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ABSTRACT Software Defined Networks enabled-cloud (SDN-Cloud) is experiencing rapid evolution to
accommodate the explosive growth of data-driven applications. However, traditional resource allocation
algorithms are encountering limitations in efficient resources management. While some existing algorithms
strive to minimize power consumption, they introduce network delays, impacting overall performance.
Thus, this study aims to address the prevalent challenges of performance efficiency and energy saving
within distributed systems. Artificial Intelligence techniques including machine learning and fuzzy logic, are
increasingly utilized to develop more adaptive and intelligent resource management models. However, given
the dynamic nature of SDN-cloud environments, rapid decision-making during VM allocation is essential to
prevent network delays. Furthermore, the limited computational resource of SDN controller requires cautious
consideration, as extensive calculations will result in network overhead or increased power consumption.
Moreover, achieving subtle balance between network performance and power efficiency still an open
challenge. This research introduces Dual-Phase resource allocation Algorithm (D-Ph) for heterogeneous
SDN-Cloud networks with the integration of fuzzy logic. D-Ph algorithm indicates the level of utilization
of both physical and virtual machines (PM and VM) in datacenters. It aims to find the appropriate host with
the necessary capabilities to meet VM resource requirements, specifically processing capacity and memory.
The performance of the D-Ph algorithm is evaluated by measuring the response time, serve time of network
and central processing unit (CPU), Quality of Service (QoS) violation rate, and power consumption. Results
have shown distinctly that D-Ph algorithm maintain high network performance while significantly reduce
total power consumption in heavy-loaded large scale network.

INDEX TERMS Artificial intelligence, distributed networks, power management, network performance,
quality of service.

I. INTRODUCTION
Over the past decade, technology has rapidly evolved, signif-
icantly expanding its application. Traditional networks, with
each application maintaining its own data center, led to high
operational and maintenance costs. However, the revolution
of cloud computing which infusing a data-centric computing
paradigm has countered these issues. Cloud providers deliver
on-demand and scalable services to their clients, in different
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locations, through variety of virtualized resources [1].
Recently, Software-Defined Networks (SDN) based Cloud
has combined the strengths of SDN and cloud computing, pri-
marily to enhance management. This integration is achieved
by implementing SDN ability of observing entire the network
via a centralized controller that is responsible onmanagement
tasks in cloud datacenter [2]. This innovation contributes in
overridden existing challenges in traditional networks such
as mobility, scalability, and security [3]. Such challenges are
influenced by several factors, for instance resources hetero-
geneity, inconsistent workload, and resources dependency.
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Even though, latest network architectures contribute in
cost reduction compared to traditional networks, however,
application providers have to ensure that offered services
meet QoS and Service Level Agreement (SLA) in order to
meet tenants’ satisfaction to fulfil incoming requests with
highly quality standards. Nevertheless, as the number of users
and heterogeneity of devices increased, cost associated with
power consumption also increased in order to satisfy QoS
constraints.

Furthermore, VM allocation represents a key challenge
encountered by resource allocation strategies due to its direct
impact on network performance and power consumption,
both of which have a tradeoff relationship. Each objective is
critical in every distributed system, for instance the impor-
tance of network performance lies in its association with
SLA and QoS which leads to end user satisfaction. While
power consumption is a nation concern, directly influenced
by resource utilization and management strategies. As a
result, several studies aim at achieving balance between these
two objectives [4], [5]. Consequently, extensive research has
been dedicated in finding reasonable solutions for this issue
by exploring different techniques and strategies.

The challenge lies in the fulfillment of QoS for applica-
tion requests while reducing operational cost, as data center
servers are shared by various applications. Consequently, the
utilization level of servers is a key deterministic of power
consumption. As low utilized servers indicate that each per-
forms inadequately workload computation which lead to
an increase of power consumption [6]. While overprovi-
sioning of resources can lead to overloaded hosts and thus
degradation of overall performance if not managed properly.
Therefore, cloud providers are required to manage resource
efficiently in order to ensure high level of network perfor-
mancewithminimumpower demands. Therefore, an efficient
resource management strategy is vital part of any system.
Different studies focus on different aspects on resource man-
agement to accomplish specific objectives. Many studies
have been conducted on developing efficient resource man-
agement techniques.

SDN-enabled Cloud is a revolutionary field, hence, the
number of studies addressing it is in a growing stage which
provides extensive opportunities to contribute. Furthermore,
most of the current studies are focusing either on improving
network performance or reducing power consumption. Addi-
tionally, the relationship between different resources such as
CPU and RAM has not been considered in many studies.
These constraints have served as a motivation for the fol-
lowing research questions to be addressed in this paper. The
research questions are as follows:

1- How to utilize Artificial Intelligence techniques, par-
ticularly fuzzy logic, to address the challenges of efficiently
utilizing the most resource-intensive components—CPU and
RAM—without compromising network performance?

2- How can fuzzy logic be employed to establish a dynamic
connection between host capacities and VM requirements

within an uncertain and ambiguous real-time environment,
facilitating rapid VM allocation decision-making by the cen-
tral controller?

3- How to address the aforementioned concerns while min-
imizing power consumption and avoiding substantial network
overhead, given the dynamic nature of SDN-cloud environ-
ments and the limitations of SDN controllers’ computational
resources?

Therefore, we particularly consider resource allocation
problem specifically VM allocation. This allocation take
place at host level and can be defined as the process of allo-
cating VMs into PMs based on predefined conditions [6], [7].
Furthermore, we employ the concept of fuzzy logic which
is type of artificial intelligent which operate through series
of decision-making processes to produce an output. Fuzzy
logic is utilized in various fields such as green computing,
machine learning, artificial intelligent and cloud computing.
It is also used to verity of issues in cloud computing such
as load balancing, resource scheduling, job scheduling, and
QoS optimization [8], [9]. It imitates human reasoning in
ambiguous real-world situation where the process involves
three main steps: fuzzification, inferencing, and defuzzifica-
tion to form a fuzzy system. Incomplete information, such as
numerical data and linguistics values, is processed in fuzzy
systems in order to produce practical output to support deci-
sion making and control processing [10].

