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ABSTRACT Diffusion models and their variants have achieved high-quality image generation without
adversarial training. These algorithms provide new ideas for data shortages in some fields. But the diffusion
model also faces the same problem as other generative models: the learned probability density function will
retain the characteristics of the training samples, which means that the high complexity of the deep network
will make the model easily remember the training samples. When a diffusion model is applied to sensitive
datasets, the distribution the model focuses on may reveal private information, and the security concerns
described above becomemore pronounced. To address this challenge, this paper proposes a privacy diffusion
model named DPDM (Differentially Private Denoise Diffusion Probability Models) that satisfies differential
privacy by adding appropriate noise to the gradient during the training. Besides, this paper adopts a series of
optimization strategies to improve model performance and training speed such as adaptive gradient clipping
threshold and dynamic decay learning rate. Through the evaluation and analysis of the benchmark dataset,
it is found that the attempt in this paper has promising usability, and the synthetic data has better performance.

INDEX TERMS Data shortage, generate model, diffusion model, differential privacy.

I. INTRODUCTION
The ever-increasing data scale and the continuous innovation
of Internet technology promote each other. As a representa-
tive of the latter, deep learning also faces more problems such
as data shortages in some application fields. For example,
in the analysis of individual patients in the medical field,
each patient can be regarded as an individual sample in the
model training process. Due to the diversity and complexity
of diseases, there are only a handful of patient records after
refinement, which is difficult to use as the basis for research.
Furthermore, data holders are reluctant to share data due
to privacy concerns, which will exacerbate the problem of
research data scarcity. When the data is used to train the
deep model, some sensitive features are also more likely to
be remembered. Individual examples have proved that the
memory of the model in deep learning can effectively restore
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the sensitive information of the training data [1], which will
cause the deep model to become the target of attacks by
people with ulterior motives.

As the gold standard in the field of machine learn-
ing, differential privacy [2], [3], [4] can quantify privacy
strictly and provides an important idea for solving privacy
problems. In 2016, the DP-SGD algorithm proposed by
Abadi et al. [5] immediately became an idiomatic method
for training differential privacy learners. The core step of
DP-SGD (Differentially Private Stochastic Gradient Descent)
is to clip the gradient norm and inject Gaussian noise.
Nowadays, more and more researchers apply the DP-SGD
algorithm to the training process of deep learning models [6],
[7], [8], [9], [10], [11], [12]. After differential privacy train-
ing, even if the attacker obtains the model, one cannot infer
the private information of the training set.

Generative adversarial networks (GANs) and variants [13],
[14], [15] can generate more fake samples that are indis-
tinguishable from the training data. But there are still
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shortcomings: its training is still not stable enough, and it
needs to train two network models at the same time, that
is, the adversarial training between the generator and the
discriminator, which will inevitably lead to balance problems
and easily lead to model collapse. Due to GAN’s pursuit of
image authenticity, at the same time, the input of the generator
is random noise, resulting in insufficient diversity.

Diffusion models [16], [17], [18], as one of the emerging
technologies in the field of generation, gradually interfere
with the data in the forward process, while the neural network
predicts the noise added during the forward process and grad-
ually removes to learn the training distribution. Compared
with GAN, the diffusion model is not only more stable in
training; but also achieves better diversity.

In order to deal with the training and diversity problems of
GAN, as well as the privacy leakage problem of the diffusion
model, this paper combines the differential privacy [2], [3]
and the diffusion model [16], [17], [18] to design a pri-
vacy protection framework DPDM to protect the model data.
In summary, the contributions of this paper can be summa-
rized in the following three points:
• This paper proposes a DPDM privacy-preserving frame-
work by combining differential privacy and diffusion
models, which provide privacy protection for models
while ensuring the availability of synthetic data.

• During the training, a series of optimization strategies
such as gradient threshold dynamic clipping and learn-
ing rate degradation algorithms, are adopted to speed
up the convergence and improve the quality of synthetic
data onto a given privacy budget.

• Our method in this paper yields state-of-the-art perfor-
mance on model utility under the same privacy budget.
By using the benchmark dataset to evaluate the model
and verify the performance of DPDM, it is proved that
DPDM can achieve better diversity and visual effects.

