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ABSTRACT Image recognition and reconstruction are common problems in many image processing
systems. These problems can be formulated as a solution to the linear inverse problem. This article presents a
machine learning system model that can be used in the reconstruction and recognition of vectorized images.
The analyzed inverse problem is given by the equations F (xi) = yi and xi = F−1

(
yi

)
, i = 1, . . . ,N , where

F (·) is a linear mapping for xi ∈ X ⊂ Rn, yi ∈ Y ⊂ Rm. Thus, yi can be seen as a projection of image xi,
and xi should be reconstructed as a solution to the inverse problem. We consider image reconstruction as an
inverse problem using two different schemes. The first one, when xi = F−1

(
yi

)
, can be seen as an operation

with associative memory, and the second one, when xi = F−1
(
yi

)
, can be implemented by creating random

vectors for training sets. Moreover, we point out that the solution to the inverse problem can be generalized
to complex-valued images xi and yi. In this paper, we propose a machine learning model based on a spectral
processor as an alternative solution to deep learning based on optimization procedures.

INDEX TERMS Machine learning systems, image reconstruction and recognition, inverse problem.

I. INTRODUCTION
The current trend in image reconstruction and recognition
systems involves supplementing and partially replacing
the classical methods with artificial intelligence systems,
which incorporate machine learning algorithms. Various
papers [1], [2], [3], [4] have reviewed machine learning
methods in image recognition, with particular emphasis
on medical applications. It is worth noting that modern
image reconstruction and recognition systems typically rely
on optimization algorithms with constraints while utilizing
appropriately selected regularization methods [5].
Deep learning algorithms have recently gained widespread

usage and have sparked a renewed interest in artificial
neural networks and their applications. The majority of the
known deep learning algorithms are implemented using deep
learning neural networks, which are trained by minimizing
a loss function on a training set. This approach to deep
learning can be considered a special case within the
theory of optimization methods. Standard types of deep
learning neural networks include multilayer perceptrons

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

(MLPs), convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and generative adversarial networks
(GANs) [6], [7], [8], [9]. After analyzing the available
publications, it can be concluded that the optimal network
topology and the technology of its implementation have
not yet been determined. The relationship between the
network topology and its performance has not been properly
investigated [10]. However, it is evident that neural networks
(NNs) are universally algorithmic and physical models
utilized in computational intelligence systems. Hopfield
neural networks, a subtype of NNs, are physical models and
algorithms used in neural computing. In previous papers,
we proposed an extended Hopfield neural network model
defined by the following equation [11]:

ẋ = (ηW − w01 + εW s) θ (x) + Id (1)

whereW—Antisymmetric orthogonal matrix
W s− Real symmetric matrix
1− Identity matrix
θ (x) − Activation function vector
Id− Input vector
ε,w0, η− Parameters.
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The equilibrium state of the network (1) takes the following
form:

(ηW − w01 + εW s) θ (x) + Id = 0 (2)

Equation (2) constitutes the basis for universal machine
learning models based on biorthogonal transformations,
enabling the implementation of typical learning system
functions. One of these functions is the implementation of
associative memories. The use of the system for reconstruc-
tion and recognition of distorted/noisy images with the use of
associative memory was described in more detail in papers
[11], [12], [13].

In this paper, we investigated the implementation of the
machine learning system to solve inverse problems. In the
experiments presented in the paper, the original image was
processed by a linear matrix operator, the dimensions of
which were not square. Thus, there was no inverse operator
in the sense of matrix algebra. The appropriately designed
machine learning system reconstructed the original image
based on its projection.

II. HOPFIELD NAURAL NETWORK AS A MACHINE
LEARNING SYSTEM
By machine learning, we mean here input-output mapping
approximation, where nodes of approximation are given by
the set of training pairs

{
xi, yi

}N
i=1, xi ∈ X ⊂ Rn, yi ∈ Y ⊂

Rm. Hence, one aims to realize the mapping F : X → Y ,
where the value of such a mapping (or multivariable function
f (·) for yi ∈ Y ⊂ R) is known at the training points.
Associative memory realization, classification, and pattern
recognition issues can be seen as important problems in
mapping approximation. As mentioned above, a nonlinear
mapping

yi = F (xi) , i = 1, . . . ,N (3)

can be realized in the form of a Hopfield neural network as
follows.