The nature of VM allocation, where real-time decisions
must be made to efficiently manage resources and meet vary-
ing workload demands, the choice of an appropriate method-
ology is of paramount importance. While deep reinforcement
learning methods have shown remarkable capabilities in var-
ious domains, their application in VM allocation presents
several challenges. These challenges include the need for
extensive computational resources, time-consuming training
periods, and the requirement of vast amounts of training data.
Furthermore, the complexity of deep reinforcement learning
algorithms may lead to reduced interpretability, hindering the
ability to validate and fine-tune decisions based on domain
expertise. In contrast, fuzzy logic emerges as a compelling
alternative due to its inherent advantages. Fuzzy logic-based
algorithms offer simplicity and lower resource requirements,
which suits the nature of limited computational resource of
SDN, allowing for faster decision-making processes while
ensuring real-time responsiveness in dynamic data center
environments. Additionally, the interpretability of fuzzy logic
enables decision-makers to comprehend the underlying rea-
soning behind allocation choices, instilling confidence in
the results and facilitating practical adjustments based on
real-world insights [11], [12].

The adoption of fuzzy logic emerges as an efficient
solution to effectively tackle the VM allocation challenge.
Considering the implications of VM allocation on overall
data center efficiency, cost-effectiveness, and user expe-
rience, combines with the remarkable attributes of fuzzy
logic including simplicity, adaptability, interpretability, and
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real-time performance. Moreover, the scalability and practi-
cality of fuzzy logic-based algorithms further solidify their
position as a promising choice for dynamic and large. scale
data center environments, where accuracy, efficiency, and
responsiveness are of paramount significant.

In this research, we contribute to the area of Software-
Defined Cloud (SDN-Cloud) by developing a VM allocation
that is inspired by the fuzzy logic system for heterogeneous
datacenter. The allocation decision is conducted through
series of steps that include building ratio, sorting, and com-
paring to find the best candidate host for a specific VM.

We propose a novel technique that utilizes fuzzy logic in
order to determine the suitability of a host to accommodate
a specific VM, based on ratio calculation between different
resources, namely processing capacity and memory. These
ratios serve to indicate the host’s utilization level prior to
the allocation process. Hence, in this paper, we take into
account several factors, including the most power-consuming
resource (processing capacity and memory), the level of
utilization for both PM and VM, the suitability of the cho-
sen host for a specific VM, and an exploration of how our
proposed strategy impacts network performance and power
consumption.

Our VM allocation approach pivot on two main phases:
fuzzification and de-fuzzification. The Fuzzification phase
involves calculating distinct resource ratios as indicators of
overall utilization, which are also used to establish asso-
ciations between hosts and VMs. Subsequently, hosts are
sorted based on their resource ratios, from themost-utilized to
the least-utilized host. The de-fuzzification phase then com-
mences with the extraction of actual available resource values
from the ranked hosts, starting from the most-utilized host.
This leads to re-calculation of the resource ratio. Similarly,
the VM requested resource ratio calculation is carried out
with the aim of optimizing the host’s capability to accommo-
date the requested VM. Crucially, the adaptability of fuzzy
logic to handle uncertainties and vague information aligns
seamlessly with the unpredictable nature of VM allocation
scenarios, where workloads fluctuate and resource availabil-
ity varies. By dynamically adjusting resource ratios based on
diverse factors, such as workload patterns and traffic fluctu-
ations, the fuzzy logic-based approach ensures efficient VM
allocation, maximizing resource utilization without compro-
mising on host capacities.

The key contributions of this research are:
•Fuzzy-Based VM allocation in SDN-Cloud platform that

takes into consideration network performance and power sav-
ing objectives.
•Two-Level VM allocation that considers most-consuming

resource, namely processing capacity and memory, of two
types of machines, physical hosts and VMs, contributes
in significantly to power saving with zero negative impact
on network performance in SDN-Cloud heterogeneous
datacenter.

The rest of this paper is organized as follows: Section II
provides an overview of the background. Section III presents

the related work. The problem statement, proposed system
architecture and Dual-Phase VM allocation algorithm are
discussed in Sections IV and V, respectively. Simulation
experiments are presented in Section VI. Finally, conclusion
is presented in Section VII.

II. BACKGROUND
In this section, we will provide a brief introduction to
cloud computing, SDN, and SDN-Clouds. We will dis-
cuss the similarities and differences between aforementioned
architectures.

A. CLOUD DATACENTER
Cloud computing is paradigm that provides on-demand com-
puting resources, where profit is gained through pay-per-use
model and resources are provisioned in advance. One of the
defining characteristics of cloud computing is the provision
of on- demand services such that resources are automatically
allocated whenever a client makes a request. Furthermore,
the cloud ensures a variety of resources, employing a feature
known as resource pooling. Cloud providers offer a vast range
of resources for clients, allowing them to select based on their
specific goals, such as storage and processing tasks. These
resources can be shared by multiple users simultaneously,
yet in a way that remains isolated and secure. Also, pay-per-
use model is another characteristic of the cloud, the provided
services are measured. Hence, users pay only for what they
actually consumed. In addition, elasticity is a prominent fea-
ture of cloud computing as clients can scale resources demand
up or down to their work requirements. Broad network
access is another primary characteristic, allowing clients to
access these resources anytime, anywhere using compatible
devices. Therefore, cloud computing facilitates consumers
work and reduce the maintenance cost of traditional IT net-
works [13], [14].

Figure 1. illustrates the evolved entities in cloud com-
puting, as defined by the National Institute of Standard
Technology (NIST) [13]. Various services, including compu-
tation, storage, and applications are categorized under three
main sections: Software as a Service (SaaS), Platform as a
service (PaaS), Infrastructure as a service (IaaS).