The remainder of this paper is organized as follows.
In Section II is the related work, and we describe the prelim-
inaries in Section III. In Section IV we present our approach
in detail, while Section V shows our experimental results.
Conclusion of this paper in Section VI.

II. RELATED WORKS
Many researchers have tried to protect training data. Prior
techniques include data anonymization [19], k-anonymity
[20], l-diversity [21], t-closeness [22], semantic security [23],
information-theoretic privacy [24], and differential privacy
(DP) [2], [3], [4], where DP is a rigorous mathematical def-
inition of privacy applied to statistical queries; in our work
the queries correspond to the training of a neural network
using sensitive training data. Once the DP-SGD [5] algorithm
was proposed, it became the mainstream of machine learning
private training. The main steps of the DP-SGD algorithm
are gradient norm clipping and Gaussian noise injection into
the gradient. The differential privacy learner aims to learn
the same distribution as the private data while satisfying the
differential privacy guarantee.

FIGURE 1. Illustration of diffusion models.

A long line of works has explored combinations of GANs
and differential privacy [6], [7], [8], [9], [10], the injection
of noise makes GAN require a lot of optimization strate-
gies and structural design to perform more stable, and the
generation effect is not satisfactory. (Differential Privately
Generate Adversarial Nets) DPGAN [6] first combines dif-
ferential privacy and GAN by DPSGD algorithm, where the
discriminator is privately trained, and the generator auto-
matically satisfies differential privacy by the post-processing
theory. Torkzadehmahani et al. [7] proposed to use DPSGD
to train conditional GAN to extend DPGAN to the con-
ditional generative setting. Zhang et al. [8] used differential
privacy in GAN. When training the discriminative model,
the DP-SGD algorithm is used to disturb the gradient. The
game between the generator and the discriminator is able
to improve the quality of the generation. Xu et al. [9] pro-
posed a GAN-obfuscator to promote, by designing a gradient
penalty strategy to achieve high-quality synthetic data gener-
ation. Private Aggregation of Teacher Ensembles (PATE) is
a different framework for generative models. Reference [10]
proposed PATE-GAN, adapting the PATE framework to apply
it to GAN to generate data. G-PATE [11] ensures that the
information flow from the discriminator to the generator
is private so that achieves differential privacy guarantee.
Although the above methods improve and perfect the differ-
ential privacy protection method of generative models, the
problem of private training difficulty and the low availability
of synthetic data has not yet been solved.

III. PRELIMINARIES
A. DIFFUSION MODELS
We continue our research based on Improved Denoising
Diffusion Probabilistic Models (IDDPM) [17] and use its
probabilistic representation.

As shown in Fig. 1, its forward process adds noise to the
input data until the signal is destroyed, resulting in noise that
follows normal distribution. Its reverse process samples from
the normal distribution to obtain noise and then continuously
denoises it until it is restored to data that follows the target
distribution.
Definitions: Given a data distribution x0 ∼ q(x0), we can

obtain latent variable x1 to xT through a forward process q
represented by Gaussian transitions at time t:

q (x1, . . . , xT | x0) =
∏T

t=1
q (xt |xt−1) (1)

q (xt | xt−1) = N
(
xt ;
√
1− βtxt−1, βtI

)
(2)

where variance schedule βt ∈ (0, 1). According to
Equation 2, conditioned on the input x0, we can sample an
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arbitrary step of noised latent variables. With αt := 1−βt ,
ᾱt :=

∏t
i=0 αi, the marginal can be written as follow:

q (xt | x0) = N
(
xt ;
√

ᾱtx0, (1− ᾱt )I
)