For training vectors xi ∈ Rn and yi ∈ Rm, one defines the
following input vectors Id :

Id = xi

where dimId = n.
Hence Equation (1) takes the form:

ṡ = (W − w01 +W s) 2(s) + Id (4)

where s(t) is the state vector of this network.
Thus, the equilibrium state of the network (4) takes the

following form:

(W − w01 +W s) 2 (s) + Id = 0. (5)

It is clear that the neural networks described by Equation (4)
can be classified as a recurrent neural network. Due to
the assumption that matrix W is determined as orthogonal
antisymmetric, the structures of this neural network can be
composed by the connection of pairs of dynamic neurons.

An example of such structures and their description is
presented in Fig. 1.[
ṡ1
ṡ2

]
=

([
0 1

−1 1

]
− w0

[
1 0
0 1

]
+

[
w11 w12
w21 w22

]) [
2(s1)
2(s2)

]
+

[
Id1
Id2

]
; w12 = w21 (6)

The realization of mapping (3) by the dynamical networks (4)
demands that in the synaptic connections’ learning procedure,
one should create N attractors. Alternatively, we treat the
equation state (5) as a pure algebraic algorithm to realize
mapping (3). It gives rise to a machine learning system. The
key point in the learning/synthesis of such a system is a
reformulation of training points to the form:

ui =

[
xi
yi

]
, i = 1, . . . ,N (7)

where dimui = n + m, n + m = 2q, q = 2, 3, 4, . . . and,
further, using an orthogonal transformation, a creation of the
spectra mi = T (ui) , i = 1, . . . ,N :

mi =
1
2

(W+1)ui = T (ui) (8)

whereW – antisymmetric orthogonal matrix:W2
= −1.

FIGURE 1. Model of a two-neuron network.

The stable equilibria of the neural network (4) constitute
the pattern for the following transformation Ts (·):

(W − w0·1 +W s)mi + ui = 0 (9)

where ui — input vectors (7).
For w0 = 2, one obtains mi = Ts (ui)

mi = (2 · 1−W s −W )−1 ui (10)

i.e., Ts (·) = (2 · 1 −W s −W )−1 (·)

whereW s = M
(
MTM

)−1
MT

and

M = {m1,m2, . . . ,mN } (11)

is the spectrum matrix of ui from Equation (8).
It should be noted that

(
MTM

)−1
MT is the

Moore-Penrose pseudoinverse matrix of M, i.e.,
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M (+)
= lim

µ→0

(
MTM + µ1

)−1
MT always exists. Thus,

M(MTM +µ1)−1MT , µ ̸= 0 can be seen as Tikhonov’s
regularization [1]. It is clear that the transformation Ts (·)
projects training points ui into mi as given by Equation (10).
Hence, one obtains an inverse transformation:

ui = T−1 (mi) = (−W+1)mi (12)

i.e., T−1 (·) = (−W + 1) (·).
The transformations Ts (·) and T−1(·), arranged as a

realization of a mapping F(x), have the block structure as
shown in Fig. 2.

FIGURE 2. Block structure of machine learning system as the
approximator. (a) block structure with distributed memory. (b) block
structure with lumped memory.

The block structure with ‘‘distributed memory,’’ presented
in Fig. 2(a), can be reconfigured to the form with ‘‘lumped
memory,’’ as shown in Fig. 2(b).
Note 1:
It is worth noting that, according to the structure from

Fig. 2, such an approximator performs the function of
spectrum estimation

{
m̂i

}
:

m̂i = Ts

 xi
· · ·

0

 , i = 1, . . . ,N (13)

and ŷi = F (xi) – estimation of the output yi; i = 1, . . . ,N .
Hence, due to the feedback loop action, one implements a

recurrence:

m̂i → mi, ŷi → yi
ŷi → yi = F (xi) , i = 1, . . . ,N (14)

at the output of this approximator.
It is easy to note that the structure from Fig. 2 implements

an input-output mapping φ (·), as follows:

ui = φ (ui) , i = 1, . . . ,N . (15)

