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ABSTRACT In this paper, a distributed cooperative control problem for a class of high-order multi-input
and multi-output (MIMO) nonlinear multiagent systems (MASs) in the presence of uncertain nonlinearities
and external disturbances is addressed. A coupled design is developed to collaboratively approximate
unknown nonlinearities and compounded disturbances by combining neural networks (NNs) with high-order
disturbance observers (HODOs). To further simplify the controller structure, relationships among the Laplace
matrix, adjacency matrix and consensus tracking errors are analyzed based on undirected communication
graphs. Then, a distributed adaptive NN anti-disturbance control protocol is proposed for high-order MIMO
nonlinear MASs based on the outputs of NNs and HODOs, where dynamic surface control (DSC) is
introduced to eliminate the ‘‘computational explosion’’ problem of the conventional backstepping method.
The semiglobally uniformly ultimate boundedness of closed-loop system signals is proven through Lyapunov
theory. Finally, simulations of a quadrotor UAV formation are performed to demonstrate the effectiveness of
the proposed control scheme.

INDEX TERMS High-order MIMO nonlinear system, multi-agent system, neural network, high-order
disturbance observer, distributed cooperative control.

I. INTRODUCTION
Multiagent systems (MASs) have been widely applied to civil
and military fields due to their high efficiency, strong relia-
bility, flexibility and fault tolerance [1], [2], [3], [4], [5], [6],
[7]. A fundamental requirement of MASs is that agents need
to communicate, cooperate and coordinate with each other
to ensure the successful completion of tasks. Nevertheless,
interactions and cooperative relationships among agents may
lead to instability and performance degradation. Therefore,
cooperative control design plays an important role in MASs.
The most common MASs cooperative control problems
include the formation problem [8], [9], cluster problem [10],
and consensus problem [11], [12], [13], [14]. The consensus
problem involves all agents aiming to obtain a common
final state via local exchange of information; this problem
has received significant attention from scholars [15], [16].

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

In [17], a reduced-order control protocol was developed to
guarantee the coordination of continuous MASs by adopting
amultistep algorithm. A distributed linear consensus protocol
with second-order dynamics was first designed in [18], and
more studies on the cooperative control of MASs based
on consensus protocols can be found in [19] and [20].
Although the above studies have achieved positive outcomes,
the design process and structure of the controller can be
further simplified to make it more practical.

On the other hand, it is worth noting that all of the
abovementioned approaches require the agent dynamics to
be linear. However, nonlinear systems are more suitable
for describing practical application scenarios than linear
systems [21], [22], [23], [24]. In addition, there are diffi-
culties in accurately modeling agents, and the uncertainties
in the model could affect the performance of the system.
Unfortunately, the dynamics of uncertain nonlinearMASs are
difficult to ascertain, which means that a new control method
must be sought beyond the traditional adaptive control
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method. Fortunately, neural networks (NNs) have provided
some insight into the adaptive control problem for nonlinear
MASs. In [25], a fully distributed NN-based adaptive control
method was constructed for MASs with unmodeled dynam-
ics. The NN was used to approximate unknown functions
in the agent dynamics. This approach effectively guaranteed
that all of the followers were asymptotically synchronized
to the leader. Then, the method was extended to cope with
consensus problems of nonlinear MASs with time-varying
asymmetric state constraints, which more faithfully model
real engineering systems [26]. Other NN-based approaches
have been investigated in the literature [27], [28], [29], [30],
[31]. Moreover, uncertainty arises from not only the system’s
internal factors but also external environmental disturbances.
The approximation ability of NNs is effective within compact
sets, whereas the range of uncertainty in reality is difficult
to ascertain. Fortunately, disturbance observers (DOs) have
been proven to be effective for addressing uncertainties
and unknown external disturbances of systems [32], [33],
[34], [35], [36]. In [32], a control method was designed
to deduce mismatched uncertainties based on a nonlinear
disturbance observer (NDO). TomakeNDOsmore applicable
to real-world engineering problems, a two-stage design
method was proposed that separates the design of the
NDO from the design of the controller to improve the
disturbance attenuation ability of the nonlinear controller
in [33]. However, the aforementioned DOs have a first-order
form, and actual disturbances and their models are unknown.
Therefore, it is necessary to consider the influences of
higher-order disturbances on the system [37]. For this reason,
a high-order disturbance observer (HODO) was proposed
in [38]. In general, the HODO introduces more disturbance
prior information so that the performance of disturbance
estimation is significantly improved compared to that of
DOs [39]. Combining an HODO and sliding mode control
(SMC), a novel control strategy was constructed to achieve
closed-loop stability of mobile-wheeled inverted pendulum
(MWIP) systems [40]. Theoretically, applying both NNs
and HODO could improve the anti-disturbance performance
of the system. At the same time, the problem of coupling
multiple approximators arises, which provides motivation for
this study.

The aforementioned literatures focus mainly on systems
captured by low-order dynamics, such as first- and second-
order forms, and the existing results cannot be extended
to high-order agent dynamics in a straightforward manner.
In fact, many systems are modeled by high-order dynamics
in practical engineering. For example, the single-link flexible
joint manipulator system and jerk system are fourth- and
third-order dynamical models [41], respectively. For high-
order systems, the backstepping method formalizes and
clarifies the controller design process by dividing the
higher-order system into numerous lower-order subsystems.
An adaptive fuzzy output feedback control method for a
class of multi-input and multi-output (MIMO) nonlinear

systems with immeasurable states was constructed via the
backstepping technique in [42]. More information about the
backstepping method is provided in [43], [44], [45], and
[46]. However, the traditional backstepping method causes
the ‘‘computational explosion’’ problem when analyzing the
high-order derivatives of the virtual control law. Dynamic
surface control (DSC) was proposed to solve this problem
by using a first-order filter to estimate the virtual control law
and the derivative at each step [47], [48], [49], [50]. In [47],
the principles and technical details of DSC are elaborated
upon, and they are further developed and applied in [48], [49],
and [50]. However, to the best of our knowledge, cooperative
control of MIMO nonlinear MASs with high-order dynamics
has received little attention. In fact, it is not a trivial
work to design appropriate controllers for high-order MIMO
nonlinear MASs due to their complexity and generality, that
is, any of the above systems can be regarded as a special case
of high-order MIMO nonlinear MASs.

Motivated by the above observations and analysis, a dis-
tributed adaptive neural anti-disturbance cooperative control
protocol for a class of high-order MIMO nonlinear MASs is
developed. To address nonlinear uncertainties and external
disturbances, NNs and HODOs are applied for controller
design. Furthermore, DSC technology is used to reduce the
burden of ‘‘computational explosion’’. The main contribu-
tions of this note are as follows:

1) Combining the advantages of the NNs and HODO
techniques, the effects of uncertain nonlinearities and external
disturbances on MASs are addressed, and in addition, the
problem of couplingmultiple approximators is also addressed
in this paper.

