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ABSTRACT The degradation of water quality has become a critical concern worldwide, necessitating
innovative approaches for monitoring and predicting water quality. This paper proposes an integrated
framework that combines the Internet of Things (IoT) and machine learning paradigms for comprehensive
water quality analysis and prediction. The IoT-enabled framework comprises four modules: sensing,
coordinator, data processing, and decision. The IoT framework is equipped with temperature, pH, turbidity,
and Total Dissolved Solids (TDS) sensors to collect the data from Rohri Canal, SBA, Pakistan. The
acquired data is preprocessed and then analyzed using machine learning models to predict the Water
Quality Index (WQI) and Water Quality Class (WQC). With this aim, we designed a machine learning-
enabled framework for water quality analysis and prediction. Preprocessing steps such as data cleaning,
normalization using the Z-score technique, correlation, and splitting are performed before applying machine
learningmodels. Regressionmodels: LSTM (Long Short-TermMemory), SVR (Support Vector Regression),
MLP (Multilayer Perceptron) and NARNet (Nonlinear Autoregressive Network) are employed to predict the
WQI, and classification models: SVM (Support Vector Machine), XGBoost (eXtreme Gradient Boosting),
Decision Trees, and Random Forest are employed to predict the WQC. Before that, the Dataset used for
evaluating machine learning models is split into two subsets: Dataset 1 and Dataset 2. Dataset 1 comprises
600 values for each parameter, while Dataset 2 includes the complete set of 6000 values for each parameter.
This division enables comparison and evaluation of the models’ performance. The results indicate that the
MLP regression model has strong predictive performance with the lowest Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) values, along with the highest R-
squared (0.93), indicating accurate and precise predictions. In contrast, the SVRmodel demonstrates weaker
performance, evidenced by higher errors and a lower R-squared (0.73). Among classification algorithms, the
Random Forest achieves the highest metrics: accuracy (0.91), precision (0.93), recall (0.92), and F1-score
(0.91). It is also conceived that the machine learning models perform better when applied to datasets with
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smaller numbers of values compared to datasets with larger numbers of values.Moreover, comparisons with
existing studies reveal this study’s improved regression performance, with consistently lower errors and
higher R-squared values. For classification, the Random Forest model outperforms others, with exceptional
accuracy, precision, recall, and F1-score metrics.

INDEX TERMS Data collection, environmental monitoring, Internet of Things (IoT), machine learning,
water quality analysis, water quality class (WQC), water quality index (WQI).

I. INTRODUCTION
In recent years, there has been a growing fascination with
harnessing the capabilities of the Internet of Things (IoT) and
machine learning paradigms for addressing environmental
challenges. One such critical area of concern is water
quality analysis and prediction. Accessing clean and safe
water is a very fundamental requirement for mankind’s
health, agriculture, and ecosystem sustainability. However,
deteriorating water quality due to pollution, population
growth, and climate change has become a pressing issue
worldwide. Traditional methods of water quality monitoring
and prediction are often limited by their cost, time-consuming
nature, and inability to capture real-time data. To overcome
these limitations, the integration of IoT and machine learning
technologies has emerged as a powerful solution. IoT enables
the deployment of sensor networks in water bodies, collecting
a vast amount of data on various Water Quality Parameters
(WQPs) such as pH level, salinity, temperature, nutrients,
and pollutant concentrations. This real-time data acquisition
allows for continuous monitoring of water quality, offering
a comprehensive understanding of the dynamic nature of
aquatic ecosystems.

Fig. 1 illustrates the IoT-enabled water quality appli-
cations [1], such as aquaponics [2], aquaculture [3], fish
ponds [4], water treatment [5], agriculture [6], [7], green-
houses [8], and irrigation [9]. IoT-enabled water quality sys-
tems can be intergraded with modern technologies, methods,
and paradigms, that can achieve transformations and sustain-
able developments [10], for example, Artificial Intelligence
(AI) (e.g., machine learning and deep learning) [11], [12],
[13], big data [14], multifunctional sensors [15], [16], and
renewable energy sources [17], [18].

Machine learning models provide powerful tools to
analyze the collected data, identify patterns, and make
accurate predictions [19], [20], [21]. By leveraging machine
learning techniques, it becomes possible to develop models
that can detect anomalies [22] and classify machine learning
states [23]. This information can aid decision-makers, water
resource managers, and policymakers in taking timely and
informed actions to ensure the preservation and restoration
of different resources of water [24]. Water quality monitoring
in water bodies faces various environmental challenges that
affect the monitoring procedures. Some of these challenges
include pollution, sedimentation, seasonal variations, algal
blooms and so on [25] and [26].