(3)

xt =
√

ᾱtx0 +
√
1− ᾱtϵ (4)

where ϵ is a random noise that follows normal distribution,
ϵ ∼ N (0,I). 1 − ᾱt denoted the variance of the noise for an
arbitrary step and can be used to defined the noise schedule
instead of βt .
The reverse process uses a neural network to predict the

reverse distribution as follows:

pθ (xt−1 | xt) := N (xt−1;µθ (xt , t) , σ (xt , t)) (5)

where reverse process p can also be represented by Gaussian
transitions. By predicting the mean and variance through
neural network, an approximation of the distribution of the
previous step is estimated. This process is repeated iteratively
until the distribution of the training data is obtained.
Training: The combination of the forward process and

the reverse process is a variational auto-encoder Lvlb, which
is consists of KL divergence between two Gaussians [25].
Besides, Ho et al. [26] found that predicting worked best
when combinedwith a reweighted loss function Lsimple. Using
Bayes theorem, the posterior q (xt−1 | xt , x0) can be calcu-
lated. We can use the prior (Equation 5) and the posterior
(Equation 9) to estimate Lvlb. Therefore, this paper adopts a
hybrid objective function to optimize neural network:

Lhybrid := Lsimple + λLvlb (6)

where:

Lvlb

:= Eq

[
DKL (q (xT | x0) ∥pθ (xT ))+

∑T

t=2

× DKL (q(xt−1|xt , x0) ∥ pθ (xt−1|xt))−log pθ (x0|x1)]

(7)

Lsimple

:= Et,X0,ε

[∥∥∥∥ϵ − ϵθ (
√

ᾱtx0 +
√
1− ᾱtϵ, t)

∥∥∥∥2
]

(8)

q (xt−1 | xt , x0)

= N (xt−1;
√

αt (1−ᾱt−1)
1− ᾱt

xt ,
1− ᾱt−1

1− ᾱt
βtI) (9)

B. DIFFERENTIAL PRIVACY
Differential privacy [2], [3], [4] is a privacy protection tech-
nology based on data disturbance. It interferes with private
data by injecting noise, while ensures that the utility of the
published data. Differential privacy is defined as follows:
Definition 1 (Differential Privacy [2], [3], [4]): A ran-

domized mechanism M :D → R with domain D and range
R satisfies (ε, δ)− Differential Privacy if for any datasets
d, d ′ ∈ D differing by at most one entry, and for any subset
of outputs holds that:

Pr [M (d) ∈ S] ≤ eε × Pr
[
M
(
d ′
)
∈ S

]
+ δ

where ε is privacy constrict, which indicates the degree of
privacy protection. δ indicates the probability of privacy leak-
age under differential privacy. The smaller is ε, the greater
the degree of privacy protection is, and the corresponding
usability is lower.
Definition 2 (RényiDifferentialPrivacy (RDP) [27]): A

randomized mechanism M is (λ, ε)-RDP with the order λ,
if:

Dλ

(
M (d)

∥∥M (d ′)
)

=
1

λ− 1
logEx∼M (d)

[(
P [M (d) = x]
P [M (d ′) = x]

)λ−1
]
≤ ε

holds for any adjacent dataset d and d ′, where

Dλ (P ∥Q ) = 1
λ−1 logEx∼Q

[(
P(x)
Q(x)

)λ
]

denotes the Rényi

divergence, P and Q are the probability density function.

Moreover, a (λ, ε) − RDP mechanism M also satisfies(
ε +

log
(
1
δ

)
λ−1 , δ

)
− DP.

Theorem 1 (Composition [27]): For a sequence of mecha-
nismsM1, . . . ,Mk s.t.Mi is (λ, ε)−RDP∀i, the composition
M1 ◦ . . . ◦Mk is

(
λ,
∑

i εi
)
− RDP.

Definition 3 (Gaussian Mechanism [2], [3], [4]): Let f :
X → Rd be an arbitrary d-dimensional function with sensi-
tivity being:

1f = maxd,d ′
∥∥f (d)− f (d ′)

∥∥
over all adjacent datasets d and d ′. The Gaussian Mechanism
Mσ , parameterized by σ , adds noise into the output, i.e,

Mσ (d) = f (d)+ N (0,σ 21f 2I)

Mσ is
(
λ,

λ12f 2

2σ 2

)
− RDP.

IV. DESIGN OF FRAMEWORK
In this section, we introduce the DPDM framework, which
combines state-of-the-art learning techniques with advanced
privacy-preserving mechanisms. The DPDM framework,
shown in Fig. 2, aims to address privacy challenges while
maintaining usability. The curator uses a privacy-preserving
method to train the diffusion model, in which Abadi et al. [5]
’s DPSGD is used to add noise to the gradient during training,
trained model satisfies differential privacy. Instead of releas-
ing a sanitized version of the dataset, the curator releases a
differentially private generative model. Equipped with gen-
erative model, analyst can generate unlimited synthetic data
for their intended analysis tasks. The utilization of differential
privacy guarantee that no one can deduce the original training
data from the published generative model, thus ensuring the
privacy protection of the whole process.

