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ABSTRACT Remote sensing has become a key component of precision agriculture in the recent decade.
Hyperspectral imaging is one key technology that is predicted to be one of the primary decision-making
tools in remote sensing-based precision agriculture. Unmanned Aerial Vehicle-based hyperspectral image
acquisition is becoming viable due to the reduced cost and the form factor of recently introduced
hyperspectral cameras. However, these advantages come at the cost of pixel resolution. Due to factors such
as uniform textured surfaces in farmlands, low-pixel resolution, and repeated patterns, traditional stitching
methods are unsuccessful at identifying matched features that are needed in generating mosaics from these
images. Generating mosaics is a key step in the decision-making process since it opens the ability to interpret
information field-wide instead of per-image information interpretations. This paper proposes an image
mosaic generation pipeline based on LoFTR - a local featurematchingmethod using transformers as a feature
matcher for the low-pixel resolution hyperspectral images. Furthermore, the GPS point-based optimization
method is also presented in order to minimize the computational cost and allow the multicore processing
capability. The proposed method was evaluated using several field datasets obtained using a low-resolution
hyperspectral camera and an unmanned aerial platform. Results present successfully stitched image cubes
that could be used in future analysis tasks in agriculture-related decision-making processes.

INDEX TERMS Feature detection, hyperspectral image stitching, mosaic generation, feature matching.

I. INTRODUCTION
The importance of precision agriculture is becoming more
and more evident due to various challenges faced by today’s
farmers. Climate change repercussions have impacted the
agriculture industry heavily and losses are ever increasing [1].
Apart from climate change impacts, pest-related losses, soil
degradation, and decreasing resource availability such as
water also impact towards the losses. Precision agriculture
provides the tools that can be used in the decision-making
process to mitigate these losses. Spectral sensing is one such
tool used in precision agriculture in the decision-making
process.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tallha Akram .

Out of different spectral imaging methods, multispectral
imaging technology can be considered the most widely used
in precision agriculture-related remote sensing tasks. Hyper-
spectral imaging was limited to the research applications due
to its high entry cost and the large form factor. However, with
the advancement of spectral imaging technologies, both size
and cost have come down to a stage where now it’s being
widely used in UAV-based image acquisition systems [2],
[3], [4], [5], [6]. Compared to traditional imaging platforms
such as satellite-based acquisition and manned aircraft-
based acquisition, UAV-based imaging platforms provide the
advantages of high spatial and temporal resolution. From the
literature on UAV-based hyperspectral imaging technology,
two main image-capturing methods could be identified [2].
PushBroom (Line scanning) sensors [7], [8] where the pixel
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line of the image is recorded at one time and the image is
generated by combining line-by-line acquisitions. Snapshot
sensors [9], [10] where the entire image is captured at once.
Snapshot sensors are recently becoming popular due to their
advantage of fast acquisition time in UAV-based imaging
tasks.

Mosaicing is the process of stitching multiple images into
one image [11]. In the remote sensing domain, a mosaic
of the captured images is a single image obtained by
stitching the images captured using an aerial platform.
Interpreting the data and decisions relative to a stitched image
ismore convenient and user-friendly than interpreting relative
to each captured image separately. When the images are
interpreted relative to the image-by-image basis, it is difficult
to understand the spatial relationship between the image and
the actual captured image area. Further, this is especially
problematic with low-altitude flying instances with the
cameras having narrower optics. Images produced with this
combination, such as hyperspectral aerial images with low
pixel resolution, gain a great deal from being composed into
a mosaic from the captured images.