Addressing these environmental challenges requires a
comprehensive approach that combines scientific expertise,

stakeholder collaboration, and adequate resources. By over-
coming these challenges, water quality monitoring efforts can
provide valuable insights for effective water management and
conservation in water bodies.

In this paper, we present frameworks based on IoT and
machine learning to perform analysis and predict the water
quality, with a specific focus on measuring temperature,
pH, turbidity, and Total Dissolved Solids (TDS). These
parameters are critical indicators of water quality, reflecting
the physical and chemical characteristics of water bodies. The
IoT component of our framework enables the deployment of
sensor networks in water bodies, equipped with sensors for
measuring the WQPs. These sensors collect data at regular
intervals and transmit it wirelessly to a base station. This
real-time data acquisition enables continuous monitoring
of water quality, overcoming the limitations of traditional
sampling methods. The IoT framework also facilitates
remote access to the collected data, allowing water resource
managers and stakeholders to monitor WQPs conveniently.

The collected data is then processed and analyzed
using machine learning models within the framework. Two
common types of machine learning models, for example
regression models and classification models, are applied
to derive insights from the collected data. The regression
models and the classification models are employed for
predicting the Water Quality Index (WQI) and Water Quality
Class (WQC), respectively. By leveraging machine learning
models, the framework provides actionable information that
aids decision-makers and policymakers in making decisions
and implementing proactive measures for water quality man-
agement and environmental conservation. The integration
of these two technologies in water quality analysis and
prediction offers a powerful tool for achieving efficient and
sustainable water resource management. By enabling real-
time monitoring, accurate analysis, and proactive decision-
making, this framework contributes to the preservation and
protection of water resources and ensures a safer and healthier
environment for all.

The novelty of this study can be illustrated as follows:

• An integrated framework merging IoT and machine
learning paradigms for comprehensive water quality
analysis and prediction.

• Use of IoT-enabled sensors for real-time data collection
from Rohri Canal, Shaheed Benazirabad (SBA), Pak-
istan, contributing to data accuracy and extensive inputs.

• Comparative analysis across distinct datasets (Dataset
1 and Dataset 2) offers insights into models’
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FIGURE 1. Internet of things-enabled water quality applications.

performance under varying data conditions, presenting
empirical novelty.

• Examination of existing studies pertaining to water qual-
ity prediction, encompassing diverse methodologies,
techniques, and models employed to predict WQI and
WQC.

The remaining sections of the paper are structured as
follows: Section II covers the existing literature and research
related to the study. Section III discusses the material and
methods, including the proposed IoT-enabled framework for
data collection and the machine learning-enabled framework
for data analysis. It also covers data preprocessing techniques
and the machine learning models used, along with evaluation
metrics. Section IV presents the performance evaluation of
the machine learning models applied to water quality data
analysis and prediction. In Section V, a brief discussion of the
research findings is provided. Finally, Section VI concludes
the paper by summarizing the findings.

II. RELATED WORK
Water quality analysis and prediction have been subjects
of extensive research, with various studies exploring the
integration of IoT and machine learning techniques for effec-
tive monitoring and management of water resources. The
following is a review of relevant research and contributions in
this field and summary of related in work is given in Table 1.

Kumar et al. [27] introduced an IoT-based infrastructure
designed for monitoring and evaluating river water quality.
The researchers conducted extensive experiments, collecting
and analyzing water quality data from the Ganga River and
Sangam River over different months and seasons. They col-
lected continuous data samples for a duration of 15 months,
by utilizing the Libelium smart water kit, equipped with
sensors capable of measuring various parameters. After the
data collection phase, the researchers utilized several models

of machine learning to predict the water quality of both
rivers. The study revealed that the water quality of both rivers
was considered suitable for irrigation and fishing purposes.
However, when assessing the average oxygen levels, it was
concluded that the water was not suitable for use.

Tian et al. [28] performed a study on Sentinel-2
images to investigate and compare the performance of
four machine learning models, namely eXtreme Gradient
Boosting (XGBoost), Artificial Neural Network (ANN),
Support Vector Regression (SVR), and Random Forest,
in retrieving three WQPs for inland reservoirs. The study
aimed to assess the effectiveness of these models in the
context of water quality analysis. The results of the study
demonstrated that XGBoost outperformed the remaining
three models in accurately retrieving the WQPs. Building
upon this finding, the researchers employed XGBoost to
reconstruct the spatial-temporal patterns of the various
parameters for the period spanning from 2018 to 2020.
Moreover, they conducted a comprehensive analysis of the
characteristics of interannual, seasonal, and spatial variation
based on these reconstructed patterns. The study’s outcomes
provide a valuable and practical approach for monitoring
and managing both optically and non-optically active WQPs
at a regional scale. The use of machine learning models,
particularly XGBoost, offers an efficient means of analyzing
and interpreting water quality data from Sentinel-2 images.