2) Compared to the cooperative control method designed
in [36], the design process and structure of the controller are
further simplified in this paper by exploiting the relationships
among the Laplace matrix, adjacency matrix and consensus
tracking errors. On this basis, the introduction of DSC
technology additionally reduces the computational burden.

3) Compared with the existing results on distributed
cooperative control of high-order SISO MASs or first- and
second-order MASs [20], [24], the results of this paper,
which account for both high-order nonlinear dynamics and
MIMO properties, are more general and thus cover a broader
class of applications. It is shown that the semiglobally
uniform ultimate boundedness (SGUUB) of closed-loop
system signals and asymptotic consensus of all agent outputs
hold.

The rest of this paper is organized as follows. Section II
introduces basic graph theory and describes the problem.
Section III provides the design procedure of the constructed
distributed cooperative controller and proof of stability.
The simulation experiment and discussion are presented in
Section IV. This paper ends with a conclusion in Section V.
Notation: ∥•∥ represents the Frobenius norm for a matrix

or the Euclidean norm for a vector. Let 1m and Im denote,
respectively, the m × 1 column vector of all ones and the
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m × m identity matrix. D̂q(ℓ)il denotes the l th disturbance
estimate for the qth subsystem of the ith agent; the superscript
ℓ means the ℓth order derivative of D̂qi . For a matrix A,
λmax(A) and λmin(A) denote the maximum and minimum
eigenvalues ofA, respectively.⊗ and⊙ denote the Kronecker
product and the Hadamard product, respectively. To facili-
tate subsequent theoretical derivations and proofs, a novel
notation ⊙m is defined to combine matrix multiplication
with the Hadamard product. The details are as follows:
Let A = [a1,a2, · · · ,am]T, al = [al1, al2, · · · , aln]T,
B = [b1,b2, · · · ,bm]T, bl = [bl1, bl2, · · · , bln]T, l =

1, 2, · · · ,m; then, A⊗mB = [aT
1b1,a

T
2b2, · · · ,a

T
mbm]T.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. ALGEBRAIC GRAPH THEORY
The communication topology among N (N ⩾ 2) agents
can be described by undirected graphs and directed graphs.
Assuming that each node corresponds to an agent, the
topology of N nodes is represented by an undirected graph
G = (V, E,A), where V = (1, 2, · · · ,N ) is a nonempty set
of nodes, E = {(i, j), i, j ∈ V} is the set of edges formed
by ordered edges of all nodes, and A =

[
aij
]

∈ RN×N is
the weighted adjacency matrix. If (i, j) ∈ E , then node i
and node j can communicate with each other and aij > 0;
otherwise, aij = 0. If G has no loops, then aii = 0. Define
bi =

∑N
j aij, j ̸= i, as the weighted in-degree of node i

and B = diag {b1, b2, · · · , bN } ∈ RN×N as the in-degree
matrix. Then, the Laplacian matrix is defined by L = B−A.
Assuming that there is a virtual leader among the MASs,
H = diag {h1, h2, · · · , hN }, is defined as the leader-follower
adjacency matrix, and hi is the contact weight between agent
i and the virtual leader. When agent i and the virtual leader
can communicate, hi > 0; otherwise, hi = 0.

B. PROBLEM STATEMENT
Consider a class of high-order MIMO nonlinear MASs in
the presence of uncertainties and external disturbances. The
system of agent i is given as follows:

ẋqi = Fqi (x̄
q
i ) + Gqi (x̄

q
i )x

q+1
i +1f qi (x̄

q
i ) + d

q
i (x̄

q
i , t),

q = 1, 2, · · · , n− 1,

ẋni = Fni (x̄
n
i ) + Gni (x̄

n
i )ui +1f ni (x̄

n
i ) + dni (x̄

n
i , t),

yi = x1i , (1)

where i = 1, 2, · · · ,N , x̄qi = [x1i , x
2
i , · · · , x

q
i ]

T, xqi =

[xqi1, x
q
i2, · · · , xqim]

T is the state vector, ui ∈ Rs and
yi = x1i ∈ Rm denote the control input and output
of system (1), respectively. Fqi (x̄

q
i ) ∈ Rm, Gqi (x̄

q
i ) ∈

Rm×m and Gni (x̄
n
i ) ∈ Rm×s are known smooth nonlinear

functions. 1f qi (x̄
q
i ) and dqi (x̄

q
i , t), q = 1, 2, · · · , n denote

the uncertainties and external time-varying disturbances of
system (1), respectively.
Remark 1: Compared with the existing results on dis-

tributed cooperative control of high-order SISO MASs or
first- and second-order MASs, the results for the considered
MASs (1), which include both high-order nonlinear dynamics

and MIMO properties, are more general and thus imply that
the presented control strategy is more applicable to practical
engineering.

The objective is to develop a distributed cooperative con-
trol protocol for the high-order MIMO nonlinear MAS (1),
which can guarantee that the each agent’s output signal yi in
the MASs can track the virtual leader output signal yd with
consensus errors converging to the neighborhood of zero, and
all signals in closed-loop system are SGUUB [51].

To facilitate the control design and the stability analysis
for the high-order MIMO nonlinear MAS (1), the following
assumptions and lemmas are given.
Assumption 1 [23]: For the high-order MIMO nonlinear

MAS (1), the virtual leader output signal yd , its 1st derivative
ẏd and 2nd derivative ÿd are bounded; that is, there exists an
unknown constant B0 > 0 such that 50 = {(yd , ẏd , ÿd ) :∥∥yd∥∥2 +

∥∥ẏd∥∥2 +
∥∥ÿd∥∥2 ⩽ B0}.

Assumption 2: For the high-order MIMO nonlinear
MAS (1), the unknown external time-varying disturbances
dqi and its r th derivative are bounded, that is, there exists

unknown constant βqℓi > 0 such that
∥∥∥dqi (ℓ)∥∥∥ < β

qℓ
i , where

ℓ = 0, 1, · · · , r and q = 1, 2, · · · , n.
Assumption 3: For the high-order MIMO nonlinear

MAS (1), the inverse matrix of Gqi ∈ Rm×m exists, q =

1, 2, · · · , n − 1, and the generalized inverse matrix of Gni ∈

Rm×s exists. In addition, there exists a positive constant λ̄qi
such that λmax(G

q
i G

qT
i ) ⩽ λ̄

q
i , q = 1, 2, · · · , n.

Lemma 1 [49]: Consider a nonlinear control system ẋ =

f (x, u) with state x ∈ Rm, control input u ∈ Rs and bounded
initial conditions, if there exists a Lyapunov function V (x)
satisfying ω1(∥x∥) ⩽ V (x) ⩽ ω2(∥x∥) such that V̇ (x) ⩽
−κV (x) +M , where ω1, ω2: Rm → R are class K functions,
κ and M are positive constants, then the system state x(t) is
SGUUB.
Lemma 2 [31]: The continuous function f (Z) : Rι → R

is approximated by using RBFNNs as follows:

f̂ (Z) = ŴT8(Z) + τ (2)

where Z = [Z1, Z2, · · · , Zι]T is the input vector of the
neural network, Ŵ = [Ŵ1, Ŵ2, · · · , Ŵι]T is the weight
vector of the neural network, 8(Z) = [81(Z), 82(Z) , · · · ,
8ι(Z) ]T is the vector of radial basis functions, and τ is an
approximation error with bound.