The typical work process of image mosaic generation
includes identifying the features of each image, matching
features, calculating the transformation needed to align
every image to one coordinate system, and finally blending
the images into one by deciding on a strategy to blend
overlapping areas without visible seams [12]. However, this
process fails at the feature detection and matching stage
for hyperspectral images taken from recently introduced
low-cost snapshot hyperspectral cameras. This is due to their
low pixel resolution and narrower optics not being able to
produce enough features needed in transformation calcula-
tion accurately. For example, the recently introduced Cubert
Ultris 5 camera’s resolution is limited to 290px× 270px. [13]
and Field of View is limited to 15◦. One method to mitigate
this problem is by flying at relatively high altitudes so that the
camera captures more features from the scene that could be
identified by traditional feature detection methods. However,
doing so will reduce the spatial resolution of the image since
this will increase the area captured by one pixel. This in
turn would result in the loss of the advantage in UAV-based
hyperspectral imaging, where leaf-level spectral information
can be easily captured by flying at low altitudes.

In this research paper, we investigate the issue of traditional
feature-matching methods not being able to identify enough
features from low-resolution hyperspectral images and we
propose the use of a learning-based feature detection
approach to overcome the issue. Based on this feature-
matching method, the stitching process is proposed to stitch
the low-resolution hyperspectral images to obtain the stitched
mosaic. Preliminary results indicate the possibility of using
the proposed approach to create hyperspectral mosaics. The
main contributions of this paper can be listed as follows.
• Global Positioning System (GPS) information-based
image segmenting method: Images are divided into
subgroups based on their GPS location information to

reduce the computational cost when stitching. This is
achieved by reducing the number of matches that need
to be considered compared to traditional approaches.
Further, it allows the possibility of parallel processing
image groups separately.

• Stitching pipeline based on LoFTR (LOcal Feature
matchingwith TRansformers) featurematching: The use
of detector-free local featurematchingwith transformers
will be discussed in the context of Low-resolution
hyperspectral images. Then the overall methodology
followed to obtain the hyperspectral mosaic is presented.

The stitched mosaic using the proposed method was
geometrically consistent with the captured target area and
spectrally consistent within different targets.

II. RELATED WORK
Image registration is the process of transforming two or more
images into a single plane using the common features of the
images and it could be identified as a key step in the mosaic
generation process. Feature detection-related research work
can be divided into two main subsections focusing on image
registration of general image stitching research and aerial
image-specific stitching research publications. In general
image stitching, image registration can be subdivided into two
main areas. Intensity-basedmethods and Feature-basedmeth-
ods [14]. Under intensity-based methods, algorithms such
as frequency domain methods [15], spatial domain meth-
ods [16], and optical flow methods [17] can be identified.
Under feature-based image registration algorithms, geometri-
cal feature identification methods and learning-based feature
detection methods can be identified [14]. However, out of
these different methods, most image-stitching applications
focus on using area-based registration and feature-based
registration [18]. This is true for aerial image-specific
stitching research as well. 2022 review of existing UAV
image mosaicing research [19] indicates that the most
widely used methods used in the registration process are
Scale-Invariant Feature Transform (SIFT) [16], Speeded-Up
Robust Features (SURF) [20], Harries corner detection [21],
Features fromAccelerated Segment Test (FAST) [22], Binary
Robust Invariant Scalable Keypoints (BRISK) [23] and
Oriented FAST and Rotated BRIEF (ORB) [24]. All these
methods depend on feature-based descriptors that define the
point it describes. However, these feature-based detectors
perform poorly when there are factors such as poor texture,
viewpoint change, illumination variation, repetitive patterns,
and motion blur [25]. Poor textures and repetitive patterns
are common occurrences in low-resolution hyperspectral
images taken using drone platforms. Hence the need arises
to use alternative feature-detecting methods to overcome the
aforementioned problem.

With the recent advancements in deep learning-based tech-
nologies and SLAM (Simultaneous Localization And Map-
ping) technologies, many learning-based feature-matching
methods are being introduced. These learning-based meth-
ods can be divided into two subgroups, Detector-based
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FIGURE 1. Detected feature comparison between SIFT for image pairs P,
Q, R, and S.

feature-matchingmethods, and detector-free feature-matching
methods. Several detector-based and learning-based meth-
ods, such as Learned Invariant Feature Transform (LIFT)
[26], MagicPoint [27], SuperPoint [28], and SuperGlue [29],
have demonstrated superior performance in scenarios with
changing illumination compared to traditional feature match-
ing algorithms. However, these learning-based methods still
face the limitation of feature detectors not being able to
identify features that can be easily matched across different
images. Especially in the areas of indistinctive regions such
as uniform textured areas or low contrast areas.