SaaS provides users with applications that run on the
cloud; however, users have no control over provided services.
In contrast, PaaS provides users with a development environ-
ment to deploy applications, without control over resources.
IaaS supplies users with all essential resources to be provi-
sioned for their applications, such as operating systems, but
without direct control over core infrastructure of the cloud.

Furthermore, there are four types of cloud deployment
models: private, public, community, and hybrid. A private
cloud is used by a specific organization, with resources
accessed by exclusively by its clients. Public clouds are avail-
able for communal use. Community clouds serve a limited
subset of an organization due to specific concerns such as
security. Finally, hybrid clouds merge two or more of afore-
mentioned deployment methods [13].
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FIGURE 1. The cloud conceptual reference model [13].

Virtualization is a key element in cloud computing and is
facilitated by a hypervisor that resides between the hardware
and the operating system. This function can manage multiple
requests from different tenants by creating multiple VMs on
single PM. Consequently, scalability is achieved by increas-
ing or decreasing resources, alongside power efficiency,
and better resource utilization. The most renowned open
source platform for cloud computing is OpenStack. It enables
administrators to manage a datacenter with a wide range
of resources and allow users to provision these resources
through an application programming interface (API) [15].

B. SOFTWARE-DEFINED NETWORKS (SDN)
Traditional networks rely on network devices to make for-
warding and routing decisions through hardware tables
embedded in the devices themselves, such as bridge and
router. Furthermore, traffic rules, including filtering and pri-
oritizing, are locally implemented on each device. However,
SDN has brought advancement in this domain by simplifying
the design of network devices. It aims to reduce the complex-
ity of both hardware and software components of network
devices.

The basic concept of SDN is to transfer controllability from
network devices to a single central device, namely the control
unit, which manages and controls operations. The control
unit has the ability to observe the entire network and make
decisions regarding forwarding and routing. Conversely, the

task of forwarding is handled by network hardware devices,
which also manage filtering and traffic prioritization [16].
OpenFlow is a well-known SDN design that follows the

fundamental architecture of decoupling the control plane
from the data plane. In this design, the controller and switches
communicate through the OpenFlow protocol. The switches
contain flow tables and flow entries that includes match-
ing fields, counters and a set of actions. The controller
is capable of performing a series of actions on the flow
entries, such as updating, deleting, and adding entries [17].
According to [18], SDN architecture comprises southbound
and northbound communications. Southbound communica-
tion represents the interaction between the controller and
switches, facilitating control through an open interface that
uses a standardized protocol, such as the OpenFlow protocol.
Converserly, northbound communication represents the com-
munication between services and the controllers. An example
of this is high-level network services seeking information
about the network policy from network controllers, which
then results in these controllers communicating with each
other to fulfill the request.

C. SOFTWARE-DEFINED CLOUD DATACENTER
(SDN-CLOUD)
Even though cloud computing is a powerful technology, there
are still some unresolved issues and challenges, such as
network mobility, scalability and security. Consequently, the
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possibility of extending SDN into cloud environment is under
investigation [19]. The OpenFlow protocol, used in SDNs to
standardize communication between controllers and network
services from one link to switches, facilitates what is referred
to as northbound and southbound communication [17].
This role is notably served in datacenters by Open vSwitch

(OVS), a software-based virtual switch. OVS enables Open-
Flow to control and manage flows via a built-in external
interface. The switch is located inside the hypervisor and
includes two modules: the fast path and the slow path. The
fast path module, residing in the kernel of the OVS software,
is responsible for forwarding and counting table entries. Con-
versely, the slow path, located in the user space, manages
forwarding rules and communicates with external interfaces,
such as OpenFlow and the virtualization layer. This function
allows for the creation and connection of new virtual switches
to virtual and physical interfaces.

In addition to this, OpenDayLights is an open source
platform that supports northbound communication in SDN.
It does this by creating controller which offers an API to high
level applications and services [18], [19].

Therefore, the need for aforementioned frameworks be
designed and planned in advance is essential in order to
support core cloud functions such as scheduling and resource
allocation. Even though SDN can be extended to vari-
ous infrastructure by modifying elements in controller, this
research focuses primarily on computing resources.

III. RELATED WORK
This research considers multiple criteria related to VM allo-
cation in the SDN-Cloud environment, including artificial
intelligent-based VM allocation approaches, variations in
host and VM computing resource, heterogeneity, and primary
objective of either performance or power savings. Since there
have been limited studies conducted in the field of SDN-
Cloud environment, we explore these aspects in the context
of cloud computing as well.

Different VM allocation algorithms have been devel-
oped using various strategies, each with different objectives.
For example, the Priority Aware VM Allocation (PAVA)
algorithm [20] primarily considers priority when allocating
VMs, with prioritization predetermined as crisp value i.e.,
0 or 1. This algorithm operates by adapting co-localization
of hosts based on edge connection and placement of VM
based on available resource in term of processing capacity
and bandwidth in the SDN-Cloud. This strategy contributes
to network performance by minimizing response time.

The process of VM allocation on datacenter networks
in EQVMP [21] comprise three main steps: hop reduction,
VM sorting based on requested resources, and mapping
VMs to the best-fit hosts. Hop reduction is implemented by
maintaining similar VM quantities across different groups of
hosts. Similarly, VM placement in [22] considers high power
consumption hosts, which are selected after a task classifi-
cation has been conducted to find the appropriate VM in the
initial stage. Correspondingly, MAPLE system [23] utilizes

effective bandwidth to allocate resources while preserving
QoS constraints. It allocates sufficient bandwidth to handle
requests, as analyzed using traffic traces collected by servers.
As the MAPLE system employs First Fit Decreasing (FFD)
algorithm, which was later extended to MAPLEx [24] to
incorporate a server localization feature.