Thus, vectors ui, i = 1, . . . ,N are invariant points of
φ (·), and vectors ui are asymptotic centers of attractors
i = 1, . . . ,N . Moreover, mapping φ (·) is given by the
following matrix transformation:

φ (·) = L (ε) = (−W+1) (2 · 1−W − εW s)
−1 (16)

and its Lipschitz constant k fulfills:

k ≤ 1 for ε ≤ 1. (17)

Hence, φ (·) is a non-expansive mapping. Note the block
T cin Fig. 2 implementing this mapping. The recurrence is
convergent under the linear independence of patterns ui and
the number of patterns N must fulfill:

N < 0.5 (n+ m) (18)

where n+ m = dimui (7).

III. MACHINE LEARNING SYSTEM FOR
IMAGE PROCESSING
The general learning algorithm described in the previous
section can be used to solve the image processing tasks.
We consider a set of N black-and-white images represented
by k rows and l columns (i.e., a set of (k · l) pixels with
different shades of gray). In the case of vector analysis, each
image is vectorized into the column vector xi (k · l × 1) , i =
1, . . . ,N . Thus, the set of N pictures is represented by the
following matrix:

X = [x1, x2, . . . ,xN ] , dim xi = k·l = 2q, q = 3, 4, . . . ,.

(19)

The set of distorted images is represented by the matrix:

X(s)
=

[
x(s)1 , x(s)2 , . . . ,x(s)N

]
. (20)

We notice that the training set can be captured as follows:

S =

{
x(s)i , xi

}N
i=1

(21)

The set S creates a mapping F(·) defined by the following
properties:

xi = F
(
x(s)i

)
, i = 1, . . . ,N . (22)

In this way, the mapping F is implemented as a machine
learning system for image reconstruction. The structure
realizing the mapping F (·) , defined by Equation (22), can
be obtained as solutions to the equilibrium state (9). Thus,
for Equation (21), we obtain:

(W−2 · 1 +W s)mi + x(s)i = 0 (23)

whereW2
= −1,W is an antisymmetric orthogonal matrix.

Thus, we obtain N solutions:

mi = (2 · 1−W s −W )−1 x(s)i , i = 1, . . . ,N (24)

where

W s = M
(
MTM

)−1
MT

M = {m1,m2, . . . ,mN } (25)
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is the spectrum matrix of vectors xi:

mi =
1
2

(W + 1) xi

so

xi = (−W+1)mi, i = 1, . . . ,N . (26)

Vectors xi are the system vectors, i.e., ui ≡ xi, i = 1, . . .N
(xi are undistorted images).
Equation (24) defines the biorthogonal transformation

Ts (·) :

mi = Ts
(
x(s)
i

)
Ts (·) = (2 · 1 −W s −W )−1 (·) (27)

and Equation (26) defines the orthogonal transformation:

xi = T−1 (mi)

xi = T−1 (·) = (−W + 1) (·) . (28)

FIGURE 3. Structure of a machine learning system for image
reconstruction.

The transformations Ts (·) and T−1(·), which implement
the mapping F (·) , have the block structure shown in
Fig. 3 [11]. The orthogonal transformation Ts (·), which
utilizes the family of Hurwitz-Radon matrices, allows the
determination of the Haar-Fourier spectra of vectors xi.
The structure depicted in Fig. 3 functions as an estimator
of the spectrum

{
m̂i

}
using Equation (27):

m̂i = Ts
(
x(s)i

)
, i = 1, . . . ,N . (29)

The feedback loop within the system leads to the convergence
of the vectors as shown in Equations (30) and (31):

m̂i → mi (30)

ŷi → xi, i = 1, . . . ,N . (31)

The convergence of the process is obtained after L iterations,
with the number L varying for different reconstruction
processes. Moreover, it should be noted that for input image
z ̸= xi, i = 1, . . . ,N , the system output is given by

the superposition of the system vectors, represented by
Equation (32).