In order to overcome these issues recent research is
focusing on detector-free learning-based feature matching
methods. NcNet [30], sparse NcNet [31], and DualRC-Net
[32] can be identified as some of the models proposed
in this area with promising results. Recently the use of
Transformers [33] in vision-related tasks has attracted a lot
of focus due to the computational efficiency they promise.
LoFTR [25], the feature-matching model incorporated in
this proposed stitching method is based on Transformers
and the paper indicates that it outperformed all of the
existing methods even in problematic illumination changing
situations, and uniform textured images. However, LoFTR
was neither trained nor tested on low-resolution image
data sets, and performance in low-resolution datasets was
evaluated during this research.

Hyperspectral image-specific stitching methods are dis-
cussed by several authors in the literature. Table 1 summa-
rizes the available literature that we could locate specifically

TABLE 1. Hyperspectral image stitching literature overview.

for hyperspectral image stitching. Fang et al. [34] discusses
the usage of the spline Sparse Bundle Adjustment (SSBA)
method for image registration. Mo et al. [35] and Zang et al.
[36] discuss using SuperPoint [28] and SuperGlue [29] for
the feature detection and matching step. Peng et al. [37] and
Yi et al. [38] discuss using SIFT as the feature extractor
and in the paper [37] authors have used multiscale top K
rank preservation (mTopKRP) [39] to obtain a robust set of
matches to calculate homography. Hyperspectral images used
in all of the papers were above 480 pixels in width. Even
though the two papers do not mention the specific length of
the image, their figures indicate it is at least more than 3 times
the width of the images. All of the papers use images acquired
with a pushbroom sensor. Most of the other stitching-related
papers such as [40] dive into the specific stitching problems
associated with pushbroom sensors which would not be
applicable to the images captured using snapshot imaging
systems. However, we could not find any existing research
articles that focused on low-resolution snapshot hyperspectral
image matching and stitching further highlighting the need
for identifying suitable methods.

III. PROBLEM DEFINITION
This section further investigates the aforementioned problem
in detail. Figure 1 (a) indicates a sample image set of several
image acquisition sessions. Each pair represents two adjacent
images and images were selected to highlight the feature
detection challenges with existing methods. Figure 1 (b)
plots the features obtained for each band of the hyperspectral
image using SIFT and ORB algorithms. These two were
selected because the literature suggests these two are the
most used feature detection and matching algorithms in aerial
imaging research [19]. Feature matches identified with SIFT
are indicated with a solid line and ORBmatches are indicated
with dotted lines. Image pair P performed well compared
to other images with SIFT detection, where most of the
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FIGURE 2. Overall methodology followed.

bands were capable of producing feature matches of more
than 15. However, the other 3 pairs did not perform well
with either of the feature detection algorithms. Image pair S
did perform well after the 700nm range with both SIFT
and ORB detectors. Instead of using single-band feature
matching, one other option would be to fuse different bands
and obtain features from the fused images such as RGB
fused images. However, an evaluation done using all possible
3 band combinations revealed that there were no considerable
improvements from that approach either. When the two most
poorly performed image pairs were evaluated, the maximum
number of matches obtained using pair Q was 21, and pair R
produced 36maximummatches. This is a slight increase from
the single-band evaluation. However, the fused bands were
completely different from one another, and searching for an
ideal band selection for each image by calculating all the
combinations is not a viable solution either. Hence a need for
a robust feature detection method is highlighted.