Furthermore, the MAPLE-Scheduler [25] is developed for
SDN and leverage SDN advantages by dispersing monitoring
agents in the network to gather information for management
decision purposes.

Other VM allocation techniques adopt artificial intelli-
gent approaches, such as HGAPSO which utilize Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO) for
the VM allocation process in cloud datacenter [26]. Addi-
tionally, the genetic algorithm is combined with the tabue
search algorithm in the VM placement process to reduce
power consumption [27]. In another approach, VM allo-
cation utilizes fuzzy logic implemented in the controller,
coupled with reinforcement learning in order to locate as
many VMs as possible on as few hosts as possible. This
aims to reduce power and improve resources utilization [28].
Although previous VM allocation algorithms were designed
for specific objectives, some were proposed to focus on
multiple objectives simultaneously, aiming to improve fac-
tors such as energy consumption, network performance, SLA
violation, and more. For instance, VM placement has been
proposed to maintain SLA by enabling early detection of
overloaded PM resources [29]. The predictive anti-correlated
VM placement algorithm PACPA [30] succeeds in reducing
power consumption and maintaining SLA by considering
CPU utilization prior to VM allocation and adopting neu-
ral networks to predict future VM allocation dynamically.
Although different techniques have been utilized, few contri-
butions were dedicated specifically to the area of SDN-Cloud.

Moreover, most studies managed to contribute to one
objective at the cost of another. For example, the proposed
VMallocation detailed in references [20], [21], [23], [24], [25],
and [26] achieves notable results in enhancing network
performance. This is in contrast to the VM allocation tech-
niques that were developed as per references [22], [27], [28]
and [30]. The contribution on these studies primarily focus
in reducing power consumption. Moreover, few studies have
been devoted to involvement in an SDN-Cloud environment.
Therefore, in this research, we aim to establish a balanced
relationship between power wastage and network perfor-
mance in SDN-Cloud, while considering the utilization level
of multiple resources (computing power andmemory) of both
PM and VM. Table 1 summarizes the aforementioned studies
in terms of the implemented feature, targeted environment,
core resources used in the design of the proposed algorithms,
heterogeneity of VMs requests, and primary contribution to
overall system.

IV. PROBLEM STATEMENT
The datacenter contains n physical hosts H = {h1 , h2,
h3, . . . ,hn}where each host has a limited capacity of resources
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TABLE 1. Related work comparison table.

denoted by hi={CPUi, RAMi}. On the other hand, there are m
VMs to be allocated to a physical host, defined as VM={vm1,
vm2,vm3,...,vmj}. Each vmj has its resource requirements
specified by vmj= {CPUj, RAMj}. Our goal is to allocate
the maximum possible number of VMs into each individual
host H , with the purpose of minimizing the total number of
active hosts. This will result in reduced power consumption
while maximizing resources utilization. However, this objec-
tive should be accomplished without compromising QoS,
which in this study is equated to response time. Therefore,
the primary objectives can be expressed as follow:

minimize
∑n

i=1
Energy(hi)

and maximize
∑n

i=1
CPUUtilization(hi)

and maximize
∑n

i=1
MemoryUtilization(hi) (1)

subject to :∑|VM |

j=1
ResourceRequirment(vmj) < ResourceCapacity(hi)

(1a)∑m

j=1
ResourceRatio(vmj) ≤ UtilizationRatio(hi) (1b)

Energy efficiency is a critical concern for cloud data
centers, as they consume substantial amounts of power.
Minimizing energy consumption directly translates to cost
savings and reduced environmental impact. By optimizing
the VM allocation to consolidate VMs on fewer hosts, the
algorithm aims to power down idle hosts andminimize energy
consumption Therefore, the primary objective is to reduce
power consumption by reducing the total number of active
hosts. Power reduction is attained through a decrease of
active hosts. This decrease in hosts is achieved by maxi-
mizing host utilization, where allocation is performed based
on each host’s utilization level. Furthermore, host utilization

considers different resource requirements, specifically pro-
cessing capacity (CPU) and storage (memory).

Maximizing CPU utilization ensures that computing
resources are efficiently utilized, minimizing the number of
idle CPU cores. Higher CPU utilization results in improved
performance and responsiveness, as computational tasks are
distributed effectively across the data center. Similarly, max-
imizing memory utilization prevents the wastage of valuable
RAM resources. Efficient memory allocation ensures that
VMs have adequate memory to run applications optimally,
avoiding performance bottlenecks and improving overall sys-
tem performance. Hence, to meet the main objectives, our
proposed algorithm ensures that the resource demand by the
total number of allocated VMs in the same host does not
exceed the host’s capacity. Moreover, the resource ratio of
required resources by each VM will not surpass the available
resources ratio of a hosted machine. This is to ensure that
QoS is not compromised by preventing overutilization of
hosts. Therefore, resource ratio value serves as an indication
of overall resource utilization level, incorporating both pro-
cessing capacity and memory. By enforcing this constraint,
the algorithm ensures that VMs are allocated only to hosts
with sufficient available resources to accommodate them.
This helps to maintain stability, prevent resource contention,
and enhance the overall performance of the datacenter. Con-
sequently, D-Ph algorithm aims to achieve resource efficiency
and performance optimization by efficiently allocating VMs
based on resource ratios while respecting the optimization
constraint to avoid overloading hosts. The objective equations
reflect the key performance metrics of energy consump-
tion, CPU utilization, and memory utilization, ensuring an
effective and balanced allocation strategy in the data center.
While we focus on two distinct objectives, we measure the
power consumption of hosts and switches to verify that the
proposed algorithm is capable of reducing the total power
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consumed. On the other hand, we measure response time
and QoS violation rate to study the impact on network
performance.