Nasser et al. [29] conducted a study based on IoT
technology, for which they deployed smart water meters
to collect data at regular intervals, and the collected data
was seamlessly transmitted to the cloud for storage and
analysis. The authors developed a technology infrastructure
utilizing microservices and containers to facilitate real-time
streaming and enhance efficacy management. Machine learn-
ing approaches, specifically SVR and Random Forest were
employed for time series forecasting applications. Through
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a comparative study, the proposed model demonstrated
superiority and served as a testing ground for other similar
approaches.

Morón-López et al. [30] developed a remote monitoring
system that centered around IoT technology and cloud-based
data management. The authors conducted a comprehensive
assessment of existing solutions, eventually selecting a per-
sonalized plug-and-play approach as their preferred method.
To achieve continuous data transmission and retrieval, they
deployed nodes that collected information and sent it to a
web server. Subsequently, the gathered data was presented in
real-time through a web interface, allowing users to visualize
and analyze the water quality information conveniently.
Additionally, the authors performed a Pearson correlation
test to establish a relationship between the deployed nodes’
data and satellite photographs. This correlation analysis
aimed to augment the understanding of the accumulated
data by the nodes and its relevance to satellite-based
observations.

The big data analytics and data science fields are rapidly
expanding, driven by increasing industrial demands. In a
study by [31], a model was presented to identify the essential
skills required for data science. The authors highlighted
the significance of data skills and thoroughly examined the
challenges associated with education in this domain. They
reviewed several prominent projects that prioritize advanced
data skills and also provided a use case demonstrating the
application of frameworks in online learning management
portals for developing big data skills.

Dong and Yan [32] proposed an effective solution for
scheduling drainage, pumping, and water diversion in
pumping stations using a data-driven model. They introduced
a model predictive control system that utilizes supervised
learning from IoT data and a short-term memory network
model to simulate and predict water dynamics and flow
quality. Through numerical analysis, the authors successfully
demonstrated improved economic efficiency compared to
existing benchmark solutions.

Wang et al. [33] emphasized the significance of wetlands
as vital ecosystems for climate regulation and environmental
protection. It highlights the adverse impact of human
activities on wetland land cover, necessitating the use of
remote sensing technology to monitor and classify land
cover changes.The study investigates the efficacy of the
Random Forest machine learning algorithm for classifying
coastal wetland land cover using Worldview-2 and Landsat-8
imagery. A comparison with Support Vector Machine (SVM)
and K-Nearest Neighbor (K-NN) methods reveals Random
Forest’s superior classification accuracy. Specifically, Ran-
dom Forest achieves 91.86% accuracy for Worldview-2
images and 86.61% accuracy for Landsat-8 images. Even for
limited-sample land cover types, Random Forest excels, and
its performance is further enhanced by incorporating texture
features. The research concludes that high-resolution remote
sensing imagery favors small-scale land cover classification,
and Random Forest emerges as the optimal choice for

coastal wetland classification, surpassing SVM and K-NN
algorithms.

Ghorbani et al. [34] have explored fluid-flow measure-
ments in the petroleum industry, focusing on the rela-
tionship between orifice meter flow rate (Qv) and fluid-
flow variables. The study employs five machine-learning
algorithms to analyze data from an Iranian oil field pipeline.
Correlations between Qv and variables like pressure, tem-
perature, viscosity, square root of differential pressure, and
oil specific gravity are evaluated. The five algorithms:
Adaptive Neuro Fuzzy Inference System (ANFIS), Least
Squares Support Vector Machine (LSSVM), Radial Basis
Function (RBF), Multilayer Perceptron (MLP), and Gene
Expression Programming (GEP) are tested on a dataset of
1037 records, withMLP providing themost accurate flow rate
predictions, followed by GEP and RBF. ANFIS and LSSVM
show lower accuracy, particularly at lower flow rates. The
study suggests machine learning’s potential to enhance
orifice meter flow rate predictions, especially in challenging
conditions, although further research on additional datasets is
necessary for confirmation.

A. MOTIVATION AND SCOPE
IoT and machine learning [35] are both technologies that
possess the potential to be transformative and impactful in
various fields, including water quality monitoring, but they
differ in their approach and the type of data they use. IoT [36]
involves numerous sensors and devices to accumulate and
transmit data over the internet. IoT can be used to monitor
a wide range of WQPs, like temperature, pH, dissolved
oxygen, and more.IoT sensors can be strategically deployed
throughout water treatment plants, distribution systems, and
other locations to provide real-time data on water quality.