The optimal weight vectorW ∗ is denoted as:

W ∗
= arg min

Ŵ∈�f

[ sup |f̂ (Z|Ŵ )
Z∈SZ

−f (Z)] (3)

where �f =

{
Ŵ :

∥∥∥Ŵ∥∥∥ ⩽ M̄
}
is the feasible region of the

estimated parameters, M̄ is the design parameter, and SZ is
the feasible region of the state vector.

Using the maximum weight, the following formula is
obtained:

f (Z) = W ∗T8(Z) + τ ∗ (4)
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where |τ ∗| ⩽ τ̄ is the optimal approximation error
and τ̄ is the upper bound on the approximation error.
In this study, the Gaussian RBF is employed: 8(Z) =

exp
(
−(Z− σ )T(Z− σ )

/
µ2
)
, in which σ and µ denote the

center and width of the NN, respectively.
Lemma 3 [52]: Let X and Y be two matrices or vectors

of compatible dimensions. For a positive constant b, the
following inequality is true:

XTY + YTX ⩽ bXTX + b−1YTY (5)

III. DISTRIBUTED ADAPTIVE NN ANTI-DISTURBANCE
COOPERATIVE CONTROL
In this section, an RBFNN-based HODO is designed to
handle uncertainties and unknown time-varying disturbances,
and a distributed cooperative control strategy is developed
for the high-order MIMO nonlinear MAS (1) based on the
outputs of RBFNN and HODO. A schematic diagram of the
distributed adaptive NN anti-disturbance cooperative control
scheme is shown in Fig. 1.

A. DESIGN OF HODO BASED ON RBFNN
First, an RBFNN is used to approximate 1f qi , which is the
uncertainty term of the qth subsystem of the ith agent. Using
optimal weights, the uncertainty can be expressed as follows:

1f qi = (0q
i )

−1[W q∗
i ⊙m8

q
i (Z

q
i ) + τ

q∗
i ]

= (0q
i )

−1W q∗
i ⊙m8

q
i (Z

q
i ) + (0q

i )
−1τ

q∗
i (6)

where 0
q
i = diag(0qi1, 0

q
i2, · · · , 0

q
im) > 0 is the

design parameter matrix, W q∗
i = [W q∗

i1 , W q∗
i2 , · · · , W q∗

im ]T

is the optimal weight matrix of the qth subsystem of
the ith agent, W q∗

il = [W q∗
il1 , W

q∗
il2 , · · · , W

q∗
ilι ]

T, l =

1, 2, · · · , m and ι represent the number of rules, and
8̄
q
i (Z

q
i ) = [8q

i1(Z
q
i ), 8

q
i2(Z

q
i ), · · · , 8

q
iι(Z

q
i )]

T is the vector
of radial basis functions. Let 8

q
i (Z

q
i ) = 1m ⊗ 8̄

q
i (Z

q
i ).

By the definition of the symbol ⊙m, W q∗
i ⊙m8

q
i =

[W q∗T
i1 8̄

q
i ,W

q∗T
i2 8̄

q
i , · · · ,W

q∗T
im 8̄

q
i ]

T, and τ
q∗
i is the approxi-

mation error of the ith agent and satisfies
∥∥τ q∗i ∥∥ ⩽ τ̄

q
i .

Then, the unknown compounded disturbance of the
subsystem of system (1) is defined as follows:

Dqi = (0q
i )

−1τ
q∗
i + dqi (7)

The compounded disturbance consists of the approximation
error of the NN and the external time-varying disturbance.
According to Assumption 2 and Lemma 2, Ḋqi is bounded;
that is, there exists D̄qi such that

∥∥Ḋqi ∥∥ ⩽ D̄qi .
Based on (6) and (7), system (1) can be rewritten as

ẋqi = Fqi (x̄
q
i ) + Gqi (x̄

q
i )x

q+1
i + (0q

i )
−1(W q∗

i ⊙m8
q
i ) + Dqi ,

q = 1, 2, · · · , n− 1,

ẋni = Fni (x̄
n
i ) + Gni (x̄

n
i )ui + (0n

i )
−1(W n∗

i ⊙m8n
i ) + Dni ,

yi = x1i , (8)

Since the compounded disturbance Dqi cannot be measured
directly, the r th order HODO for system (8) is proposed as

follows:

D̂q(ℓ−1)
i = η

qℓ
i + kqℓi x

q
i (9)

η̇
qℓ
i = −kqℓi

(
Fqi + Gqi x

q+1
i + (0q

i )
−1(Ŵ q

i ⊙m8
q
i )

+ D̂qi
)

+ D̂q(ℓ−1)
i , ℓ = 1, 2, · · · , r − 1 (10)

and

D̂q(r−1)
i = η

qr
i + kqri x

q
i (11)

η̇
qr
i = −kqri

(
Fqi + Gqi x

q+1
i + (0q

i )
−1(Ŵ q

i ⊙m8
q
i ) + D̂qi

)
(12)

where

kqℓi =


kqℓi11 kqℓi12 · · · kqℓi1m
kqℓi21 kqℓi22 · · · kqℓi2m
...

...
. . .

...

kqℓir1 kqℓir2 · · · kqℓimm

 , ℓ = 1, 2, · · · , r

(13)

is a constant matrix that is selected by the designer. D̂q(ℓ−1)
i is

estimate value of Dq(ℓ−1)
i , and η

qℓ
i ∈ Rm is auxiliary variable.

Define the estimation error of the HODO as D̃q(ℓ−1)
i =

Dq(ℓ−1)
i − D̂q(ℓ−1)

i , ℓ = 1, 2, · · · , r . Ŵi is the estimate ofW ∗
i ,

and W̃i = W ∗
i − Ŵi denotes the estimation error.

Invoking (8) and differentiating (9) and (11) yields

dD̃qi
dt

=
dDqi
dt

−
dD̂qi
dt

=
dDqi
dt

−
d(ηqi1 + kqi1x

q
i )

dt
= D̃q(1)i − kq1i (0q

i )
−1(W̃ q

i ⊙m8
q
i ) − kq1i D̃qi

dD̃q(1)i

dt
=
dḊqi
dt

−
d ˙̂Dqi
dt

= D̃q(2)i − kq2i (0q
i )

−1(W̃ q
i ⊙m8

q
i ) − kq2i D̃qi

dD̃q(r−1)
i

dt
=
dDq(r−1)

i

dt
−
dD̂q(r−1)

i

dt
= D̃q(r)i − kqri (0q

i )
−1(W̃ q

i ⊙m8
q
i ) − kqri D̃

q
i .