V. PROPOSED SYSTEM MODEL
A. SYSTEM ARCHITECTURE
Figure 2 displays the overall architecture of our proposed
system. Inspired by fuzzy systems, our system takes applica-
tion requests as ambiguous data, without prior prioritization
or classification. However, different requests often contain a
random number of VMs with varying specifications. Such
specifications may include the type of VM, processing core
and capacity, storage size, and memory. Additionally, flow
specification is determined by factors such as source, des-
tination, and bandwidth. These specification is typically
derived from commercialized cloud providers. The challenge,
therefore, lies in providing adequate service for different
types of application requests, while reducing overall energy
consumption. As datacenter power consumption is increas-
ing exponentially in order to meet the demands of cloud
resources, thus, we focus on hosts due to their direct impact
on power usage. This power usage is based on their power
mode which can be either ‘on’, ‘off’, or ‘idle’. We presume
that ‘mode-on’ hosts consume more energy than that are ‘off’
or ‘idle’, primarily due to computational and storage requests.
Considering hosts utilization and performance levels, our
system aims to minimize the number of ‘mode-on’ hosts
while avoiding over-utilization. This is crucial because over-
loaded hosts can result in degraded network performance and
increase QoS violation, both of which are indicators of poor
system management. Hence, we also consider VM resource
utilization in order to maintain network performance.

To simulate fuzzy logic process, the system obtains the
available resources of hosts and VM requirements in the form
of imprecise numerical data. Subsequently, the fuzzification
phase is initiated to assign weights to the hosts based on their
available CPU and RAM. These weights aim to differentiate
between high-utilized and low-utilized hosts, and they will
be used to sort hosts accordingly. Thus, the assigned weights
reflect the degree of the utilization of the hosts. The weights
are calculated as the ratio of processing capacity including
processing elements (Pes) and (MIPS) to memory, which is
determined byRAMcapacity. The value of this ratio indicates
the level of utilization of different resources. Then phase two,
the de-fuzzification process begins by extraction the actual
resource capacity of the most utilized host based on their
assigned weights, and re-calculating its resource ratio. This is
executed with the process of inference rule, which performs
a comparison with the VM’s requested resources ratio to
assess the suitability of the candidate host to accommodate
the requested VM.

The allocation will be conducted if the resource ratio of
selected host is higher than the ratio of demanding resource
by requested VM, represented in equation (1b) as optimiza-
tion constraint. If this condition is not met, the system will

TABLE 2. List of symbols.

check the capabilities of the subsequent host and repeat the
process until a suitable host is found.

B. DUAL-PHASE RESOURCE ALGORITHM
Our proposed Dual-Phase (D-Ph) resource allocation
algorithm functioning can be break down as following: The
first step of the algorithm involves localizing hosts based on
edge connections. It aims to minimize network traffic and
reduce latency in data transmission. This localization strategy
can lead to improved response times and enhanced user
experience. Then, the algorithm uses fuzzy logic to develop
resource ratios for the most power-consuming resources,
memory, and CPU. Fuzzy logic allows for flexible representa-
tion of resource allocation decisions, enabling the algorithm
to consider a range of factors and uncertainties that might
affect VM placement. The fuzzy logic-based resource ratios
guide the allocation of multiple virtual machines (VMs)
into hosts efficiently. By optimizing the allocation based on
memory and CPU ratios, the algorithm aims to pack as many
VMs as possible into each host, reducing the overall number
of active hosts needed in the data center. However, while
maximizing VM density per host, the algorithm also ensures
that host overutilization is avoided. The fuzzy logic-based
resource ratios set constraints that prevent hosts from becom-
ing overloaded, ensuring that each host operates within its
resource capacity.

In order to find the best candidate host for the requested
VM, our algorithm considers factors including network
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FIGURE 2. System architecture of fuzzy-inspired resource VM allocation.

topology, physical specification, VM resource demands,
available host resources, hosts. locality, network perfor-
mance, and power consumption. Consequently, adjacent
hosts are grouped according to their edge connection in an
attempt to minimize network traffic between them. which
leads to enhanced performance.

Then, the algorithm extracts each host’s available
resources, which are used as input to calculate the ratios based
on processing capacity and memory. These ratios are used as
weights and assigned to their respective hosts. After that, the
hosts are sorted based on their assigned weights, from highest
to lowest. The host with highest weight indicating the most-
utilization, is the first nominated host to accommodate the
requested VM.

However, before allocation process occurs, we need to
ensure the suitability of the nominated host. Hence, our
algorithm calculates the resource ratio based on the VM’s
resource demands to guarantee that sufficient resources are
available for each VM to operate efficiently on the selected
host. Similarly, to ensure that the VM’s resource request
doesn’t exceed the current utilization level of the host. This

management in turn, ensures the prevention of the perfor-
mance degradation by the host. The resource ratio of the host
and VM is extracted as follow:

ProcessingCapacity = PEs ·MIPS (2)

ResourceRatio = ProcessingCapacity/RAM (3)

Thus, resource ratio is utilized to approximate a host’s
level of utilization, as our algorithm primarily targets the
most-utilized hosts in order to maintain the number of high
utilized-hosts at lowest possible level. This approach ensures
that the remaining hosts are set to idle, which will eventually
lead to power saving. As a result, hosts are sorted by their
assigned weights, from the most to the least utilized.

However, D-Ph algorithm also considers network perfor-
mance. Therefore, resource requirements requested by each
VM are assigned with a ratio similar to those of the hosts.
This enables the identification of whether a particular host
is capable of handling a specific VM by comparing the two
values.