IV. METHODOLOGY
The overall methodology followed is depicted in Figure 2.
Figure 3 (a) presents the camera mounted on the drone
platform. After the image acquisition is carried out each
hyperspectral image is pre-processed to convert the recorded
digital values to reflectance values. Then the recorded GPS
data is used to group the GPS points into lines according to
the flight path. Each line segment’s images corresponding
with each GPS point are loaded into an array sequentially.
Adjacent images are used to find the features, calculate the
transformation, and then stitch. Then the array is replaced
with the stitched images and the process is repeated until
there is only one single image in the sequence. The same

FIGURE 3. (a) Hyperspectral camera mounted on the drone. (b) A3 flight
controller. (c) DJI ground station software interface.

process is repeated for each image group. Finally, stitched
line groups are then processed in the same adjacent feature
detection methods to obtain the final image. The following
sections will discuss the steps in detail.

A. IMAGE ACQUISITION AND INITIAL PROCESSING
As mentioned previously, the hyperspectral camera used
in this research is Cubert Ultris 5 [13]. Table 2 presents
the main specifications of the camera. The camera was
mounted on a DJI M600 pro [41] drone platform. Mission
planning for the data acquisition session was carried out
using the DJI Ground Station software [42] presented in
Figure 3 (c). Where a shutter signal was generated in the DJI
A3 flight controller (Figure 3 (b)) in order to capture an
image. The camera was triggered using a PWM relay which
was triggered by the aforementioned shutter signal. Captured
hyperspectral images are stored in the Pokini F2 Single Board
Computer(SBC). The camera software on the SBC records
the GPS information along with the image data.

Before every image acquisition session, a calibration
session was carried out in order to convert the radiance
captured by the camera sensor to reflectance information.
First, the camerawas turned on till it reached thermal stability.
Then a dark image was captured by covering the lens using
a lens cap. Later, a white image was captured using the
provided calibration card. The black reference image and the
white reference image were used to calculate the reflectance.
Detailed steps followed including the equipment setup and
the calibration steps were discussed in this paper [43].
This whole process of preprocessing the captured images
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TABLE 2. Specifications of the camera.

was carried out using the manufacturer’s provided Python
Software Development Kit (SDK), which further includes
the initial camera-specific calibrations such as geometrical
correction and sensor-specific corrections. Processed 16-bit
reflectance data were then saved as numpy objects for future
processing. The original image captured by the camera is in
12-bit format and the converted 16-bit image is truncated
by the SDK to avoid resolution gain. At the same time,
GPS information from each file was extracted and saved
separately.

All image acquisition sessions were carried out on the
Mie University farm located in the Mie prefecture of Japan.
Further, all acquisition sessions were carried out between
10.00 AM and 11.30 AM on cloudless clear-skied days. DJI
Ground Station [42] was used to plan each mission which
calculated the number of images needed to cover the planned
mission. Each mission was planned with at least 80% front
and side overlaps. Further, the Hover and Capture mode was
used in order to reduce themotion blur and to keep the camera
axis parallel with the nadir. Mission-specific settings for each
dataset such as the altitude are discussed in the results section.

Algorithm 1 GPS Point-Based Image Grouping Algorithm
1: Initialize first segment from GPS_pnts[0, 1]
2: for i+ 2← len(GPS_pnts) do
3: Calculate θ, α

4: Calculate dcurrent , dlast
5: ddiff = dcurrent − dlast
6: θdiff = θ − α

7: if ddiff <= dtresh or θdiff <= θtresh then
8: CurrentSegment ← GPS_pnts[i]
9: else

10: Start a new segment
11: Initialize new Segment with GPS_pnts[i, i+ 1]
12: end if
13: end for

B. OPTIMIZED STITCHING USING GPS INFORMATION
The traditional method of image stitching to create a mosaic
is to first identify features and descriptors from each image
and identify matches in between images. Then depending on
the matches, the stitching order is determined by grouping
the matched images into subsets. A confidence parameter is
calculated to check which image is most likely to be adjacent
to the next image [44]. However, this matching of each
image with other images is a time and resource-consuming

FIGURE 4. (a) GPS points of the recorded images (b) Segmented images
subsets.