Define D̃q
i = [D̃qi , D̃

q(1)
i , · · · , D̃q(r−1)

i ]T. The observer
error dynamics can be written as

˙̃Dq
i = K q

i D̃q
i + Dq∗

i + K q∗
i ⊗

(
(0q

i )
−1(W̃ q

i ⊙m8
q
i )
)

(14)

where

K q
i =


−kq1i Im · · · 0 0
−kq2i 0 Im · · · 0
...

...
...

...
...

−kqri 0 0 · · · 0



Dq∗
i =


0
0
...

Dq(r)i

 , K q∗
i =


−kq1i
−kq2i
...

−kqri
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FIGURE 1. Schematic diagram of the distributed adaptive NN anti-disturbance cooperative control.

and Im ∈ Rm×m is the identity matrix. Since K q
i is a Hurwitz

matrix, for a specified matrix Qqi = QqTi > 0, there exists a
positive symmetric matrix Pqi such that

K qT
i Pqi + Pqi K

q
i = −Q (15)

Remark 2: In this work, anHODO is employed to estimate
the compounded disturbances. Earlier work on DOs often
assumed that the disturbance was bounded and its derivative
decayed to or even equaled zero [32]. In the case of
the HODO, this assumption was relaxed to Assumption 2
and comparatively practical. Furthermore, the HODO allow
high tracking accuracy to be obtained by estimating the
disturbance and its (r − 1)th order derivatives.

B. DISTRIBUTED COOPERATIVE ANTI-DISTURBANCE
CONTROL DESIGN
In this subsection, a distributed anti-disturbance cooperative
control protocol is proposed based on DSC technique. From
the coordinate transformation designed by the standard
backstepping approach and the definition of consensus error
of an MASs, the following consensus tracking error and
coordinate transformation are defined for the high-order
MIMO nonlinear MAS (1):

z1i =

∑
j∈N

aij(x1i − x1j ) + hi(x1i − yd ) (16)

zqi = xqi − ᾱ
q−1
i (17)

zni = xni − ᾱn−1
i (18)

where ᾱ
q−1
i is the output of the following first-order filter:

ϒ
q
i
˙̄α
q
i + ᾱ

q
i = α

q
i , ᾱ

q
i (0) = α

q
i (0), q = 2, · · · , n− 1

(19)

where ϒ
q
i = diag

{
ϒ
q
i1, ϒ

q
i2, · · · , ϒ

q
im

}
, ϒq

il > 0 is the time
constant of the filter, and α

q
i is the virtual control law of the

1st subsystem of the 1st agent, whose specific form will be
given later. The first-order filter defined in equation (19) is
the idea of DSC and addresses the problem of repeatedly
differentiating α

q
i .

To facilitate the subsequent controller design and stability
analysis, the following lemma is first given.
Lemma 4: Define L̃ = L + H ∈ RN and L(•) = • ⊗

Im, where ⊗ is the Kronecker product and Im is the m × m
identity matrix; then, the augmented matrix L(L̃) ∈ RNm×Nm

is positive definite and satisfies:

1
2
X1TL(L̃)X1

=
1
2
(Z1

+ ϖ )T1(Z1
+ ϖ )

=
1
2
(Z1

+ ϖ )TX1 (20)

where X1
= [x11 , x

1
2 , · · · , x

1
N ]

T
∈ RNm, z1i = [z1i1, z

1
i2, · · · ,

z1im]
T

∈ Rm, Z1
= [z11, z

1
2, · · · , z

1
N ]

T
∈ RNm, ϖi =

[hiyd1 , hiy
d
2 , · · · , hiydm]

T , ϖ = [ϖ1,ϖ2, · · · ,ϖN ]T , z1il =∑
j∈N aij(x

1
il− x1jl) + hi(x1il − ydl ), and z

1
il , x

1
il and y

d
l denote

the l th component of the consensus tracking error vector z1i ,
the state vector x1i and the virtual leader output vector yd ,
respectively.

Proof: From the definition of the augmented matrix
L(•), the following equation holds:

L(L̃) = L(L + H ) = L(L) + L(H ) (21)

where L(L) ∈ RNm×Nm and L(H ) ∈ RNm×Nm are both real
symmetric matrices. Since L(H ) is a diagonal matrix with
main diagonal elements hi ≥ 0,L(H ) is semipositive definite.
Noting

L(L) = L(B −A) =

 c11 . . . c1Nm
...

. . .
...

cNm1 · · · cNmNm

 (22)
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let λ0 be any eigenvalue of L(L) and ξ0 be the eigenvector
associated with λ0, such that L(L)ξ0 = λ0ξ0. The ith

component of ξ0 is ξi(i = 1, 2, · · · ,Nm), andL(L)ξ0 = λ0ξ0
can be expressed as a system of linear equations as follows:

c11ξ1 + c12ξ2 + · · · + c1NmξNm = λ0ξ1

c21ξ1 + c22ξ2 + · · · + c2NmξNm = λ0ξ2
...

...
...

...

cNm1ξ1 + cNm2ξ2 + · · · + cNmNmξNm = λ0ξNm

(23)

Suppose |ξs| is the largest of magnitudes |ξ1| , |ξ2| , · · · ,

|ξNm|. Based on (23), the following formula holds:

(λ0 − css)ξs
= cs1ξ1 + · · · + cs(s−1)ξs−1

+ cs(s+1)ξs+1 + · · · + csNmξNm (24)

|(λ0 − css)| |ξs|

≤ |cs1| |ξ1| + · · · +
∣∣cs(s−1)

∣∣ |ξs−1| +
∣∣cs(s+1)

∣∣ |ξs+1|

+ · · · + |csNm| |ξNm|

≤
(
|cs1| + · · · +

∣∣cs(s−1)
∣∣+ ∣∣cs(s+1)

∣∣+ · · · + |csNm|
)
|ξs|

(25)

crr − h̄

≤ λ0 ≤ crr + h̄ (26)

where h̄ = |cs1| + · · · +
∣∣cs(s−1)

∣∣ + ∣∣cs(s+1)
∣∣ + · · · + |csNm|.

From graph theory, it follows that

css = −(cs1 + · · · + cs(s−1) + cs(s+1) + · · · + csNm)

= h̄ ≥ 0 (27)

It follows from (26) and (27) that any eigenvalue of L(L)
satisfies λ0 ≥ 0. Whereupon L(L) is a semipositive definite
real symmetric matrix. Considering L(L̃) = L(L) + L(H ),
it is possible to obtain eigenvalues of L(L̃) satisfying λ̃0 ≥

0. L(L̃) is a semipositive definite real symmetric matrix,
whose Nm eigenvalues are λ1, λ2, · · · , λNm. Define ξ =

(ξ1, ξ2, · · · , ξNm) ∈ RNm×Nm as the orthogonal matrix of
L(L̃) and ξ1, ξ2, · · · , ξNm as the eigenvectors corresponding
to the eigenvalues λ1, λ2, · · · , λNm, one obtains ξT ξ =

ξξT = INm, where INm ∈ RNm×Nm is the identity matrix.
Then, it follows from real symmetric matrix properties that

1
2
X1TL(L̃)X1

=
1
2
X1T ξT3ξX1

=
1
2
X1T ξT3ξξT3−1ξξT3ξX1

=
1
2
X1TL(L̃)ξT3−1ξL(L̃)X1

=
1
2
(Z1

+ ϖ )T1(Z1
+ ϖ ) (28)

where 3 = diag [λ1, λ2, · · · , λNm] and 1 = ξT3−1ξ .
Combining the Laplace matrix with the definition of the

matrix L(L̃) leads to:
1
2
X1TL(L̃)X1

=
1
2
(Z1

+ ϖ )TX1 (29)

This concludes the proof.