F (z) =

∑N

i=1
αixi, αi∈R (32)

The system vectors ui = xi create attraction centers in the
system, as shown in Fig. 3. This results in the implementation
of the associative memory. We observe that the image
recognition and reconstruction system presented in Fig. 3 can
be defined as an associative memory. The original images are
retrieved by utilizing distorted key images that are subject to
reconstruction. Fig. 4 illustrates this reconstruction process
through face recognition with masks.

FIGURE 4. Illustration of face recognition by the system functioning as an
associative memory.

IV. IMAGE RECOGNITION AND RECONSTRUCTION AS
INVERSE PROBLEM
The image reconstruction models presented in the previous
section are based on the availability of training sets, S,
containing the original and distorted patterns. Alternatively,
the overall image reconstruction model can be written as
shown in Equation (33).

A (x) = ỹ; Ax = ỹ (33)

where A (·)—Known linear operator (e.g., matrix A)
x− Original image
ỹ—Degenerate image observed.
Without limiting the generality of our considerations,

we assume that the linear operation A (·) takes the form of
matrix multiplications. According to Equation (33), image
reconstruction leads to the solution of the inverse problem.
The majority of the solutions to Equation (33) that are known
from the literature utilize optimization methods [5], [14],
such as:

min
x

∥ỹ− Ax∥22 ,

s. t. x ∈ K (34)

min
x

∥ỹ− Ax∥22 +βR(x) (35)
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where K—A set of feasible solutions
R (x) − Regularizer
β —Regularization parameter
As mentioned previously, different types of neural net-

works are now used to solve inverse problems in imaging,
including image reconstruction. Many approaches to this
problem can be found in review papers [14], [15]. Using
the machine learning model shown in Fig. 3 to solve
Equation (33) leads to the solution to the following problem:

F (x) :Ax = ỹ

x = F−1 (ỹ) (36)

where A− (m× n) Known real matrix, m ̸= n
ỹ− (m× 1) Real vector
x− (n× 1) Real vector
m+ n = 2q, q = 3, 4, . . . .
The generation of the training set S =

{
xi, yi

}N
i=1 for

Equation (33) is given by the formula

Axi = yi, i = 1, 2, . . . ,N (37)

where xi, i = 1, 2, . . . ,N are the vector forms of the
original training images. Assuming that the projection matrix
A (m× n) in Equation (36) is a random matrix, the images
yi in the training set become random vectors. An exemplary
image and its projection are shown in Fig. 5.

FIGURE 5. The original image and its projection.

As shown in Fig. 5, the vector transformation of the
selected test image takes the form:

Ax = y (38)

where dimA = (m× n) ,m > n.
By creating system vectors ui of the form

ui =

[
yi
xi

]
, i = 1, . . . ,N (39)

the structure of the inverse mapping in Equation (36)
implemented by the system in Fig. 3 is presented in Fig. 6(a)
and 6(b), where

xi = F−1 (
yi

)
, i= 1, . . . ,N . (40)

Note that the biorthogonal transformation Ts (·) and the
orthogonal transformation T−1 (·) in Fig. 6 are defined by

FIGURE 6. The structure of the system implementing the inverse
transformation F−1(·). (a) yi − projection of a non-degenerate image.
(b) ỹ − projection of a degenerate image.

Equations (27) and (28), respectively:

mi = Ts

([
yi
0

])
(41)

ui = T−1 (mi) (42)

where ui— system vectors in Equation (39).
In the system depicted in Fig. 6, distorted projections of

images ỹi, i = 1, . . . ,N are reconstructed. To illustrate the
properties of the reconstruction system shown in Fig. 6, the
training set S was generated using Equation (37) with images
xi, i = 1, . . . ,N constituted the set. Fig. 7 shows an example
of image transformation. In the system shown in Fig. 6(b),
we obtain: ∥∥x− x̂

∥∥2
2 = 0 (43)

where x is given by Equation (38).

FIGURE 7. Exemplary reconstruction (F−1 (·) – by the system from
Fig. 6(b) .