In contrast, machine learning [37] is a subset of AI
that empowers machines (e.g., computers, robots, vehicles)
to acquire knowledge from data and utilize it to make
predictions and decisions. Machine learning algorithms can
analyze large and complex datasets to detect patterns and
relationships that may be difficult for humans to identify,
resulting in more accurate predictions of water quality.
Machine learning can be used to develop predictive models
forWQPs, allowing for early detection of issues. Butmachine
learning models is preferred for smaller datasets. Whereas,
to handle large datasets, deep learning models are usually
adopted. Deep learning is the subset of machine learning
models, specifically tailored to address the constraints and
limitations posed by traditional machine learning models
when grappling with extensive datasets, often referred to
as ‘‘big data’’ [38]. Additionally, machine learning models
that typically necessitate ongoing supervision and re-training,
in contrast to deep learning networks often require minimal
or no additional training after initial calibration.

Henceforth, both IoT and machine learning [39] can
be used for water quality monitoring, IoT focuses on
collecting and transmitting data from sensors and devices,
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TABLE 1. Summary of related work.

while machine learning focuses on analyzing data to make
predictions and decisions. Both technologies can be used
together to provide a comprehensive approach to water qual-
itymonitoring andmanagement. The features, limitations and
applications of IoT can be found in [40] and for machine
learning in [41] and [42].

III. MATERIALS AND METHODS
A. STUDY AREA: ROHRI CANAL, SBA
Fig. 2 shows the study area; which is Rohri Canal, SBA,
Pakistan. Fig. 2b illustrates the Google Map of the water
qualitymonitoring site and Fig. 2c illustrates thewater quality
monitoring field stations.

Rohri Canal is located in Nawabshah City, SBA District
of Sindh province in Pakistan, and serves as a significant
waterway in the region. Drawing water from the Indus
River near Sukkur, the Rohri Canal acts as a gravity canal,
utilizing the natural flow of water due to the elevation
difference. It forms an extensive network of distributors and
minor canals, ensuring that water reaches various areas and
agricultural fields within the SBA District. Rohri Canal is an

important water resource for the region, providing irrigation
water for agriculture and serving as a drinking water source
for local communities. Water quality monitoring assumes a
vital role in the evaluation and preservation of the quality
of water in Rohri Canal, ensuring its suitability for various
purposes. Themonitoring process involvesmeasuring various
physical, chemical, and biological parameters. Samples are
collected regularly from different locations along the canal
and analyzed in laboratories using standard protocols. The
monitoring frequency depends on factors like the significance
of the water source, regulatory requirements, and available
resources.

In response to the challenging manual process of collect-
ing water samples from Rohri Canal, we recommend an
IoT-based system that could monitor the water quality of
the canal. The proposed system would utilize interconnected
devices and sensors deployed along the canal to automate
data collection. The sensors would continuously measure
parameters like temperature, pH, turbidity, and TDS. The
collected data would be transmitted wirelessly to a central
unit for real-time analysis and storage. The proposed
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FIGURE 2. Geographic locations of the study area in (a) Shaheed Benazirabad, Sindh, Pakistan [Courtesy: Wikipedia] (b) site [Courtesy: Google Maps] (c)
stations.

FIGURE 3. IoT-enabled framework for water quality.

TABLE 2. Hardware list.

IoT-enabled system would provide timely and accurate
information on water quality, enabling prompt action and
effective monitoring of the canal’s water conditions.

B. IoT-ENABLED FRAMEWORK FOR WATER QUALITY
Fig. 3 depicts the proposed IoT-enabled framework for water
quality. The connection diagram of our IoT-enabled system is
depicted in Fig. 4, in which Fig. 4a and Fig. 4b are connection
diagrams for an IoT node and a base station, respectively.
The list of hardware, along with model number and quantity,
is populated in Table 2. The proposed IoT-enabled framework
has four modules, such as sensing module, coordinator
module, data processing module, and decision module. The
sensing module consists of temperature, pH, turbidity, and

TDS sensors. The coordinator module consists of an Arduino
controller and Long-Range (LoRa). The data processing
module consists of a database, a machine learning block,
and uploading the data to the cloud. The decision module
generates an alert if the water quality is beyond the threshold.
The tasks for each module are discussed as follows.