Remark 3: Lemma 4 reveals the relationships among the
Laplace matrix, adjacency matrix and consensus tracking
errors, which will be useful later in controller design and
stability analysis.
Step 1: It follows from the designedHODO in (9), (10), (11)

and (12) that the estimate valve of the compounded D1
i in the

1st subsystems can be expressed as

D̂1(ℓ−1)
i = η1ℓi + k1ℓi x

1
i (30)

η̇1ℓi = −k1ℓi
(
F1
i + G1

i x
2
i + (01

i )
−1

(Ŵ 1
i ⊙m81

i ) + D̂1
i

)
+ D̂1(ℓ−1)

i , ℓ = 1, 2, · · · , r − 1 (31)

and

D̂1(r−1)
i = η1ri + k1ri x

1
i (32)

η̇1ri = −k1ri
(
F1
i + G1

i x
2
i + (01

i )
−1

(Ŵ 1
i ⊙m81

i ) + D̂1
i

)
(33)

It follows from (14) and (16) that the observer error
dynamic and consensus error of 1st subsystem are given as
follows:

˙̃D1
i = K 1

i D̃1
i + D1∗

i + K 1∗
i ⊗

(
(01

i )
−1

(W̃ 1
i ⊙m81

i )
)

(34)

z1i =

∑
j∈N

aij(x1i − x1j ) + hi(x1i − yr ) (35)

Then, the virtual control law and updating law are designed
as follows:

α1
i = (−G1

i )
−1
[
C1
i (z

1
i + ϖ i) + F1

i +

(01
i )

−1
(Ŵ 1

i ⊙m81
i ) + D̂1

i

]
(36)

˙̂W 1
i = (01

i )
−1[81

i ⊙ (z1i + ϖ i) − λ1i Ŵ
1
i ] (37)

where the matrix C1
i is chosen to satisfy λmin(C1

i ) ⩾
ki
2 λmax(1) +

1
2 (λ̄

1
i + 1), ki > 0, C1

i = (C1
i )

T > 0 and
01
i = 01T

i > 0 are designed parameters.
Remark 4: Because the relationships among the Laplace

matrix, adjacency matrix and consensus tracking errors have
been analyzed, compared with the previous design in [36], the
proposed first-order virtual control law exhibits a relatively
simple structure, which facilitates the subsequent controller
design and stability proof.
Step 2: It follows from the equation (17) that the tracking

error of the 2nd subsystem of the ith agent can be defined as
follows:

z2i = x2i − ᾱ1
i (38)

where ᾱ1
i is the filtered signal of the virtual control signal

α1
i designed in the 1st step, and taking the derivative of both

sides of equation (38) with respect to time yields

ż2i = F2
i (x̄

2
i ) + G2

i (x̄
2
i )x

3
i + (02

i )
−1(W 2∗

i ⊙m82
i )

+ D2
i − ˙̄α1

i (39)
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Similar to step 1, an HODO is constructed to approximate the
compounded disturbance D2

i as follows:

D̂2(ℓ−1)
i = η2ℓi + k2ℓi x

2
i (40)

η̇2ℓi = −k2ℓi
(
F2
i + G2

i x
3
i + (02

i )
−1

(Ŵ 2
i ⊙m82

i ) + D̂2
i

)
+ D̂2(ℓ−1)

i , ℓ = 1, 2, · · · , r − 1 (41)

and

D̂2(r−1)
i = η2ri + k2ri x

2
i (42)

η̇2ri = −k2ri
(
F2
i + G2

i x
3
i + (02

i )
−1

(Ŵ 2
i ⊙m82

i ) + D̂2
i

)
(43)

It follows from (14) and (16) that the observer error dynamic
and consensus error of 2nd subsystem are given as follows:

˙̃D2
i = K 2

i D̃2
i + D2∗

i + K 2∗
i ⊗

(
(02

i )
−1

(W̃ 2
i ⊙m82

i )
)

(44)

Then, the virtual control signal α2
i and updating law are

constructed as follows:

α2
i = (−G2

i )
−1
[
C2
i z

2
i + G1T

i (z1i + ϖ i)

+ F2
i + (02

i )
−1

(Ŵ 2
i ⊙m82

i ) + D̂2
i

]
(45)

˙̂W 2
i = (02

i )
−1[82

i ⊙ z2i − λ2i Ŵ
2
i ] (46)

where C2
i = (C2

i )
T > 0 and 02

i = (02
i )

T > 0 are designed
parameters.
Step q (3 ⩽ q ⩽ n - 1): Similarly, it follows from

equation (17) that the tracking error of the qth subsystem of
the ith agent can be defined as follows:

zqi = xqi − ᾱ
q−1
i (47)

where ᾱ
q−1
i is the filtered signal of the virtual control signal

α
q−1
i designed in the qth step, and taking the derivative of both

sides of equation (38) with respect to time yields

żqi = Fqi (x̄
q
i ) + Gqi (x̄

q
i )x

q+1
i + (0q

i )
−1(W q∗

i ⊙m8
q
i )

+ Dqi − ˙̄α
q−1
i (48)

Similar to step 1, an HODO is constructed to approximate the
compounded disturbance Dqi as follows:

D̂q(ℓ−1)
i = η

qℓ
i + kqℓi x

q
i (49)

η̇
qℓ
i = −kqℓi

(
Fqi + Gqi x

q+1
i + (0q

i )
−1(Ŵ q

i ⊙m8
q
i ) + D̂qi

)
+ D̂q(ℓ−1)

i , ℓ = 1, 2, · · · , r − 1 (50)

and

D̂q(r−1)
i = η

qr
i + kqri x

q
i (51)

η̇
qr
i = −kqri

(
Fqi + Gqi x

q+1
i + (0q

i )
−1(Ŵ q

i ⊙m8
q
i ) + D̂qi

)
(52)

Then, the observer error dynamic of the qth step can be
expressed as follows:

˙̃Dq
i = K q

i D̃q
i + Dq∗

i + K q∗
i ⊗

(
(0q

i )
−1(W̃ q

i ⊙m8
q
i )
)

(53)

The virtual control signalαqi and updating law are constructed
as follows:

α
q
i = (−Gqi )

−1
[
Cq
i z
q
i + Gq−1T

i zq−1
i

+ Fqi + (0q
i )

−1(Ŵ q
i ⊙m8

q
i ) + D̂qi

]
(54)