To recap, Fig. 3 and Fig. 6 depict image reconstruc-
tion systems that utilize associative memory to recognize
degenerative images. However, it is worth noting that the
system in Fig. 6 performs the inverse mapping and solves
the optimization tasks constrained by the images stored in the
system’smemory. Regarding the convergence of the recursive
sequence, it should be noted that it is valid for N < 1

2 (n+m).
The system presented in Fig. 6 also allows us to solve

the linear Equation (36) using a random form of training
vectors xi in Equation (37). Thus, the new structure of the
machine learning system for solving the inverse problem in
Equation (36) is obtained by generating the training set using
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random vectors xi in Equation (37). So xi, i = 1, . . . ,N are
random forms of training vectors (images), where

case m > n

N = m, dim A = (m× n) , m > n (44)

and yi, i = 1, . . . ,N are the projections of random images
xi. The system’s structure is given by Equations (7)–(12),
where the symmetric matrix W s in Equation (10) is subject
to regularization using the regularization rule for the pseudo-
inverse matrix:

W s = M
(
MTM + γ1

)−1
MT (45)

where γ ≥ 0 (regularization parameter).
The system vectors ui have the following form:

ui =

[
yi
xi

]
, i = 1, . . . ,N ,N = m, dimui = m+ n (46)

Therefore, the following statement can be made:
Statement 1
Each image Idim(n×1) can be reconstructed in the system

from Fig. 6 under the conditions Ip ̸= 0,A (I1) ̸= A (I2) ,

for I1 ̸= I2, when its projection Ip is known:

Ip = AI. (47)

The quality of the reconstructed image, represented by Ĩ
and measured by the MSE, depends on the selection of
the parameter γ in Equation (45). An exemplary image
reconstruction as a solution to the inverse problem is shown
in Fig. 8.

FIGURE 8. Image reconstruction in a system with randomly generated
system vectors (γ = 0.1).

The computational experiment presented in Fig. 8 can be
described as follows:

The system synthesis:
• Random image vectors xi, i = 1, . . . , 2800,
dim xi = 1296 were generated.

• A random projection matrix A was generated,
dimA = (2800 × 1296), where the components of
matrix A are random and follow a normal distribution.

• Projections yi of vectors xi were determined:

yi = Axi, i = 1, . . . , 2800, dim yi = 2800.

• System vectors ui were determined by the vectors’
concatenation xi and yi:

ui =

[
yi
xi

]
, i = 1, . . . , 2800, dim ui = 4096.

• The system in Fig. 6 was synthesized according to the
procedure outlined in Equations (23)–(28).

Image reconstruction
The image was 36× 36 pixels and analyzed and vectorized

into the vector I, dim I = 1296. The resulting projection was
obtained according to the formula in Equation (47):

Ip = AI, dim Ip = 2800.

For the purposes of the presentation, the vector Ip is shown in
the form of a grayscale matrix (50 × 56 pixels). The system
was given the vector projection Ip of the analyzed image as
input and then recursively reconstructed the vector Ĩ assigned
to the original image. The image shown in Fig. 8 was created
in the reverse process of concatenation from the vector Ĩ . The
quality of the reconstruction was evaluated based on the mean
square error MSE

(
I, Ĩ

)
between the original image and the

replica obtained in the system. The values of the mean square
error depending on the value of the regularization parameter
γ in Equation (45) are presented in Table 1.

TABLE 1. Dependence of the mean square error of the image
reconstruction on the value of the regularization parameter.

FIGURE 9. Influence of the regularization parameter γ on the image
reconstruction quality.

Fig. 9 illustrates how the parameter γ affects the quality
of image reconstruction in the machine learning system.
We observed a specific limit value of the regularization
parameter, which the reconstruction process diverges.

Note that one can state: Ĩ ∼= Iwhen MSE
(
Ĩ, I

)
< 1.8 ·

10−4 (data from Table 1).
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Statement 2
The relationship in Equation (47) obtained in the

image/vector inverse problem can be extended to the problem
of realizing an unknown mapping, F (·). Assuming that the
training set

{
xi, yi

}
is generated by such a linear mapping

F(·), that is:

yi = F (xi) , i = 1, 2, . . . ,N (48)

where yi ∈ Rm, xi ∈ Rn,m = N , n < m.
The system in Fig. 6, defined in Statement 1, models

the mapping F(·) and its inverse F−1 (·) . It is important to
note that the system F(·) implemented in accordance with
Equation (48) also accurately maps the vectors xp that do
not belong to the training set. In other words, the following
condition is satisfied:

yp = F
(
xp

)
, p/∈ {1, 2, . . . ,N } (49)

and

xp = F−1 (
yp

)
;
(
xp, yp

)
/∈

{
xi, yi

}N
i=1 . (50)

The structure of the system that realizes the mappingF(·)
is based on system vectors ui, i = 1, 2, . . .N shown in
Equation (46).

