addressing
the Debutanizer-3 (P5) process as the most critical node,
deserving high-priority mitigation measures. This conclusion
aligns with the significant impact this specific process has and
corroborates our critical flow analysis.

Our approach offers a streamlined way for experts to effi-
ciently pinpoint and prioritize the most vulnerable aspects
of the system, facilitating precise assessments. As a result,
experts can concentrate their efforts on devising targeted
mitigation strategies and contingency plans. Implementing
these measures can lead to substantial enhancements in the
system’s resilience, ensuring smooth and secure operation.

TABLE 8. Top three critical processes from the resilience analysis step.
The ICD values are computed by assessing the impact on output flow
resources for each process. The ICD reflects the maximum divergence
between the steady-state flows (normal operating conditions) and the
flows observed during the experiment.

E. LESSONS LEARNED
The results obtained from our experiment illustrate that a
Cyber-Physical System’s (CPS) ability to withstand devia-
tions hinges on its capacity to absorb them effectively. In our
case, the Programmable Logic Controller (PLC) monitors
signals from sensors overseeing the distillation columns in
the LPG purification unit. When there’s a deviation in a
process variable like temperature, pressure, or reflow, the
PLC communicates with actuators to initiate adjustments at
the column. However, adverse events can sometimes circum-
vent fail-safe mechanisms. For example, Denial of Service
(DoS) attacks can overload the Industrial Control System
(ICS) network, leading to congestion failures in control com-
ponents like routers [55]. Consequently, ICS sensor values
may not be transmitted to the control center on time, and
the system might not detect these disconnections. Another
scenario involves false data injection (FDI) attacks, where
intruders manipulate sensor readings in a way that intro-
duces errors into state variables and value calculations while
evading bad data detection (BDD) mechanisms [56], [57].
In both cases, the distillation column’s temperature, pressure,
and reflow variables experience significant deviations from
their expected values, leading to deviations in the system’s
output flows. This aligns with our experiment’s outcomes,
where the C2 and C5 output flows entering the storage tank
reached unacceptable levels at 17:00 (see Fig. 9). Given the
above, if deviations in control signals caused by adverse
events fall within the shutdown operating limits, the system
cannot withstand the event without experiencing significant
disruptions in its production output.

Our critical flow analysis revealed that flows involving
C2 were highly vulnerable. Importantly, this analysis under-
scores the storage tank (O1) as a critical node for system
resilience. The system’s recovery rate and overall recovery
depend on the impurity level in the storage tank (O1) and how
quickly impurities are reduced after the end of the adverse
event (i.e., signal manipulation). Furthermore, the storage
tank (O1) influences the system’s ability to resist adverse
conditions. The time it takes for the system to reach a critical
state, characterized by out-of-spec impurities in the storage
tank, is directly affected by the initial concentration of impu-
rities before signal manipulation. Our experiment confirmed
that a low impurity concentration in the storage tank leads
to increased resistance, resulting in an extended time needed
for the system to reach a critical state. The presence of tank(s)

VOLUME 11, 2023 106185



P. Dedousis et al.: Enhancing Operational Resilience of Critical Infrastructure Processes Through CE

acts as a buffer, effectively extending the response time avail-
able to operators to address unexpected events. This extended
response time can significantly mitigate the impact of adverse
conditions on the overall system.

Our critical process analysis identified Debutanizer-3 (P5)
as the most critical process. Since the system comprises
sequentially connected processes (Fig. 4), introducing redun-
dancy for the identified critical process(es) could enhance
system resilience [58]. However, the feasibility of redundancy
depends on the specific industrial process because industrial
purification plants often consist of sequentially connected
processes (e.g., oil refineries, water and wastewater treatment
plants). Typically, one process relies on the operation and
efficiency of the previous process for its proper functioning.
In our case study, the sulfur removal process, which is not
directly dependent on the performance of the C2 removal pro-
cess for its primary operation (i.e., sulfur removal), depends
on the existence of the LPG flow, i.e., the operation of the
preceding process.

The insights gained through our approach, including iden-
tifying and prioritizing critical flows and processes, form the
basis for enhancing the system’s resilience. Therefore, engi-
neers and experts should conduct periodic Cyber-Physical
Experiments (CE) to assess and validate the effectiveness
of redundancy and other mitigation measures on the sys-
tem’s resilience continually. By implementing an effective
resilience enhancement strategy that includes regular CE
experiments, we can continuously validate and improve the
effectiveness of mitigation measures and contingency plans.

V. DISCUSSION AND CONCLUSION
In this study, we introduce an innovative framework that com-
bines Decision Trees (DT) using Multi-layer Feedforward
Networks (MFN) with a Chaos Engineering (CE) method-
ology to quantitatively evaluate a system’s resilience in its
operational stage using real-time data against both deliberate
malicious attacks and unintentional threats. The combina-
tion of DT, CE, and MFN enabled nondisruptive real-time
testing and proactive observation of a system’s behavior and
performance.

The validation of our approach on an actual LPG purifi-
cation process demonstrates its effectiveness in improving
system resilience. We conducted Chaos Engineering exper-
iments on a DT of a real-world LPG purification process
within an oil refinery. These experiments provided strong
evidence of notable operational performance deviations from
the steady state, highlighting the system’s vulnerability to
adverse events, such as injection attacks and state deviation
that can occur from integrity violations. Results detected
various process-aware vulnerabilities that could derail the
LPG purification process. Fixing these issues significantly
enhanced system resilience, improving its ability to withstand
adverse events and recover gracefully from them, as evident
from the observed divergence curve slope.