1) SENSING MODULE
The sensing module is responsible for collecting data on
WQPs. In this case, it consists of temperature, pH, turbidity,
and TDS sensors. These sensors are deployed in the water
bodies to periodically measure the respective WQPs. The
temperature sensor measures the water temperature, the
pH sensor measures the acidity or alkalinity, the turbidity
sensor measures the clarity or cloudiness, and the TDS
sensor measures the concentration of dissolved solids. These
sensors provide real-time data on the WQPs, they consist
of an Arduino with a LoRa module and four sensors. The
connection diagram of an IoT is shown in Fig. 4a. The
real-time IoT node (or sensor node) at the deployment
location is depicted in Fig. 5.

a: TEMPERATURE SENSOR
These sensors [43] are used to measure the temperature
of water bodies in water quality monitoring systems. They
provide critical information about the thermal characteristics
of the water, which is important for understanding the
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FIGURE 4. Connection diagram of proposed IoT-enabled system.

behaviour of aquatic organisms, chemical reactions, and
overall ecosystem dynamics. Temperature sensors can be
based on different technologies, such as resistance tem-
perature detectors, thermocouples, or thermistors. They are
typically designed to be waterproof and resistant to corrosion,
allowing them to function accurately in aquatic environments.
Temperature data collected by these sensors help to assess the
impacts of climate change, monitor water quality in industrial
processes, and ensure the suitability of water for various
applications.

b: pH SENSOR
This sensor measures the acidity or alkalinity of water
by quantifying the concentration of hydrogen ions in the
water [44]. They provide a pH value that ranges from 0 to 14,
with values below 7 considered acidic, values above 7 consid-
ered alkaline, and a pH of 7 representing neutrality. The pH
sensors employ various technologies, such as glass electrodes
or solid-state sensors, to measure pH accurately. They are
essential in water quality monitoring as pH affects biological
processes, chemical reactions, and the overall balance of
aquatic ecosystems. pH sensors are used in applications
such as drinking water analysis, aquaculture, wastewater
treatment, and industrial processes where maintaining a
specific pH range is critical.

c: TURBIDITY SENSOR
This sensormeasures the clarity or cloudiness of water caused
by suspended particles [45]. They work by emitting light into
the water and measuring the scattering and absorption of the
light as it interacts with the particles. Turbidity is expressed
in Nephelometric Turbidity Units (NTU). Turbidity sensors
are important in water quality monitoring as they indicate the
presence of sediments, suspended solids, or pollutants. They
are broadly employed in environmentalmonitoring, treatment
plants for drinking water, and wastewater management sys-
tems to assess water quality, detect changes in turbidity levels,
and identify potential issues affecting aquatic ecosystems and
human health.

d: TOTAL DISSOLVED SOLIDS (TDS) SENSOR
TDS sensors measure the total concentration of dissolved
solids in water [46]. They detect and quantify the presence

FIGURE 5. Real-time IoT node at deployment location.

of dissolved substances, such as minerals, salts, metals, and
other organic and inorganic compounds. TDS is commonly
represented in milligrams per liter (mg/L) or parts per million
(ppm). TDS sensors operate based on different principles,
including conductivity or optical sensors. They provide
insights into the overall purity and mineral content of water.
Monitoring TDS levels is important for various applications
such as drinking water analysis, hydroponics, industrial
processes, and boiler feedwater treatment. By measuring
TDS, potential issues related to water quality and the
accumulation of harmful substances can be identified, and
appropriate measures can be taken to ensure the safety and
suitability of the water.

e: SENSOR ADVANTAGES AND COST-EFFECTIVE
OPTIMIZATION FOR WATER QUALITY ANALYSIS
The selected sensors, namely temperature, pH, turbidity, and
TDS, offer distinct advantages in water quality analysis, col-
lectively contributing to a comprehensive understanding of
aquatic ecosystems [47], [48]. Temperature sensors provide
real-time information about water temperature variations,
which can be crucial for assessing the health of aquatic
life and identifying potential thermal pollution. pH sensors
enable precise monitoring of acidity or alkalinity levels,
aiding in the detection of water bodies’ potential vulnerability
to pollutants and changes in natural processes. Turbidity
sensors play a pivotal role in gauging water clarity, helping
identify sediment levels, suspended particles, and potential
contaminants that can influence overall water quality. TDS
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sensors quantify the concentration of dissolved solids, such as
salts and minerals, which is instrumental in assessing water’s
suitability for specific purposes, from drinking to industrial
use.

One of the notable advantages of using these sensors is
their potential for cost-effectiveness. The implementation
of IoT technology enables real-time data collection and
transmission, reducing the need for frequent on-site mon-
itoring and manual data collection. This automation leads
to optimized resource utilization, as personnel can focus on
analysis and decision-making rather than spending extensive
time on data collection.

Optimization techniques further enhance the cost-
effectiveness of sensor deployments. Leveraging optimiza-
tion algorithms, such as genetic algorithms or particle swarm
optimization, can aid in determining the optimal locations
for sensor placement [49], [50]. This strategic positioning
ensures maximum coverage and accuracy while minimizing
the number of sensors required. Moreover, these techniques
can optimize sensor operation schedules, minimizing energy
consumption and prolonging sensor lifespans.