We achieve private training when predicting noise in the
reverse process. Similar to the work of [6], when executing
the gradient descent algorithm, the gradient is clipped and
added noise. This paper focuses on preserving privacy dur-
ing the training phase rather than adding noise directly to
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FIGURE 2. DPDM privacy protection publishing framework.

Algorithm 1 Training
Input: {xi}mi=1 ∼ pdata: a batch of training samples; σDP:

DP noise scale; m: batch size; (α, β1, β2):
Adam hyper-parameters; (ϵ, δ):
overall privacy target; θ :
initial model; T : total steps;d : decay rate;

Output: model θ
1: for t = 1 to T do
2: Compute Gradient
3: gbatch← ∇θL

(
θ, {xi}mi=1

)
4: Clip Gradient
5: C ← Adaptive Threshold

(
{xi}mi=1

)
6: ḡbatch← gbatch/max

(
1, ∥gbatch∥2C

)
7: Add Noise
8: g̃batch←

(
( 1m )

∑
m ḡbatch + (C/m)N

(
0, σ 2

DP

))
9: Calculate Privacy Loss
10: α← Learning Rate Degrading (t, d)

11: θ ← Adam (θ, α, β1, β2)

12: end for
14: return model θ

the final parameters. However, unlike [6], we optimize the
clipping process by selecting a dynamic gradient threshold.
Compared with existing methods, our model converges faster
and generates images with better availability and diversity.

Algorithm 1 gives the key steps in DPDM.
As shown in Algorithm 1, during the model optimization,

we first sample a batch of samples from the training dataset.
We compute the model gradients based on this batch of sam-
ples (line 2-3). Before adding noise to the gradients, we use
an adaptive clipping threshold algorithm to obtain a clipping
threshold to get tighter privacy loss, which is used to clip the
gradients to control the sensitivity (line 4-6). After clipping,
Gaussian noise is added to the gradients (line 7-8). The
learning rate obtained by a learning rate decay algorithm and
optimizer parameters are passed to the optimizer (line 10-11).
Finally, iterations are performed, and the model parameters
are updated and optimized. Besides, in order to achieve the
target level of privacy protection, we track the cumulative
privacy loss, if privacy loss exceeds the privacy budget, the
training is terminated.

A. LEARNING RATE DECAY
During the training of a deep learningmodel, the learning rate
is a hyperparameter that controls the adjustment speed of the

neural network weights based on the gradient of the loss. The
choice of learning rate has a trade-off between the accuracy of
the model and the speed of convergence: if the value is larger,
the training speedwill increase but themodel accuracywill be
insufficient; correspondingly, if the learning rate is smaller,
although the accuracy will increase, the convergence of the
model leads to higher time complexity. Therefore, in order
to enable the algorithm to achieve better performance, in the
early stage of training, this paper sets a larger learning rate
to make the loss function approach the optimal value as soon
as possible. After training for a while, use a smaller learning
rate to improve the model accuracy. We tried several learning
rate decay strategies as follows:

Linear decay : lr =
lr ′

1+ dr ∗ epoch
;

Exponential decay : lr = lr initial ∗ drepoch;

Logarithmic decay : lr =
lr ′

1+ log(epoch)
;

No decay : lr = lrfixed ;

In the above functions, lr indicates the current learning
rate; lr ′ indicates the last learning rate; dr is the decay
rate; epoch is the current epoch; lr initial is the initial learn-
ing rate;lrfixed is the fixed learning rate. In our experiment,
we show different results for different strategies.