˙̂W q
i = (0q

i )
−1[8q

i ⊙ zqi − λ
q
i Ŵ

q
i ] (55)

where Cq
i = (Cq

i )
T > 0 and 0

q
i = (0q

i )
T > 0 are designed

parameters.
Step n: It follows from the equation (18) that the tracking

error of the nth subsystem of the ith agent can be defined as
follows:

zni = xni − ᾱn−1
i (56)

where ᾱn−1
i is the filtered signal of the virtual control signal

αn−1
i designed in the nth step, and taking the derivative of both

sides of equation (56) with respect to time yields

żni = Fni (x̄
n
i ) + Gni (x̄

n
i )ui + (0n

i )
−1(W n∗

i ⊙m8n
i )

+ Dni − ˙̄αn−1
i (57)

Similar to step 1, an HODO is constructed to approximate the
compounded disturbance Dni as follows:

D̂n(ℓ−1)
i = ηnℓi + knℓi x

n
i (58)

η̇nℓi = −knℓi
(
Fni + Gni ui + (0n

i )
−1(Ŵ n

i ⊙m8n
i ) + D̂ni

)
+ D̂n(ℓ−1)

i , ℓ = 1, 2, · · · , r − 1 (59)

and

D̂n(r−1)
i = ηnri + knri x

n
i (60)

η̇nri = −knri
(
Fni + Gni ui + (0n

i )
−1(Ŵ n

i ⊙m8n
i ) + D̂ni

)
(61)

Then, the observer error dynamic of the nth step is given as
follows:

˙̃Dn
i = K n

i D̃n
i + Dn∗

i + K n∗
i ⊗

(
(0n

i )
−1(W̃ n

i ⊙m8n
i )
)

(62)

The desired actual control signal ui and updating law are
constructed as follows:

ui = −Gni (G
n
i G

nT
i )−1

[
Cn
i z
n
i + Gn−1T

i zn−1
i + Fni

+(0n
i )

−1(Ŵ n
i ⊙m8n

i ) − ˙̄αn−1
i + D̂ni

]
(63)

˙̂W n
i = (0n

i )
−1[8n

i ⊙ zni − λni Ŵ
n
i ] (64)

where Cn
i = (Cn

i )
T > 0 and 0n

i = (0n
i )

T > 0 are the designed
parameters.
Theorem 1: Consider the high-order MIMO nonlinear

MAS (1) in the presence of uncertainties and external distur-
bances satisfying Assumptions 1-4, if the distributed adap-
tive NN anti-disturbance cooperative control protocol (63)
with the HODO and updating laws shown in (30)-(33),
(40)-(43), (49)-(52), (58)-(61), (37), (46), (55) and (64)
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is applied to the high-order MIMO nonlinear MAS, the
following results can be guaranteed:

(1) All the signals of the closed-loop system are SGUUB.
(2) The output yi of each agent in the MAS can track

the virtual leader output signal yd with consensus errors
converging to the neighborhood of zero.

Proof: Define the filtering error of a first-order filter as

ε
q
i = ᾱ

q
i − α

q
i , q = 1, 2, · · · , n− 1 (65)

Differentiating both sides of equation (65) with respect to
time t yields

ε̇
q
i = −(ϒq

i )
−1ε

q
i + (−

∂α
q
i

∂xqi
ẋqi −

∂α
q
i

∂zqi
żqi

−
∂α

q
i

∂η
q
i
η̇
q
i + ÿd )

= −(ϒq
i )

−1ε
q
i + Bqi (ż

q
i , z

q+1
i , ε

q
i , η

q
i , y

d , ẏd , ÿd ) (66)

where Bqi (•) is a continuous function with respect to the
variables (żqi , z

q+1
i , ε

q
i , η

q
i , y

d , ẏd , ÿd ). Since the sets 50 ∈

R3m and51 ∈ R2m+1 are compact,50 ×51 is also compact.
Thus, the maximum value B̄qi of function Bqi (•) exists on
50 ×51. Therefore,

ε̇
q
i ⩽ −(ϒq

i )
−1ε

q
i + B̄qi (67)

The candidate Lyapunov function is chosen as

V =
1
2
X1TL(L̃)X1

+

N∑
i=1

 n∑
q=2

1
2
zqTi zqi +

n−1∑
q=1

1
2
ε
qT
i ε

q
i

+

n∑
q=1

1
2
W̃ qT
i W̃ q

i +

n∑
q=1

D̃qT
i Pqi D̃

q
i

 (68)

Differentiating (68) and invoking (29) yields:

V̇ = (Z1
+ ϖ )T Ẋ1

+

N∑
i=1

 n∑
q=2

zqi
T żqi +

n−1∑
q=1

ε
q
i
T
ε̇
q
i

+

n∑
q=1

W̃ q
i
T ˙̃W q

i +

n∑
q=1

2D̃q
i
TPqi

˙̃Dq
i

 (69)

where

(Z1
+ ϖ )T Ẋ1

=

m∑
l=1

(z11l + h1yr1l)ẋ
1
1l +

m∑
l=1

(z12l + h2yr2l)ẋ
1
2l

+ · · · +

m∑
l=1

(z1Nl + hN yrNl)ẋ
1
Nl

= (z11 + ϖ 1)T ẋ11 + (z12 + ϖ 2)T ẋ12
+ · · · + (z1N + ϖN )T ẋ1N

=

N∑
i=1

(z1i + ϖ i)
T
ẋ1i (70)

Substituting (70) into (69) yields:

V̇ =

N∑
i=1

(z1i + ϖ i)
T
ẋ1i +

N∑
i=1

 n∑
q=2

zqi
T żqi +

n−1∑
q=1

ε
q
i
T
ε̇
q
i

+

n∑
q=1

W̃ q
i
T ˙̃W q

i +

n∑
q=1

2D̃q
i
TPqi

˙̃Dq
i

 (71)

According to Young’s inequality and invoking (36), (38),
(45), (47), (54), (56), (63), (65) and (67) yield
N∑
i=1

(z1i + ϖ i)
T
ẋ1i

=

N∑
i=1

[
−(z1i + ϖ i)

T
C1
i (z

1
i + ϖ i) + (z1i + ϖ i)

T
G1
i z

2
i

+ (z1i + ϖ i)TG1
i ε

1
i + (z1i + ϖ i)T (01

i )
−1(W̃ 1

i ⊙m

81
i ) + (z1i + ϖ i)

T
D̃1
i

]
≤

N∑
i=1

{
−

[
λmin(C1

i ) −
1
2
(λ̄1i + 1)

]
(z1i + ϖ i)

T
(z1i + ϖ i)

+ (z1i + ϖ i)TG1
i z

2
i +

1
2
ε1Ti ε1i + (z1i + ϖ i)T (01

i )
−1

(W̃ 1
i ⊙m81

i ) +
1
2
D̃1T
i D̃1

i

}
≤

N∑
i=1

[
−
k
2
λmax(1)(z1i + ϖ i)

T
(z1i + ϖ i) + (z1i + ϖ i)

T
G1
i

z2i +
1
2
ε1Ti ε1i + (z1i + ϖ i)T (01

i )
−1(W̃ 1

i ⊙m81
i )