By combining these advantages of sensor technology
and optimization techniques, the study not only provides
a comprehensive water quality analysis but also offers
an economically viable solution. This approach reduces
operational costs, enhances data accuracy, and supports
sustainable resource management. The integration of sensors,
IoT technology, and optimization methodologies demon-
strates the potential to revolutionize water quality monitoring
by making it both technically efficient and economically
feasible.

2) COORDINATOR MODULE
The coordinator module assumes the responsibility of
coordinating and managing various tasks or components
within a system, for example, it connects the sensing module
with the data processing module. It consists of an Arduino
controller and LoRa technology. The Arduino controller acts
as the central processing unit that collects the data from the
sensors in the sensing module. LoRa technology is used for
long-range wireless communication, allowing the Arduino
controller to transmit the collected data to the next module.
The integration of the Arduino controller with LoRa and
sensors is depicted in Fig. 4a.

a: ARDUINO CONTROLLER
This is a versatile microcontroller board that acts as the
central processing unit in various IoT applications including
water quality monitoring [51]. The Arduino controller
provides a platform for programming and interfacing with
sensors, actuators, and other components. It offers a wide
range of input and output pins, allowing for easy con-
nectivity with external devices. Regarding water quality
monitoring, the Arduino controller assumes a pivotal role
in the coordination and management of data collection from

sensors. It receives data from sensors and performs necessary
computations or manipulations on the data if required. The
Arduino controller acts as a bridge between the sensing
module and the data processing module, facilitating the
communication and transfer of data to further stages of the
system.

b: LoRa
It is a low-power, long-range wireless communication tech-
nology that enables efficient and reliable data transmission
over long distances [52], [53]. It is particularly well-suited
for IoT applications, including water quality monitoring
systems. LoRa technology operates in the license-free radio
spectrum, providing excellent penetration through obstacles
and long-range connectivity. LoRa technology is used in
the coordinator module to disseminate the collected data
from the Arduino controller to the data processing module.
It establishes a wireless connection and eliminating the need
for wired connections. LoRa’s long-range capability allows
the data to be transmitted over extended distances, making it
suitable for remote or distributed monitoring systems. With
LoRa, water quality data can be reliably transmitted from
remote locations to the data processing module, enabling
real-time monitoring and analysis.

3) DATA PROCESSING AND ANALYSIS MODULE
This module receives the data from the coordinator module
and processes it for further analysis and storage. It consists
of three components: a database, a machine learning block,
and uploading the data to the cloud. The database keeps
the collected water quality data for future reference and
analysis. The machine learning block employs machine
learning models to analyze the data and extract insights and
patterns from it. This can help in predicting the anomalies and
potential water quality issues. The processed data, along with
relevant information, is then uploaded to the cloud for storage
and accessibility.

4) DECISION MODULE
The decision module is responsible for generating alerts or
notifications if the water quality exceeds certain predefined
thresholds or if specific conditions are met. It evaluates the
processed data and compares it against the threshold values
set for each parameter. If the water quality data exceeds
the thresholds, indicating a potential problem, the decision
module generates an alert. The alert can be in the form of
a notification sent to stakeholders or a visual indication on
a monitoring dashboard. This allows for timely intervention
and corrective actions to be taken to address the water quality
issue.

C. DATASET GENERATION
This section discusses the process of generating the Dataset,
which is collected from Rohri Canal, SBA using an
IoT framework. The first step is to strategically deploy
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FIGURE 6. Statistical analysis of water quality parameters of datasets.

sensors in water bodies. These sensors include temperature,
pH, turbidity, and TDS sensors. Each sensor is carefully
placed to capture specific WQPs of Rohri Canal, SBA.
For example, temperature sensors may be placed at dif-

ferent depths to capture temperature variations within the
water column, while pH and turbidity sensors are posi-
tioned to measure acidity/alkalinity and clarity/cloudiness,
respectively.
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FIGURE 7. Machine learning-enabled framework for water quality.

Once the sensors were deployed, they performed con-
tinuous real-time measurements of the targeted WQPs. For
instance, temperature sensors were responsible for tracking
water temperature fluctuations, pH sensors quantified hydro-
gen ion concentrations, turbidity sensors gauged particle
cloudiness, and TDS sensors evaluated dissolved solids
content. These sensors transmitted data at regular intervals
to a central base station using wireless communication.
Subsequently, the base station stored the accumulated data
and managed a dedicated database. A total of 6000 data
points were collected for each parameter, creating a com-
prehensive dataset for subsequent analysis. This meticulous
data collection approach, undertaken over the course of
four months during the Autumn Season and limited to
daytime hours for security, ensured the reliability and
representativeness of the dataset for robust analysis and
prediction.

To assess the efficacy of the machine learning models,
the Dataset is partitioned into two subsets: Dataset 1 and
Dataset 2. Dataset 1 contains 600 values for each parameter,
while Dataset 2 contains the full 6000 values for each
parameter. This division allows for comparative analysis and
performance evaluation of the models.