B. ADAPTIVE CLIPPING THRESHOLD
In the gradient clipping of DPSGD algorithm, if the L2
norm of the sample gradient is more than the predetermined
clipping threshold C, the L2 norm of the gradient gets scaled
down to be of norm C; if it is smaller than C, the gradient
is preserved. By gradient clipping, we can obtain the sensi-
tivity of the gradient aggregate with respect to the addition
or removal of any sample, adding Gaussian noise to the
aggregated gradients, and thus achieving differential privacy
guarantee. And the selection of the clipping threshold has
a great impact on the performance of the optimizer: if C is
too small, it will lead to excessive clipping of the gradient,
resulting in slow convergence and even model training fail-
ure; if C is too large, too much noise will be added to the
gradients leading to poor quality of the final generated image.
And because the weights and biases of different network
layers are quite different, the gradient also changes with the
training, and it is difficult to find the optimal clipping thresh-
old. To remedy such issues, this paper introduces a dynamic
strategy, which can be used to adjust the clipping thresh-
old. Zhang et al. [8] proposed an adaptive gradient clipping
method. They clustered parameters such as weight and bias,
monitored the changes in gradient values before and during
training, and then set gradient thresholds for each cluster.
Based on the Diffusion Model framework, this paper follows
the ideas of Zhang et al. [8], assuming that besides private
data Dpri to train the model, our algorithm has access to a
small amount of public data set Dpub. During each training
of step, we randomly sample a batch of samples from Dpub,
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FIGURE 3. DPDM synthetic data on MNIST and Fashion MNIST.

set the average gradient norm of this batch as the gradient
clipping threshold.

C. PRIVACY ANALYSIS
Our privacy computation is based on the notion of
RényiDifferential Privacy. To obtain the overall accumulated
privacy cost over multiple training iterations, we use the com-
position properties of RDP. In this section, we provide a short
proof that the gradients released by the Gaussian mechanism
are DP. For noise scale σDP, one batch of data {xi}i∈B and
{xi}i∈B∪x

′, x ′ /∈ {xi}i∈B. We can bound the difference of their
gradients in L2 − norm as:∥∥gbatch ({xi}i∈B)− gbatch (x ′ ∪ {xi}i∈B)∥∥2
=

∥∥∥1/m∑
i∈B

clipC (∇θL (xi))− (1/mclipC
(
∇θL

(
x ′
))

+1/m
∑

i∈B
clipC (∇θL (xi)))

∥∥∥
2

=
∥∥−1/mclipC (∇θL

(
x ′
)
)
∥∥
2

= 1/m
∥∥clipC (∇θL

(
x ′
)
)
∥∥
2 ≤ C/m

where m denotes the batch size, clipC denotes the clipped
gradient. We thus have sensitivity C/m. Furthermore, since
z∼N (0,σ 2

DP), (C/m)z∼N (0,(C/m)2σ 2
DP). Following stan-

dard arguments, releasing g̃batch
(
{xi}i∈B

)
= gbatch

(
{xi}i∈B

)
+

(C/m)z satisfies (α, α/2σ 2
DP)− RDP.

V. EXPERIMENTAL EVALUTION
In this section, this paper evaluatesDPDMprivacy-preserving
framework experimentally. First, this paper verifies whether
DPDM can synthesize visual realistic images under differ-
ential privacy. Secondly, this paper determines whether it can
generate high-quality and diverse image datasets. Finally, this
paper applies synthetic images to perform classification tasks
to verify the practicability.

A. DATASETS
The experiment is carried out on the benchmark datasets
(MNIST [28], Fashion-MNIST [29], CelebA [30]). For
MNIST and Fashion-MNIST, both are consist of 60,000
training samples and 10,000 test samples. Each sample is a
28× 28 grayscale image, divided into 10 categories. CelebA
is a dataset including face images of celebrities. Each image is
a 178× 218 RGB image, and has 40 binary attributes. These

FIGURE 4. Inception Score of real images and synthetic images on MNIST.

FIGURE 5. Inception Score of real images and synthetic images on
Fashion MNIST.

FIGURE 6. Inception Score of real images and synthetic images on CelebA.

datasets have become the most commonly used benchmark
dataset in deep learning model research.

B. METRICS
In all experiments, we consider Inception Score (IS) [31],
[32], which is used to evaluate the quality of generated images
by generative models. It combines the diversity and the real-
ism of the generated images to quantifies the performance
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FIGURE 7. Fréchet Inception Distance of real and synthetic data on MNIST.