FIGURE 5. Parameters used in identifying line groups.

process [45]. In order to overcome this issue different
GPS-based localization methods are being proposed to
optimize the stitching process [18], [44]. In this section,
the GPS location-based optimization method is proposed to
minimize the processing time of stitching by grouping the
images into subgroups where each subgroup can be processed
separately to increase computational efficiency.

Algorithm 1 presents the overall procedure followed to
group the images into subgroups. This grouping is achieved
by identifying lines and the turns that the aircraft moved
during the flight and separating each line after each new turn.
Images that represent the points of each line are grouped
and matched. This algorithm assumes that the flight planning
software created the flight path in straight lines and that
images are captured in a sequence. First, two images are
used to initialize the first segment. From the next GPS point
onwards θ : tangent angle between the current point and
the last point of the segment and α: tangent angle between
the last two points of the current segment is calculated.
Further, dcurrent : distance between the current point and the
last point and dlast : distance between the last two points of the
current segment is calculated. The aforementioned angles are
depicted in figure 5. Angle difference θ − α and the distance
difference dcurrent − dlast were calculated next. If the angle
difference or the distance difference is below the threshold
values set current point is added to the current segment. If not,
the current segment will be saved and the new segment will
be initialized using the current GPS point and the next one.
Figure 4(b) presents the grouped image sequences from a set
of GPS points shown in figure 4 (a).
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FIGURE 6. (a) Images compared (b) Matches obtained using LoFTR.

C. FEATURE MATCHING, TRANSFORMATION
CALCULATION, AND STITCHING

Algorithm 2 Stitching Two Adjacent Images
1: Image1[:,:,Selected_band], Image2[:,:,Selected_band]
2: Convert to 8-bit images
3: Find matched Keypoints
4: if Keypointconfidence > Threshold then
5: Keep Keypoints
6: end if
7: Calculate Affine Transformation
8: if Affine Transformation is None then
9: Calculate Homography Transformation
10: end if
11: Wrap each band using the Transformation matrix
12: Blend Each Band

Feature detection and matching of the proposed method
is carried out by the LoFTR algorithm [25]. LoFTR is a
detector-free method that performs local feature matching in
image pairs. LoFTR incorporates a detector-free design to
extract position and context-dependent local features, which
are transformed into feature representations in order to match
between images. It uses a Convolutional Neural Network
(CNN) to extract multi-level features from the images being
compared. A Local Feature Transformer module is then used
to extract the position and context-dependent local features.
Using linear transformers in the algorithm reduces the
computation cost making it suitable for SLAM applications.
The use of self-attention and cross-attention layers improve
the accuracy of the predictions by allowing the model to
attend to important feature and patterns within the input
data. Furthermore, the model can handle different types
of input data and match them more accurately by using
the model’s ability to use an optimal transport layer or a
dual-softmax operator in establishing coarse-level matches.

Figure 6 (a) shows an image pair that when processed with
SIFT, SURF, ORB, andBRISK, could not identify any feature
matches between images. Figure 6 (b) shows the same two
images processed with LoFTR managed to identify a total of
681 feature matches and there were 102 feature matches with
0.9 or higher confidence levels.

Overview of stitching two adjacent images shown in the
algorithm 2. Implementation of the LoFTR for the hyper-
spectral images was carried out using the kornia computer
vision library [46]. Since the LoFTR function expects 8-bit
images, the selected channel image was converted into 8-bit.
Even though this step causes some information loss due to
the conversion, it won’t affect the final stitched image since
two converted images are only used to obtain the matched
keypoints. Furthermore, selecting the channel is a decision
the user should make considering the captured image area.
The contrast between pixels will result in slightly higher
performance and will lead to high-quality keypoints. In our
experiments, we observed that selecting a channel from
600nm to 750nm will give an advantage over the identified
number of keypoints in some image pairs.