The resource ratio of first host in the sorted queue, which
represents most-utilized host, is compared to the resource
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Algorithm 1 Dual-Phase VM Allocation (D-Ph)
Input: vm: virtual topology consisting of VMs to be placed.
Input: w: Workloads with requested VMs
Input: H : host list
Input: vmDemands: resource demands by VM
Output: VM allocation
1: Hostadjacent← groups of adjacent hosts based on edge

connection
2: for each h ∈ Hostadjacent do
3: hostAVBLR← h (PES, MIPS, RAM)
4: hRRatio← ResourceRatio( hostAVBLR )
5: end for
6: Sort Hostadjacent based on hRRatio in ascending order
7: queueHostCapacity← sorted Hostadjacent
8: for each h ∈ queueHostCapacity do
9: hostResources← hostAVBLR (h)
10: HostRRatio← ResourceRatio(hostResource)
11: vmRRatio← ResourceRatio (vmDemands))
12: if vmRRatio ≤ HostRRatio then
13: placed← true
14: update hostResources of h
15: else
16: examine the following h ∈ queueHostCapacity
17: end if
18: end for

demands ratio of the requested VM. Through this compari-
son, we evaluate the suitability of the candidate host to the
particular VM, leading to one of the two outcomes: VM
allocation, followed by an update of available resourcse and
resorting, or the examining of the next host in the queue.

The detailed workings of the D-Ph algorithm are explained
in algorithm 1.

The effectiveness of this algorithm can be attributed to
its combination of localization, fuzzy logic-based resource
ratio development, and intelligent VM allocation strategies.
For instance, by localizing hosts based on edge connections,
the algorithm reduces data transmission distances, leading
to lower network traffic and reduced latency. This results
in reduced communication overhead and enhances user
responsiveness.

Additionally, the integration of adaptive resource ratios
using fuzzy logic enables the algorithm to dynamically adjust
resource allocation based on various factors, such as work-
load patterns, traffic fluctuations, and resource availability.
This adaptability allows the algorithm to efficiently handle
varying conditions and achieve efficient VM allocation.

Moreover, the fuzzy logic-based resource ratios enhance
resource utilization, ensuring that VMs are allocated in a
manner that maximizes the utilization of power-consuming
resources (memory and CPU) without exceeding host capac-
ities. As a result, wasted resources are minimized and
overall data center efficiency is increased. The algorithm also
achieves high VM density by efficiently allocating multiple
VMs into a single host, which reduces the number of active

hosts required. This not only reduces operational costs but
also improves resource consolidation, leading to better power
utilization and reduced physical space requirements.

Furthermore, fuzzy logic allows the algorithm to adapt
to dynamic changes in workload and resource availability.
As the load on hosts fluctuates, the resource ratiomembership
can be dynamically updated, ensuring that VMs are allocated
to hosts based on their current suitability. This dynamic allo-
cation helps prevent host overutilization or underutilization.
As well, we designed our VM allocation algorithm with
practicality and scalability in mind aiming to improve net-
work performance. Therefore, the real-time evaluation and
dynamic nature of fuzzy logic-based VM allocation mini-
mize the overhead associated with frequent recalculations
and adjustments. The algorithm can efficiently assess the
load status and make informed decisions without placing
undue computational burden on the system. By focusing on
simplicity and real-time responsiveness, our system becomes
applicable to dynamic and large-scale data center environ-
ments, where the ability to adapt quickly to workload changes
is crucial.

These benefits significantly contribute to the algorithm’s
scalability, as its adaptability and localization strategy
make it well-suited for large-scale data centers while
maintaining effective resource allocation. Additionally, the
algorithm’s real-time performance, typical of fuzzy logic-
based approach, ensures faster decision-making compared to
complex optimization methods. This real-time capability is
crucial for handling dynamic workloads and ensuring respon-
siveness in distributed environments.

VI. SIMULATION EXPERIMENT
A. SIMULATION SETTINGS
The proposed algorithm is implemented usingCloudSimSDN
simulation environment designed to evaluate resource allo-
cation policies for SDN-Cloud environment. It is extended
from CloudSim simulation toolkit. CloudSim is focused on
simulating general cloud computing environments, while
CloudSimSDN serves as an extension or integration of
CloudSim with SDN concepts.

The architecture of CloudSimSDN leverages the capabili-
ties of CloudSim for cloud computing simulation and incor-
porates additional components and modules related to SDN.
As a result, researchers can investigate the dynamic inter-
play between SDN and cloud computing within virtualized
data centers. CloudSimSDN offers specialized modules for
simulating SDN-based network management, programmable
forwarding rules, and network resource provisioning, com-
plementing the traditional cloud computing simulation fea-
tures of CloudSim.

Figure 3 illustrates the architecture of CloudSimSDN,
wherein users provide topology configurations comprising
user code and scenarios, along with physical and virtual
topology configurations. Additionally, workload descrip-
tions, including submission times, job processing sizes, and
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FIGURE 3. CloudSimSDN architecture [31].

TABLE 3. Simulation parameters.

traffic data sizes, are supplied. Users also specify scheduling
policies, such as VM placement algorithms and network poli-
cies. Brokers can simulate end-users or data centers, and users
have the option to use built-in policies or create their own.
The VM Services layer manages VMs and the network, while
the Resource Provisioning layer includes VM Provisioning
andNetwork Provisioningmodules. The Resource Allocation
layer handles resource allocation as specified in the Cloud
Resources layer. This architecture facilitates comprehensive
simulation and study of cloud and SDN interactions [31].

In this experiment, an 8-pod fat tree topology is used for
the evaluation, which comprises of total 16 core switches,
32 aggregation switches, 32 edge switches and 128 hosts.

In order to assess the effectiveness of the proposed
algorithm, we employ real-world dataset: Wikipedia
workload. This workload is based on a three-tier application
model [30] with the intent to provide a practical solution
reflecting real-world scenarios with total workload approx-
imately n ≈ 46,369.

D-Ph algorithm is compared to Priority-Aware VM
Allocation (PAVA) algorithm [20]. PAVA algorithm is
prioritization-based VM allocation developed specifically for
SDN-Cloud datacenter. It processes requests based on their
assigned priority status which can be either 0 or 1. Critical
applications are given a higher priority during the allocation
process, with the priority status of these requests set to 1.
This indicates that those applications ought to be processed
first compared to regular applications, which are assigned
a priority value of 0. However, PAVA is only triggered for
high priority request. This means that when a request enters
the system with priority status value of 1, it is treated as
critical application and is consequently processed by PAVA
algorithm. Meanwhile, other VM requests, namely those of
a lower priority, are managed through First Fit Decreasing
algorithm (FFD).