To the best of our knowledge, this work represents the first
study that combinesDT andCE using anMFN to evaluate and

improve CPS resilience. Our findings contribute to advancing
the concepts of security and safety by design in critical infras-
tructure protection.

A. RESTRICTIONS AND FUTURE WORK
The accuracy of our analysis highly depends on the level
of detail and quality of the modeled system inside the DT.
Therefore, to improve the accuracy of our approach, we must
ensure that the modeled system is as representative as possi-
ble of the actual system behavior. If the modeled unit is not
representative of the overall behavior of the system, then the
overall operating condition cannot be accurately reflected.

Second, experimental events in DT simulations face
high-time complexity due to the utilization of nonlinear equa-
tions to model the physical processes; an issue that can strain
resources if processes are to scale into larger systems and
processes. Addressing this limitation requires exploring more
efficient algorithms and computational techniques to reduce
time complexity while maintaining the required level of
accuracy.

Third, it is important to note that our current study pri-
marily focuses on investigating the effects of disruptions
within a system.However, in industrial CPS, interconnections
between different systems can have a significant impact on
the overall performance. For instance, disruptions in one
system can propagate and affect the performance of the entire
interconnected system (i.e., an oil refinery connected to a
crude oil distribution pipeline network, communication, and
electricity grid). Plant-wide CE experiments should work
towards modeling multiple processes into a single DT to be
able to capture subliminal vulnerabilities that may exist due
to these component interdependencies.

Lastly, the generalization of the approach should be
explored by assessing its applicability and effectiveness in
other CI sectors. For instance, evaluating its effectiveness in
Electric Power Grid Systems, where generators and batteries
can be analogous to distillation units and storage tanks, would
provide valuable insights and broaden its applicability.

APPENDIX
DISTILLATION COLUMN MODELLING
In this Appendix, we describe the MESH equations that
model the equilibrium stages in a single one-feed two-product
distillation column with a reboiler and condenser (Fig. 10a).

The MESH variables are referred to as state variables. For
a general jth stage and ith component (Fig. 10b) these are:
Stage temperatures, Tj (◦C); Stage pressures, Pj

(
kg
cm2

)
; Inter-

nal total vapor and liquid rates, Vj
(
kgmol
h

)
and Lj

(
kgmol
h

)
;

Stage compositions, yj,i and xj,i, or instead, component vapor

and liquid rates, vj,i
(
kgmol
h

)
and lj,i

(
kgmol
h

)
.

The component material balance equations for the simple
stage j (no feed), are given by:

Lj−1xj−1,i + Vj+1yj+1,i − Ljxj,i − Vjyj,i = 0 (6)

lj−1,i + vj+1,i − lj,i − vj,i = 0 (7)
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FIGURE 10. (a) Process flow diagram of a single-feed debutanizer column
with reboiler and condenser. (b) Model of the separation stage.

The component balance for the feed stage, f , adds the liquid
portion of the feed, lfi, and for the product stage (D, B) the
material withdrawn lpi, is subtracted from the component
material balance. By convention, the material leaving a tray
has a negative value, and the material entering a tray has a
positive value. The total material balance for the simple stage
is given by:

Vj+1 + Lj+1 − Vj − lj = 0 (8)

The same convention applies to feed and product trays, where
the total flow rate, F , is added, and the total product flow rate,
P, is subtracted.

The flow compositions leaving the stage are in equilibrium.
Therefore, the mole fractions of component i in the liquid
and vapor flows leaving stage j are related by the equilibrium
relation shown in (9) and (10), as follows:

yj,i = Kj,ix j,i (9)

vj,i
Vj

= Kj,i
lji,
Lj

(10)

The equilibrium constant or K-value,Kj,i, can be a complex
function, dependent on the flow composition, temperature
and pressure. The operating line of the enriching section is
given by (11) where R is the reflux/reflow ratio

(
=
L0
D

)
. Equal

molar flow rates for liquid and vapor are assumed, that is
L1 = L2 = · · · = Ln and V1 = V2 = · · · = Vn+1.

yj,i+1 =
R

R+ 1
x
j,i

+
xj,D
R+ 1

(11)

The summation equation or composition constraints simply
states that the sum of the mole fractions on each stage is equal
to unity for the liquid and vapor phases:

C∑
i=1

xi,j = 1 (12)

C∑
i=1

yi,j = 1 (13)

The energy balance for the simple stage, j = 1, . . . ,Nt is
given by:

Lj−1hj−1 + Vj+1Hj+1 − Ljhj − VjHj = 0 (14)

The liquid enthalpy, hj, and the vapor enthalpy, Hj (energy
per mole or m3) for each stage are functions of temperature,
Tj, pressure, Pj, and composition: Hj = Hj

(
Tj,Pj, yj,i

)
and

hj = hj
(
Tj,Pj, xj,i

)
. For feed stage, the term Fhf is added

to the energy balance. The energy balance for the reboiler is
calculated based on the reboiler duty QR

(
kj
h

)
and the total

bottom rate B
(
kgmol
h

)
using (15), while the energy balance

for the condenser is calculated based on the condenser duty
Qc

(
kj
h

)
and the total distillate vapor rate D

(
kgmol
h

)
using

(16).

LN−1hN−1 − VNHN − BhN + QR = 0 (15)

L0h0 − V1H1 − Dh0 − QC = 0 (16)

The overall energy balance is given by:

Fhf − BhN − Dh0 + QR − QC = 0 (17)
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