FIGURE 8. Fréchet Inception Distance of real and synthetic data on
Fashion MNIST.

FIGURE 9. Fréchet Inception Distance of real and synthetic data on
CelebA.

by calculating the Kullback-Leibler (KL) divergence between
the conditional distribution of generated images and the
class distribution. A higher Inception Score indicates better
diversity and realism of generated images across different
categories. And Fréchet Inception Distance (FID) [33], which
is used to assess the similarity between the distribution of

FIGURE 10. Classification accuracy for classification tasks on MNIST.

FIGURE 11. Classification accuracy for classification tasks on Fashion
MNIST.

real images and generated images produced by a generative
model. It measures the distance between two multivariate
Gaussian distributions, one representing the feature repre-
sentations of real images and the other representing the
feature representations of generated images. A lower FID
score indicates better quality and higher similarity between
the generated images and real images. The FID is widely
used in evaluating and comparing the performance of dif-
ferent generative models. Utility measured by classification
accuracy. We train three classifiers on 30k privately gen-
erated images and evaluate the prediction accuracy on the
test set. We consider Logistic Regression (LR), multi-layer
perceptron (MLP), and convolutional neural networks (CNN)
classifiers.

C. HYPERPARAMETERS
In this paper, we apply the cosine noise scheme which is used
to determine the weight of the noise added in the forward
diffusion process. We set timesteps to 1000, the number of
iterations during model training to 100, and the batch size to
64. According to work [6], this paper sets the privacy leakage
probability δ to 10−5.
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TABLE 1. Impact of different schemas.

D. BASELINES
We consider the following state-of-the-art methods: DP-
CGAN [7], DP-MERF [12] and G-PATE [11]. For a fair
comparison, we evaluate all methods with a privacy parame-
ter of (ε, δ) = (10, 10−5) via 30k generated images.

Fig. 3 shows the visual effect of image generation by
DPDM on MNIST and Fashion-MNIST when the privacy
budget ε is 10.

Fig. 4, Fig. 5 and Fig. 6 show the Inception Score of
the synthetic images using four generative models and the
real data from MNIST, Fashion-MNIST and CelebA. Fig. 7
and Fig. 8 and Fig. 9 show the Fréchet Inception Distance.
We can find that the Inception Scores obtained by our
algorithm are closer to the real dataset, and the difference
between the value of the Inception Scores and that of the
synthetic dataset generated by DDPM without noise is obvi-
ously smaller than the other algorithms. Among all SoTA
baselines, the FID reflects that our algorithm generates better
samples.

This paper refers to the semi-supervised classification
algorithm, and uses the synthetic dataset to complete the
image classification task. Specifically, analysts have a
small amount of public labeled datasets and a large num-
ber of synthetic unlabeled data. The goal is to train a
semi-supervised classifier with better performance by using
labeled and unlabeled data. And then we get its classifi-
cation accuracy on the MNIST and Fashion-MNIST test
set. The experimental results are shown in Fig. 10 and
Fig. 11. The classification accuracy of the DPDM framework
proposed in this paper is close to the classification accuracy
under the noiseless model, and it is better than the SoTA
baselines.

As the learning rate impacts the model convergence,
we also include how FID and generated images vary with dif-
ferent decay strategies. TABLE 1 reports the effects of differ-
ent learning rate schemes on MNIST under

(
10,10−5

)
−DP.

And the results show that among a series of fixed learning
rates, 1e-4 corresponds to the best image quality. Compared
with the static learning rate, the dynamic learning rate has
better performance, and the logic decay strategy is better than
linear decay and exponential decay on FID.

VI. CONCLUSION
By combining differential privacy and diffusion models, this
paper proposes a diffusion model (DPDM) for publishing
image data with privacy protection. The trained diffusion
model can be released directly for analysis tasks without wor-
rying about disclosing the privacy of training data. Through
experimental verifications, the results show that the algorithm
in this paper can generate higher-quality image data. Com-
pared with other works, the algorithm proposed in this paper
also performs better in a series of metrics. For future work,
we will consider trying different clipping methods to further
reduce the privacy budget under the premise of retaining the
high availability of images.
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