The datasets are visualized in Fig. 6a and Fig. 6b,
respectively, representing the data distribution. Where x-axis
indicates the total values in the Dataset, while the y-axis
indicates the corresponding water quality parameter values.
The figures also depict the maximum level, minimum level,
mean level, and standard deviation (SD) of the parameter
values.

These statistical measures, including the maximum level,
minimum level, mean level, and SD, help in understanding
the characteristics and variability of the water quality
parameters in the Dataset. They offer valuable insights into
the data’s range and distribution, which are essential for
further analysis and interpretation.

D. MACHINE LEARNING-ENABLED FRAMEWORK FOR
WATER QUALITY
The proposed machine learning-enabled framework for water
quality analysis is depicted in Fig. 7. The input data is
collected from Rohri Canal, SBA using the IoT framework.
The collected data is preprocessed and cleaned. Later, the
data is normalized using the Z-score technique, correlated
and split, respectively. These are some preliminary steps
to be performed before applying the machine learning
models. After the preliminary steps, several machine learning
models are utilized to analyze and predict the WQI and
WQC indices. We calculate the WQI using four regression
models, such as Long Short-Term Memory (LSTM), SVR,
MLP, and Nonlinear AutoRegressive Network (NARNet)
and calculate the WQC using four classification models,
such as SVM, XGBoost, Decision Tree and Random Forest.
The regression models are evaluated and analysed using
Mean Absolute Error (MAE), Mean Square Error (MSE),
Root Mean Squared Error (RMSE), and R-squared (R2)
error metrics. Whereas, classification models are evaluated
and analyzed using accuracy, precision, recall, and F1
score metrics. Based on these performance metrics, the
results of regression models and classification models are
demonstrated, tabulated, and compared accordingly.

1) DATA PREPROCESSING
The processing phase holds great significance in data analysis
as it plays a pivotal role in enhancing the quality of the
data. The acceptable limits for WQPs recommended by the
World Health Organization (WHO) for safe drinking water
and irrigation purposes are mentioned in [54] and [55] and
are enlisted in Table 3. The data is collected through the
IoT system and later is cleaned. After data cleaning, the
WQI is calculated using the most significant parameters.
Subsequently, water samples have been categorized or
classified according to their corresponding WQI values.
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TABLE 3. The acceptable limits for WQPs set by the WHO [54], [55].

To achieve improved accuracy, the Z-score method has been
employed as a data normalization technique. The following
section discusses different phases of data preprocessing.

a: DATA EXPLORATION
The data used for this research is gathered with the aid
of IoT devices as discussed earlier. The Dataset has four
significant WQPs, namely, temperature, pH, turbidity, and
TDS. It contained about 6000 values (i.e., 6000 readings
for each parameter), collected during the Autumn season.
Later, it is divided into two subsets for machine learning
model assessment, i.e., Dataset 1 (600 values/parameters) and
Dataset 2 (complete set).

b: DATA CLEANING (OUTLIERS REMOVAL)
Data cleaning, specifically outliers removal, is an important
step in the data preprocessing phase of a machine learn-
ing framework [56]. Outliers are data points that exhibit
substantial deviation from the remaining data, indicating
their significant divergence from the norm, and they can
distort statistical analysis andmodel training. Outlier removal
aims to identify and handle these anomalous data points
for improving the quality and reliability of the datasets.
In this study, we collected data using IoT devices. As a
result, the datasets contain very few missing values and thus
have a minimal number of outliers. To identify outliers,
we employed the boxplot technique, as illustrated in Fig. 8.
The outliers in Dataset 1 and Dataset 2 are illustrated in
Fig. 8a and Fig. 8b, respectively. Dataset 1 contains fewer
outliers compared to Dataset 2 because Dataset 2 is larger in
size than Dataset 1.

c: WATER QUALITY INDEX (WQI)
WQI is a comprehensive metric that provides a singular
measure to assess the overall quality of water. It is computed
by considering a range of parameters that accurately reflect
the true quality of the water [57]. To conventionally calculate
the WQI, four WQPs are used, namely temperature, pH,
turbidity and TDS in our datasets. Utilizing the assigned
weights for each parameter, we computed the WQI for each
sample using the formula shown in Equation 1. In this
equation, qvalue represents the value of a specific parameter
within the range of 0-100, and wfactor denotes the weight
coefficients associated with each parameter, as illustrated in

Fig. 9. WQI is obtained by summing the products of the q
value and the respective weight for each parameter. This sum
is then divided by the total sum of the weights assigned to the
parameters [58], [59].