PAVA operates by allocating VMs to hosts based on the
concept of hosts co-localization and facilitates placement
by considering groups of hosts with the highest comput-
ing resources. Therefore, the allocation decision is made
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Algorithm 2 Priority-Aware VM Allocation (PAVA)
1: Input: vm: VM to be placed.
2: Input: rd: Resource demand of vm;
3: Input: app: Application information of vm.
4: Input: H : List of all hosts in data center.
5: Output: VM placement map.
6: Hgroup← Group H based on edge connection;
7: QH← Empty non-duplicated queue for candidate hosts;
8: placed← false;
9: if app is a higher-priority application then
10: Happ← list of hosts allocated for other VMs in app;
11: if Happ is not empty then
12: QH .enqueue(Happ);
13: for each ha in Happ do
14: Hedge← A host group in Hgroup where ha is included;
15: QH .enqueue(Hedge);
16: end for
17: for each ha in Happ do
18: Hpod ← Hosts in the same pod with ha;
19: QH .enqueue(Hpod );
20: end for
21: end if
22: sort Hgroup with available capacity, high to low;
23: QH .enqueue(Hgroup);
24: while QH is not empty and placed = false do
25: hq = QH .dequeue()
26: Ch← free resource in host hq;
27: if rd < Chq then
28: Place vm in hq;
29: Ch ← Ch - rd;
30: placed← true;
31: end if
32: end while
33: end if
34: if placed = false then
35: Use FFD algorithm to place vm;
36: end if

based on the most substantial amount of available resources
among groups of hosts. However, there is no association
is established between available host resources and VM
resources. While PAVA significantly improves network per-
formance, however, power consumption was maintained. The
pseudocode of PAVA algorithm is detailed in algorithm 2.
As PAVA is designed exclusively for critical applications,
we presumed during this experiment all requests have
high priority in order to trigger PAVA and ensure fairness
comparison.

The experiment intends to meet objectives related to power
consumption and network performance. Therefore, we mea-
sure response time and power consumption of hosts and
switches to compare with PAVA algorithm.

Furthermore, given D-Ph algorithm aims to ensure high
network performance while minimizing power consumption,
we consider the average response time, network and CPU

serve time, and QoS violation rate as an indicators of overall
network performance.

B. EXPIRMENTAL RESULTS
We compare D-Ph and PAVA using the identical number of
workloads and simulation settings. However, since PAVA is
designed expressly for critical applications, we assume that
all requests have high priority. We calculate the energy con-
sumption, which denotes the energy consumed by a resource
to complete a workload’s execution. High energy consump-
tion typically signifies that a substatinal workload is being
processed. Accordingly, we measure the specific power con-
sumption of hosts and switches to evaluate whether D-Ph
consumesmore power than PAVA, based on the powermodels
of hosts [33] and switches [34]. The power model of the
hosts is determined by the percentage of processing capacity
utilization:

P(Hosti) =

{
Pidle +

(
Ppeak − Pidle

)
·ui if|VM| > 0

0 if|VM| = 0

(4)

where ui represents the percentage of processing capacity and
the power consumption of idle hosts has a constant factor.
This consumption will be reduced once the host is powered
off. The power consumption of switch i is calculated based
on the active ports as follow:

P(Switchi) =

{
Pstatic + Pport .qi if switchi is on
0 if switchi is off

(5)

where qi represents active ports in switch i.
The following subsections represents the results regarding

D-Ph algorithm impact on power consumption and network
performance together with an analysis of the algorithm com-
plexity.

1) ANALYSIS OF POWER CONSUMPTION
Figure 4 provides a detailed analysis of power consump-
tion in the datacenter, including the power consumption of
hosts and switches. Comparing the D-Ph algorithm with
the PAVA algorithm, we observe slightly lower reduction in
power consumption by switches with the D-Ph algorithm.
This reduction can be attributed to theD-Ph algorithm’s effec-
tive implementation of co-localization, which reduces traffic
between connected hosts. By considering VM placement
based on host consolidation, the D-Ph algorithm minimizes
data traffic passing through switches, resulting in fewer active
ports and decreased power consumption. Although the D-Ph
algorithm does not operate at the link level, it still successfully
reduces power consumption of switches.

In terms of power consumption by hosts, the D-Ph
algorithm achieves a significant reduction compared to the
PAVA algorithm. The D-Ph algorithm focuses on the uti-
lization of the most power-consuming resources, such as
processing capacity and memory. It also takes into con-
sideration other factors for VM allocation, including VM
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FIGURE 4. Detailed power consumption of hosts and switches.

resource demands and the relationship between available and
requested resources. By optimizing resource utilization and
minimizing the number of hosts used, the D-Ph algorithm
effectively reduces power consumption at the host level.

Overall, the D-Ph algorithm results in a noticeable decrease
in total power consumption compared to the baseline
algorithm, PAVA. This is because the D-Ph algorithm is
designed to optimize the operational cost of the datacenter by
maximizing resource utilization and minimizing the number
of hosts, based on resource ratios. Consequently, the D-Ph
algorithm achieves an approximate 40% reduction in total
power consumption compared to PAVA, as evidenced by
obtained results.

The behavior of the D-Ph algorithm in reducing power
consumption is attributed to its co-localization concept,
VM placement based on host consolidation, utilization of
power consuming resources, and considerations for VM
allocation. The D-Ph algorithm successfully reduces power
consumption at both hosts and switches levels, leading to
a significant drop in total power consumption compared to
existing algorithms like PAVA. This highlights the effec-
tiveness and efficiency of the D-Ph algorithm in optimizing
datacenter power consumption and operational cost.