It is worth noting that the system presented in Fig. 6 can
solve Equation (36) using a random form of training vectors
xiin Equation (37), even when m < n, so:

case m < n

dim A = (m× n) ,m < n. (51)

Hence, the random training vectors xi; i = 1, 2, . . . ,N and
N = n.
Thus, the system vectors ui have the form:

ui =

[
yi
xi

]
, i = 1, . . . ,N ,N = n, dimui = m+ n (52)

where yi are the projections of random images/vectors xi.
It should be noted that the inverse mapping F−1(·) in

Equation (36), implemented by the system from Fig. 6,
depends on the form of the training set.

Thus, the solution to the inverse problem determined by
Equation (36) sets up some solutions. However, it is clear that
the quality measured by the MSE of such solutions depends
on the regularization parameter γ .
However, the computational experiment presented in Fig. 8

can be repeated for case m < n, as follows:
• One creates two sets of random vectors xi, i.e.,

S1 =

{
x(1)i , y(1)i

}N
i=1

, S2 =

{
x(2)i , y(2)i

}N
i=1

where y(1)i = Ax(1)i , y(2)i = Ax(2)i , dimA =

(m× n) ,m = 1296, n = 2800,N = n.
• Two systems based on Fig. 6 were used to solve the
inverse problem given by the equation

Ip = AI

where I− the test image from Fig. 8
Ip− the projection.
The systems were trained using the training setsS1
andS2, respectively.

• The image reconstruction results are shown in Fig. 10.

FIGURE 10. Results of the computational experiment (Matlab software).

The images Ĩ1and Ĩ2 are the outputs of systems based on
different sets S1 andS2, respectively. It is clear that Iis not
equal to Ĩ1, and Ĩ2, but the following equations are valid:

AI = Ip

and

AĨ1 − Ip ∼= 0; MSE
(
AĨ1, Ip

)
∼= 0

AĨ2 − Ip ∼= 0; MSE
(
AĨ2, Ip

)
∼= 0

but

Ĩ1 ∼= Ĩ2; MSE
(
Ĩ1, Ĩ2

)
= 4.87 · 10−10.

To summarize, the experiments described lead to the
conclusion that it is possible to design a machine learning
system in which the solution of an inverse problem does not
depend on the specific training set used. But the solutions
(i.e., Ĩ1, and Ĩ2) are only optimal in the sense of LS.
On the other hand, many machine learning algorithms and

applications rely on solutions of linear equations of the form:

Ax = b (53)

where A− (m× n) real matrix, m < n.
To solve this equation using the structure from Fig. 6,

one can generate a set of k training sets Sk = {xi, bi}Ni=1,

k = 1, 2, . . .

Axi = bi;i= 1, . . . ,N and N = m. (54)

Note that in Equation (51), one assumes N = n.
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The structure of the mapping model presented in Fig. 6
can deliver any number of exact solutions for the equation
Axk = b by using different sets Sk .

Sk = {xi, bi}Ni=1 , k = 1, 2, . . .

where N = m < 1
2 (m+ n) , n+ m = 2q, q = 3, 4, . . .

Note 2
It can be easily observed that a pure algebraic operation

can also obtain the solution to linear Equation (53). Indeed,
the possible solutions are given by the following formula:

x̃k = XkB−1
k b, k = 1, 2, . . . (55)

where x̃k − kth solution of linear Equation (53)
Xk = [x1, x2, . . . , xm] (m× n) − matrix of training
vectors from kth training set
Bk = [b1, b2, . . . , bm] (m× m) – quadratic matrix
of vectors in Equation (54)
Assuming that matrix A consists of n linearly independent

columns, matrix B−1
k exists for k = 1, 2, . . ..