+
1
2
D̃1T
i D̃1

i

]
≤ −

k
2
X1TL(L̃)X1

+

N∑
i=1

[
(z1i + ϖ i)

T
G1
i z

2
i +

1
2
ε1i

T
ε1i

(z1i + ϖ i)
T
(01

i )
−1

(W̃ 1
i ⊙m81

i ) +
1
2
D̃1T
i D̃1

i

]
(72)

Similarly, using (39), (48), (57), (65) and considering
Young’s inequality again obtains

n∑
q=2

zqTi żqi

=

n∑
q=2

(
−zqTi Cq

i z
q
i + zqTi D̃qi + zqTi (0q

i )
−1(W̃ q

i ⊙m8
q
i )
)

+

n−1∑
q=2

zqTi Gqi ε
q
i − z2Ti G1

i (z
1
i + ϖ i)

⩽
n∑

q=2

(
−zqTi Cq

i z
q
i +

1
2
zqTi zqi +

1
2
D̃qTi D̃qi +

zqTi (0q
i )

−1(W̃ q
i ⊙m8

q
i )
)

+

n−1∑
q=2

zqTi Gqi ε
q
i
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− z2Ti G1
i (z

1
i + ϖ i)

⩽
n∑

q=2

(
−zqTi Cq

i z
q
i +

1
2
zqTi zqi +

1
2
D̃qT
i D̃q

i

+ zqTi (0q
i )

−1(W̃ q
i ⊙m8

q
i )
)

+

n−1∑
q=2

zqTi Gqi ε
q
i

− z2Ti G1
i (z

1
i + ϖ i) (73)

Similarly, it follows from (37), (46), (55), (64) and (67) that

n∑
q=1

W̃ qT
i

˙̃W q
i

= −

n∑
q=1

W̃ qT
i

˙̂W q
i

= −W̃ 1T
i (01

i )
−1[81

i ⊙ (z1i + ϖ i)] −

n∑
q=2

W̃ qT
i (0q

i )
−1

(8q
i ⊙ zqi ) +

n∑
q=1

λ
q
i W̃

qT
i Ŵ q

i

⩽ −W̃ 1T
i (01

i )
−1[81

i ⊙ (z1i + ϖ i)] −

n∑
q=2

W̃ qT
i (0q

i )
−1

(8q
i ⊙ zqi ) +

n∑
q=1

[
−λ

q
i (1 −

1

2πqi
)W̃ qT

i W̃ q
i +

+
λ
q
i π

q
i

2

∥∥W q∗
i

∥∥2] (74)

n−1∑
q=1

ε
qT
i ε̇

q
i

⩽
n−1∑
q=1

(
−ε

qT
i (ϒq

i )
−1

ε
q
i + ε

qT
i B̄qi

)

⩽
n−1∑
q=1

(
−ε

qT
i (ϒq

i )
−1

ε
q
i +

1
2
ε
qT
i ε

q
i +

1
2
B̄qTi B̄qi

)
(75)

Similarly, by applying Lemma 3, (34), (44), (53) and (62),
it can be derived that

n∑
q=1

2D̃qT
i Pqi

˙̃Dq
i

=

n∑
q=1

2D̃qT
i Pqi

(
K q
i D̃q

i + Dq
i
∗

+ K q
i
∗

⊗

(
(0q

i )
−1(W̃ q

i ⊙ 8
q
i )
))

=

n∑
q=1

[
D̃qT
i (K qT

i Pqi + PqTi K q
i )D̃

q
i + D̃q

i
TPqi D

q
i
∗

+ Dq∗T
i Pqi D̃

q
i + D̃qT

i Pqi
(
K q
i
∗

⊗

(
(0q

i )
−1(W̃ q

i ⊙m

8
q
i )
))

+

(
K q∗
i ⊗

(
(0q

i )
−1(W̃ q

i ⊙m8
q
i )
))T

PqTi D̃q
i

]
≤

n∑
q=1

[
D̃qT
i (K q

i
TPqi + Pqi

TK q
i )D̃

q
i + aqi D

q
i
∗TDq

i
∗

+ (aqi )
−1D̃qT

i Pqi P
qT
i D̃q

i + bqi
∑r

ℓ=1

(
(W̃ q

i ⊙m8
q
i )
T

(0q
i )

−1kqℓTi

) (
kqℓi (0q

i )
−1(W̃ q

i ⊙m8
q
i )
)

+ (bqi )
−1D̃qT

i Pqi P
qT
i D̃q

i

]
≤
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[
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i (K qT

i Pqi + PqTi K q
i )D̃

q
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−1D̃qT
i Pqi

PqTi D̃q
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qr
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i )
−1kqℓTi

kqℓi (0q
i )

−1
)
W̃ qT
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i D̃q

i

]
(76)

Then, it follows from (72), (73), (74), (75) and (76) that the
time derivative of V can be expressed as follows:

V̇ ≤

N∑
i=1

(z1i + ϖ i)
T
ẋ1i +

N∑
i=1

 n∑
q=2

zqTi żqi

+

n−1∑
q=1

ε
qT
i ε̇

q
i +

n∑
q=1

W̃ qT
i

˙̃W q
i +

n∑
q=1

2D̃qT
i Pqi

˙̃Dq
i
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k
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X1TL(L̃)X1

+

N∑
i=1

1
2
ε1Ti ε1i +

n∑
q=2

(
−zqTi Cq

i z
q
i

+
1
2
zqTi zqi

)
+

n∑
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1
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i D̃q

i +
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zqTi Gqi ε
q
i

+
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−ε
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i )
−1

ε
q
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1
2
ε
qT
i ε

q
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1
2
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−λ

q
i (1 −

1

2πqi
)W̃ qT

i W̃ q
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λ
q
i π

q
i

2

∥∥W q∗
i
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+
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q=1
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1
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−
1
2
Imr×mr −

(
(aqi )

−1
+ (bqi )

−1
)
PqTi Pqi

)
D̃q
i

]

−

N∑
i=1

 n∑
q=1
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λ
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1
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where

κ = min
{
k, λmin(C

q
i ) −

1
2
(λ̄qi + 1), λmin(Cn

i ) −
1
2
,

λmin(ϒ
q
i )

−1
− 1, λmin

(
−(K qT

i Pqi + Pqi
TK q
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1
2
Imr×mr −

(
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−1
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−1
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PqTi Pqi

)
, λ

q
i (1

−
1

2πqi
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ι
q
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(
(0q
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−1kqℓTi kqℓi (0q
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−1
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>0

M =

N∑
i=1

n−1∑
q=1

1
2
B̄qi

T B̄qi +

n∑
q=1

(
aqi (β

qr
i )2

+
λ
q
i π

q
i

2

∥∥∥W q
i
∗
∥∥∥2)] , q = 1, 2, · · · n

Therefore, it follows from Lemma 1 that the signals of
the closed-loop system are SGUUB. It is easy to deduce
from (77) that