LoFTR algorithm outputs matched keypoint pairs along
with the confidence of each keypoint pair. It was then
filtered with a user-defined confidence threshold. Filtered
keypoint pairs are then used to calculate the transformation
matrix between the two images. Since the hyperspectral
camera is mounted perpendicular to the astronomical horizon
during flight, and the images are taken with the hover and
capture mode, first the algorithm tries to solve for the affine
transformation. Where x ′ and y′ are matched coordinates of x
and y and equation was solved to obtain the a11, . . . a12 and
tx , ty using the equation (1).x ′y′

1

 =
a11 a12 tx
a21 a22 ty
0 0 1

 xy
1

 (1)

However, if it fails due to perspective distortions hap-
pening due to unstable flight conditions such as windy
conditions, homography transformation is calculated using
the equation (2) where hi,j represents the homography matrix.
Theoretically, homography calculation includes the affine
transformation and if the matched points are highly accurate,
then the terms h31, h32, h33 should become close to 0 in case
there are no perspective distortions. However, in practice,
it was observed that homography will be highly affected by
incorrect feature matches that occur seldom with uniform
textures and repeated patterns.x ′iy′i

w′i

 =
h11 h12 h13
h21 h22 h23
h31 h32 h33

 xiyi
1

 (2)

The calculated transformation matrix is then used to
calculate the corners of the output image which is then used to
calculate the minimum and maximum x and y coordinates of
the output image. The translation matrix is then defined using
the minimum x, and y values (xmin, ymin), and each channel
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FIGURE 7. Evaluation of the LoFTR feature matching for low-resolution
hyperspectral image pairs.

of the second image was warped using this translation matrix
presented in equation (3).

T =

1 0 −xmin
0 1 −ymin
0 0 1

 (3)

If the calculation of the affine transformation was success-
ful each channel of the first image was also warped using
the composed matrix of affine and translation matrices. If the
affine transformationwas unsuccessful, the translationmatrix
was multiplied by the homography matrix to obtain the full
transformation matrix, which was used to warp each channel
of image one to the new image plane. Finally, each channel
of the warped images was blended separately using a feather
blend and stacked to obtain the final stitched image cube with
all the channels.

This process was performed on adjacent images until all
the images of a line segment were finished. In case there
is an odd number of images, The (n − 1)th image was
repeated in order to make an even number of pairs. Resultant
stitched images were again processed using the same strategy
and the process was repeated until there was one stitched
image of the entire line segment. This strategy also helps in
cases where repeating low-resolution features induces false
matches between images that are not related. Finally, the same
process was repeated for the stitched image groups to obtain
the stitched hyperspectral cube.

V. RESULTS AND DISCUSSION
A. EVALUATION OF FEATURE MATCHING METHOD
Figure 7 plots the LoFTR matches obtained for the same
images depicted in Figure 1 (a). The number of good matches
plotted here is the total sum of matches above a confidence
value of 0.9. Pair Q had the highest number of matches
with a mean matched number of 574 features. Image pair R
produced 102 features as the mean values with the highest
value of 183 at band 21 (618nm) and the lowest value of
59 at band 0 (450nm). Image pair S also produced amaximum
number of features with 229 matches at band 31 (698nm) and
the lowest was 139 at band 0 (450nm). The mean value of the

image pair S was 180 matches. Out of all four pairs, Image
pair P performed the poorest with a confidence value of 0.9,
where only 11 matches were identified as the mean with a
maximum of 36 at the 21st band (618nm) and a minimum
of 3 matches at band 16 (578). Image pair P’s matches are
separately plotted on the right axis of Figure 7.

This indicates that there is a possibility for the proposed
methods to fail for some images if the user wants to keep a
high confidence value of 0.9. Further, it shows that the initial
band selection is crucial in a successful stitching operation.
As a solution to mitigate the aforementioned issue, an addi-
tional modification for the algorithm was implemented to
check the number of points with a 0.9 confidence level. If the
number of matched points is below a user-defined threshold,
it will search for feature matchings in other spectral bands
and select the band with the maximum number of features
above the threshold. If other spectral bands are unable to
produce enough feature matchings, then the algorithm will
reduce the confidence level to a user-defined threshold.
During the experiments, the second confidence threshold
was set to 0.8 and the LoFTR feature detecter always
managed to produce enough feature matchings to calculate
the transformation parameters.