Analysis of Network Performance like PAVA. This high-
lights the effectiveness and efficiency of the D-Ph algorithm
in optimizing datacenter power consumption and operational
cost.

2) ANALYSIS OF NETWORK PERFORMANCE
Figure 5 displays the average response time achieved by
both the PAVA and D-Ph algorithms. Although there is not
a significant difference in average response time between the
two algorithms, the average response time achieved by D-Ph
is slightly lower than that of PAVA. This difference can be
attributed to the hosts grouping step is performed by both
algorithms, which also contributes to the reduction of power
consumption in switches.

Furthermore, the hosts grouping stage plays a role in
decreasing transmission across networks between hosts,
thereby improving network performance.We also analyze the

FIGURE 5. Average response time.

average response results in Figure 6, focusing on variations
based on the serving time of the network and CPU.

Upon analysis, we observe that the average serve time
of the network and CPU in both D-Ph and PAVA is sim-
ilar, supporting the findings illustrated in Figure 6 where
D-Ph exhibited a similar effect on overall network perfor-
mance as PAVA. However, it is important to note that when
the network is overloaded with complex applications, PAVA
typically outperforms in improving network performance.
Despite this, our conclusion is that D-Ph excels in main-
taining high performance in overload-traffic scenarios within
large-scale datacenters.

This conclusion is supported by existing research
paper [20] that have explored the behavior of different algo-
rithms in datacenters. These study have demonstrated that
PAVA succeeds in minimizing response time compared to
well-known algorithms such as FFD, Random algorithm, and
Dynamic Flow algorithm. Accordingly, D-Ph can effectively
maintain high performance even under heavy network traffic.
This further validates the capability of the D-Ph algorithm in
enhancing network performance and supporting the efficient
operation of large-scale datacenters.

Further, to ensure that the overall performance is not
negatively affected by D-Ph, we take into account the QoS
violation rate of both algorithms. This violation rate is com-
puted on the basis of the response time obtained by Exclusive
ResourceAlgorithm (ER), which provides dedicated hosts for
each VM. Given that ER provides devoted hosts for every
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FIGURE 6. Average serve time of Network and CPU.

FIGURE 7. QoS violation rate percentage.

VM, all resources offered by the host are fully utilized by
a single VM application, resulting in the lowest possible
response time.

The QoS violation rate is determined using the response
time obtained from ER. We calculate it by comparing total
number of workloads whose response time exceeds the value
set by ER algorithm, divided by the total number of work-
loads. The following equation represents the formula for
calculating the QoS violation rate:

rv =
|{wv ∈ W | tx (wv) > tera (wv)}|

|W |
(6)

• tx : response time of a workload (wv) measured from
D-Ph & PAVA algorithm.

• tera : response time of a workload (wv) measured from
ER algorithm.

• W : workload sets.
The results of the QoS violation rate, as shown in Figure 7,

support our conclusion that D-Ph does not negatively impact
the network since it achieves similar results to PAVA that
succeeds in reducing QoS rate in overloaded-traffic network
within a large scale datacentre.

C. ANALYSIS OF ALGORITHM COMPLEXITY
The process of creating the collection of adjacent hosts based
on edge connections may have a time complexity of O(n^2)
in the worst case if all hosts are adjacent to each other. This
is because, in the worst case, each host needs to be compared
with every other host to determine adjacency.

The calculation of available resources for each host and
sorting the adjacent hosts based on resource ratio has a time

TABLE 4. List of abbreviation.

complexity of O(n log n). Hence, sorting the hosts takes O(n
log n) time, where n is the number of hosts. The iteration over
the sorted adjacent hosts has a time complexity of O(n) since
it involves iterating over each host once.

Overall, the time complexity of the algorithm can be
approximated as O(n^2) for the worst-case scenario where
all hosts are adjacent, or O(n log n) for the average case when
considering the sorting operation.

The space complexity of the algorithm is relatively low,
primarily depending on the storage of the input data and a few
auxiliary variables. It does not involve any significant data
structures that grow with the input size. Therefore, the space
complexity can be considered as O(1), indicating constant
space requirements.
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Therefore, the time complexity is O(n^2) or O(n log n)
depending on the adjacency structure, and the space complex-
ity is O(1).

VII. CONCLUSION
In this paper, we developed a two-phase VM allocation
algorithm that leverages fuzzy logic for SDN-Cloud het-
erogeneous networks in cloud datacenter. The proposed
algorithm focuses on multiple aspects like the utilization of
both PM and VM and takes into account multiple resources,
such as processing capacity and memory for host-VM
mapping. The first phase incorporates a fuzzification step,
wherein adjacent hosts are grouped, and resources (process-
ing capacity and memory) are extracted. A ratio for each
host is calculated and the hosts are sorted based on this
assigned ratio. This is followed by a defuzzification phase,
in which the process of selecting the best fir host begins by
calculating the requested resource ratio of the requested VM.
An inference rule is built by comparing the resource ratio
of the VM to the nominated host. The available resources
of the host are then updated if the allocation successfully is
performed. We have evaluated our work in CloudSimSDN
with an overloaded network using complex applications, such
as Wikipedia workloads, to represent real-world traffic in
large scale datacenters. We measure response time as an
indication of network performance in conjunction with serve
time of the network and CPU. QoS violation rate and power
consumption for both hosts and switches are also consid-
ered. Results reveal that our proposed algorithm succeeds
in reducing power consumption by 40% while preserving
network performance in heavy-loaded networks, compared
to the baseline algorithm. Hence, D-Ph algorithm manages
to achieve a balance between multiple performance metrics,
including energy consumption, CPU utilization, and memory
utilization. Thus, our proposed algorithm demonstrates its
ability in minimizing energy usage, which leads to cost sav-
ings and environmental benefits, while maximizing CPU and
memory utilization to ensure efficient resource usage without
compromising network performance.
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