0 ≤ V (t) ≤ e−κtV (0) +
M
κ
(1 − e−κt ) (78)

It follows from (78) that there exists a moment T0 such that
for any t > T0, signals X1, zqi , W̃

q
i , and D̃q

i are invariant to
the compact sets defined as follows:

�X1 =

(
X1
∣∣∣ ∥∥∥X1

∥∥∥ ≤

√
2M

/
λmax(3) · κ

)
(79)

�zqi
=

(
zqi
∣∣ ∥∥zqi ∥∥ ≤

√
2M

/
κ

)
(80)

�W̃ q
i

=

(
W̃ q
i

∣∣∣ ∥∥∥W̃ q
i

∥∥∥ ≤

√
2M

/
κ

)
(81)

�D̃q
i

=

(
D̃q
i

∣∣∣ ∥∥∥D̃q
i

∥∥∥ ≤

√
M
/
λmax(P

q
i ) · κ

)
(82)

By increasing the values of κ , the quantities√
2M

/
λmax(3) · κ ,

√
2M

/
κ and

√
M
/
λmax(P

q
i ) · κ can be

made arbitrarily small. This concludes the proof.

IV. SIMULATION RESULTS
In this section, simulations are performed to verify the
effectiveness of the proposed distributed anti-disturbance

FIGURE 2. Communication topology diagram.

FIGURE 3. Tracking effect of followers.

FIGURE 4. Tracking error of followers to leaders.

cooperative control protocol. A quadrotor UAV formation
with one virtual leader and four followers is considered. The
topology is shown in Figure 2. Node 0 is the virtual leader that
sends the signal, and nodes 1-4 are the followers. It assumes
that that the weights of all edges are 1, the degree matrix
B = diag {2, 1, 2, 1} is obtained, and the adjacency weight
matrix A and Laplace matrix of the followers are as follows:

A =


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0

 , L =


2 −1 −1 0

−1 1 0 0
−1 0 2 −1
0 0 −1 1
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TABLE 1. Other parameters and controller design parameters.

FIGURE 5. Consensus error of followers.

FIGURE 6. Control input of followers.

Let H = diag{1, 0, 0, 0}, L(L̃) = L(L + H ) = L(L) +

L(H ), and λmax(1) = 4.4142. The attitude dynamics of the
ith UAV are modeled as follows:

ẋ1i = x2i
ẋ2i = F2

i (x̄
2
i ) + G2

i ui +1f 2i (x̄
2
i ) + d2i (x̄

2
i , t)

yi = x1i

where x1i = [φi, θi, ψi]T , and φi, θi and θi denote the roll
angle, pitch angle and yaw angle of the ith quadrotor UAV,

FIGURE 7. Norm of NN weights.

FIGURE 8. Comparative tracking errors of UAV1.

respectively. F2
i (x̄

2
i ) = [(θ̇ ψ̇(Iiθ − Iiψ ))/Iiφ, (φ̇ψ̇(Iiψ −

Iiφ))/Iiθ , (θ̇ φ̇(Iiφ − Iiθ ))/Iiψ ]T , Iiφ = 0.00623, Iiθ =

0.00623, and Iiψ = 0.00112 denote the moments of inertia
of the ith quadrotor UAV. G2

i = diag(l/Iiφ, l/Iiθ , l/Iiψ )
and l = 0.26m is the distance from the rotor to
the center of mass of the UAV. 1f 2i and d2i are the
internal uncertainty and external disturbance of the ith

UAV, respectively. The desired reference signal is yd =

[sin(0.4t + π ), cos(0.3t + 0.5π ), sin(0.5t + 0.6π )]T , and
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FIGURE 9. Comparative tracking errors of UAV2.

FIGURE 10. Comparative tracking errors of UAV3.

FIGURE 11. Comparative tracking errors of UAV4.

the initial values for each UAV are x1,0 = [0, 0, 0, 0, 0, 0]T ,
x2,0 = [5, 5, 5, 0, 0, 0]T , x3,0 = [10, 10, 10, 0, 0, 0]T and
x4,0 = [15, 15, 15, 0, 0, 0]T . The Gaussian width of the
RBFNN is chosen to be b̄ = 1, the neuron Gaussian center
is taken as c̄i ∈ [−3, 3], Ŵ 2

i (0) = 0, ℓ̄2i = 7 is the number
of neuron rules and the updating law-related parameters are
taken to be 02

i = diag(10, 10, 10) and λ2i = 2. The parameter
ki is chosen to be ki = 2, and the other parameters and
controller design parameters are shown in Table 1. From the

FIGURE 12. Comparative consensus errors of UAV1.

FIGURE 13. Comparative consensus errors of UAV2.

FIGURE 14. Comparative consensus errors of UAV3.

parameters in Table 1, the parameter C1
i satisfies λmin(C1

i ) ≥
ki
2 λmax(1) +

1
2 (λ̄

1
i + 1).

The simulation results show the performance of the
proposed distributed anti-disturbance cooperative control
protocol in Figs. 3-15. Figs. 3 and 4 show the tracking
results and tracking error, respectively. Fig. 5 shows the
consensus error of the quadrotor UAV formation, and Fig. 6
shows the control input of the system. The tracking error
converges within ±0.5%, and the consensus error converges
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FIGURE 15. Comparative consensus errors of UAV4.

within ±1%, which shows that the distributed controller
designed in this paper has a good tracking effect on quadrotor
UAV formation. Figs. 8-11 and Figs. 12-15 compare the
tracking error and consensus error for the four UAVs with an
HODO (red solid line) and without an HODO (blue dashed
line) controller, respectively. Although the RBFNN-only
distributed controller also has a good tracking effect - the
error converges to within ±2% - the HODO-supported
distributed controller converges to a smaller interval, and
the vibration is smoother, which gives a better tracking
effect. In addition, although the NN also has a good
approximation capability, it is only effective on the compact
set. Considering that the range of unknown disturbances
is difficult to recognize in reality, there is a possibility
that the neural network fails. With the help of HODO,
this risk could be avoided. By the simulation results, the
proposed distributed anti-disturbance cooperative control
protocol can fulfill the consensus assignment for high-order
MIMO nonlinear MASs.

V. CONCLUSION
In this paper, a distributed adaptive anti-disturbance cooper-
ative control scheme is proposed for a class of high-order
MIMO nonlinear MASs subjected to uncertainties and
external disturbances. An RBFNN is used to approximate
the system uncertainties, and an HODO is used to estimate
the compounded disturbances. By analyzing the relationships
among the Laplacematrix, leader-following adjacencymatrix
and consensus tracking error, an appropriate Lyapunov
function is constructed to guarantee that the control protocol
has the properties of simple structure, low computational
burden and signal boundedness of closed-loop systems. If the
communication topology is a directed graph, the designed
control method will be more meaningful. In the future, the
distributed anti-disturbance cooperative control protocol for
high-order MIMO nonlinear MASs will be considered in
the presence of directed graphs, dynamic topologies and
practical engineering applications. In addition, the parameter
optimization methods will be investigated in the controller
design process.
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