B. EVALUATION OF STITCHING METHOD
Figure 8 illustrates an experiment carried out using the
proposed methodology. This was a small dataset with a total
of 54 images captured at an altitude of 50m. At this altitude
spatial resolution was 5.5cm/px and the image grouping
algorithm divided the captured images into three groups
based on their GPS location. Figure 8 (a) presents the
intermediate results obtained by the proposed method for
each line segment. Figure 8 (b) depicts the final stitched
image in both monochrome using band 642nm and the
stitched image converted to RGB using the 690nm, 602nm,
and 458nm as the red green, and blue bands. the proposed
method was successful in producing a final mosaic usable in
a decision-making process.

Figure 9 depicts another result of a dataset obtained at
a flight height of 120 meters resulting in a 13.1 cm/pixel
resolution. A total of 110 images were captured to cover
the desired plantation area. Figure 9 (a) presents the RGB
converted hyperspectral image and the center plot was sown
a few weeks prior for planting for the next season. Hence
most of the images taken from the bare soil area contained
large amounts of indistinctive regions. However, the proposed
method was successful at producing an output geometrically
similar to the captured image area. Several sections from this
stitched image were then extracted to evaluate the spectral
consistency of the stitched image. 20-pixel by 20-pixel
regions representing vegetation, soil, asphalt, and region with
a mix of weed and soil were selected for evaluation. Selected
areas are depicted with bounding boxes in Figure 9 (a).
Figure 9 (b) presents the respective spectral plots of the
selected regions. It can be observed that the signatures
are stable within the bounding box without any abnormal
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FIGURE 8. (a) Intermediate results of line segment stitchings (b) Final stitched image in monochrome and RGB.

FIGURE 9. (a) Output of the final stitching result in RGB (b) Spectral analysis of different regions of the stitched image.

noise present in each spectral signature. Furthermore, it can
be observed that the different targets that were selected,
produced unique spectral signatures that could be used to
differentiate among different targets. The region selected
from the mix of weed and soil indicated signatures in
between the soil and the vegetation. Spectral mixing could be
identified as the reason for this since, at this spatial resolution
leaves and soil will be mixed in the spectral signature of a
single pixel.

VI. CONCLUSION AND FUTURE WORKS
In conclusion, this research paper investigates the drawbacks
of existing image stitching methods for low-resolution

hyperspectral image stitching and proposes a new approach
for producing hyperspectral image mosaics that could be
used in further decision-making processes. This research
paper identified that the existing methods failed at the feature
identification and matching steps due to the lack of features
in the low-resolution hyperspectral images. A learning-
based feature-matching algorithm was incorporated to solve
this problem and the initial experiments indicated signif-
icant improvements over the traditional feature detection
and matching algorithms in use. A stitching pipeline
was proposed incorporating the identified feature-matching
algorithm and results were presented. Initial results indicate
successful mosaic generation from the input images with
the limitations of some geometrical distortions and several
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ghosting effects around targets such as buildings and
structures. However, it’s a significant step forward from the
traditional methods where it failed to produce any outputs.
Furthermore, spectral consistency and differentiability eval-
uations indicate that the agriculture vegetation areas can be
used in further decision-making tasks such as segmenta-
tion, classification, activity detection, and generating scene
graphs [47], [48].

The incorporated LoFTR algorithm [25] was used
with its pre-trained model weights where there were no
low-resolution aerial images. Performing a transfer learning
step to train with a low-resolution aerial dataset would have
the potential to improve the current drawbacks in terms
of identifying features. However, since the algorithms used
depth maps for training data, the generation of depth maps
from hyperspectral images should be taken into consideration
when retraining the algorithm. Methods such as zero-shot
learning with generative adversarial networks [49] will be
investigated in the future to retrain the LoFTR model
with hyperspectral depth maps. Furthermore, improving the
blending method to get rid of ghosting can be considered
as another future work. A model like an optimum seam
detection for blending [50] of objects can be a viable solution
to improve the stitched images.
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