Hence, for matrix A:

A = [a1, a2, . . . ,an] (m×n) . (56)

The elements of vectors x̃k can be treated as superposition
coefficients, i.e.:

x̃k1a1 + x̃k2a2+ . . . + x̃knan = b, k= 1, 2, . . . . (57)

Thus, the inverse problem solutions formulated by
Equation (53) could give rise to some form of wavelets
analysis when A is a set of wavelets {ai}ni=1 and b is a given
analyzed signal. Audio unmixing could be mentioned as an
example of such analysis [16].

V. Q-INSPIRED INVERSE PROBLEM
Q-inspired neural networks are non-quantum versions of
structures with complex-valued parameters. Equation (2)
gives rise to Q-inspiredmachine learning when theW smatrix
becomes complex-valued. Thus, Equation (23) is transformed
into the form:

(W − 2 · 1 +WH )mi + Id = 0 (58)

whereWH− Hermitian matrix (WH = W+

H )
Id – Input vector.
Hence, the inverse problem formulated by Equation (36),

that is:

A · x = y (59)

where A− complex-valued matrix (m× n)
x− a complex solution of inverse problem (x ∈ C)

y− a given complex vector (n× 1).
Equation (59) can be solved by using the system from

Fig. 3 if the vectors of training set S =
{
xi, yi

}N
i=1 are

complex. For complex-valued image processing, the machine
learning system structure is presented in Fig. 11.
To illustrate the solution of the inverse problem formulated

in Equation (59), two images processed by the system from

FIGURE 11. Machine learning system with Hermitian memory.

FIGURE 12. Results of the computational experiments (Eq. 59).

Fig. 11 are presented in Fig. 12. It is clear that the two images
I1 and I2 are vectorized into one complex-valued vector:

x = I1 + jI2; dim x= 1296, j2= −1. (60)

The projection y of x by the complex-valued matrix
A (2800 × 1296) ; aij ∈ C is shown in the vectorized form
as:

y = Re (y) + jIm (y) = A (x) . (61)

The solution to Equation (59) is illustrated in Fig. 12:

x̃ = A−1(y) (62)

and MSE (x, x̃) ∼= 0.
Statement 3
The solution to the inverse problem formulated in

Equation (59) can be obtained by using the methods
formulated in Statements 1 and 2 for the real-valued problem.

VI. SOME REMARKS ON THE DEEP LEARNING
STRUCTURES
It is worth noting that deep learning neural networks, such as
multilayer perceptron, CNNs, RNNs, and autoencoders, can
be seen as special types of nonlinear filters endowed with
memories that are created by optimization procedures (e.g.,
back-propagation, gradient descent). The effectiveness of
these networks depends on their specific tasks. For example,
CNNs are popular as computer-vision processing tools.
Contrary to the previously mentioned deep neural networks,
the machine learning system presented in this paper can be
viewed as a linear filter processing the spectra of the training
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sets’ data. Therefore, the learning can be implemented by a
synthesis-like procedure. It should be clear that this system
obtains two features, as identified in the text:

FIGURE 13. Illustration (proof of the principles) of an image generated by
the superposition.

- It is associative memory retrieved by the degenerated
keys.

- It is a mapping approximator based on superposition of
system vectors (memory vectors).

This superposition feature gives rise to image generation.
To illustrate such a feature, two images presented in Fig. 13
are combined in the system from Fig. 3, according to
Equation (32):

F (z) = x1 + x2 (63)

where z− A noise input vector/image
F (z) − An output image
x1, x2−System vectors (memory vectors/images)
To summarize, in this paper, we proposed a machine

learning model that uses biorthogonal and orthogonal
transformations based on spectral processing as alternative
solutions to deep learning based on optimization procedures.

VII. CONCLUSION
This paper aims to present a machine learning model to solve
inverse problems arising from linear mappings commonly
used in image processing. Two types of inverse problems
are considered and classified. First, the machine learning
system is used as an associative memory to perform inverse
transformation and solve optimization tasks constrained by
the images stored in the system. Second, the model solves
inverse problems by generating random training sets with
particular interest given to those consisting of both real and
complex-valued vectors.
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