WQI =
(
∑
qvalue + wfactor )∑

wfactor
(1)

d: WATER QUALITY CLASS (WQC)
Water Quality Classes (WQCes) are used to assess and
describe the condition or suitability of water for specific
purposes, such as drinking, recreational activities, or ecosys-
tem health [60]. The classes are typically based on the
measurements of various parameters, and indicators of water
quality, such as WQI range values. The specific definition of
WQCes may vary as per context and standards or guidelines
used by different organizations or regulatory bodies. These
classes are often determined by setting thresholds or ranges
for key WQPs and assigning a class label based on the
measurements falling within those ranges. Based on the WQI
range values, the WQCes can be defined as follows [24]:

• Excellent: Water that meets or exceeds all regulatory
standards for drinking water quality.

• Good:Water that meets most of the regulatory standards
but may have slight variations in certain parameters.

• Fair:Water that meets some of the regulatory standards
but may require additional treatment or monitoring.

• Marginal: Water that fails to meet several regulatory
standards and requires significant treatment or remedia-
tion.

• Poor: Water that is not suitable for drinking and
irrigation due to severe contamination or the presence
of harmful substances.

Hence, utilizing the WQI, water is classified into different
categories as demonstrated in Fig. 10. The Y-axis describes
the WQI value, and the X-axis corresponds to the WQC.

e: Z-SCORE NORMALIZATION
Data standardization of variables is a crucial step before
training the machine learning model. This method is com-
monly employed in machine learning techniques to transform
all data variables into a consistent scale for optimizing the
training errors [61], [62]. In the current study, the data
was normalized using the Z-score normalization method. Z-
score normalization is a widely used method that normalizes
parameters based on the mean (µ) and standard deviation (σ )
values of the observed data. It is calculated using Equation 2,
where x describes the value of a specific sample [63].

Z − score =
(x + µ)

σ
(2)

2) DATA ANALYSIS
Following the completion of data processing, multiple
machine learning models are utilized for data analysis.
The objective was to predict the target variables (WQI
and WQC) using a minimal set of parameters. Before
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FIGURE 8. Outliers detection using boxplot analysis.

predicting the target variables, certain preliminary steps were
undertaken to set the data for input into the models. These
steps included correlation analysis to identify relationships
between variables and data splitting to partition the Dataset
appropriately. These preparatory measures were crucial in
ensuring the data was well-prepared for subsequent analysis
with the machine learning models.

a: CORRELATION ANALYSIS
Correlation analysis, a statistical method, was employed to
examine relationships between variables in the datasets. This
analysis played a crucial role in understanding the degree and
direction of associations between the variables [64]. In water
quality analysis, correlation analysis can help identify and
understand the relationships between different WQPs. The
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FIGURE 9. Weight coefficients used in the calculation of the WQI.

FIGURE 10. WQI range values [24].

correlation coefficient is a numerical value that ranges from
−1 to 1 [65]. Here’s what the correlation coefficient values
represent:

• A correlation coefficient near to 1 suggests a strong
positive correlation, indicating that as one parameter
increases, the other parameter also tends to increase.

• A correlation coefficient near to −1 suggests a strong
negative correlation, suggesting that as one parameter
increases, the other parameter tends to decrease.

• A correlation coefficient near to 0 suggests a weak or
no correlation, suggesting that there is no significant
correlation between the parameters.

By analyzing the correlation coefficients, we can gain
insights into how different WQPs influence each other. For
example, a positive correlation between temperature and
pH might indicate that as temperature increases, the pH
tends to increase as well. This information can be useful
for understanding water quality trends, identifying potential
impacts on ecosystems, and even predicting the behaviour
of certain parameters based on others. Fig. 11 represents
the correlation analysis for the four parameters such as
temperature, pH, turbidity, and TDS in terms of the heatmap
diagram. Accordingly, Fig. 11a and Fig. 11b show the

correlation analysis for Dataset 1 and Dataset 2, respectively.
For correlation analysis, we employed the effective and
widely used correlation method and is Pearson correlation
method. It is a well-established statistical technique that
measures the relationship between two variables [66].

b: DATA SPLITTING (CROSS-VALIDATION)
Before applying the machine learning model, the final task
involves dividing the given data into separate sets to facilitate
model training, testing, and performance evaluation [67].
Cross-validation is a statistical method utilized for evaluating
the efficacy of a machine learning model. This method entails
dividing the available data into multiple subsets or folds. The
general procedure of cross-validation can be summarized as
follows [68]:

• The Dataset is partitioned into k-folds having identical
sizes.

• In each iteration of k-fold cross-validation, the model
is trained using k-1 folds as training data, and the
remaining fold is used for validation.

• Performance metrics, such as accuracy, precision, recall,
or F1 score, are computed for each iteration based on the
evaluation results from the validation set.

• The performance scores from all iterations are averaged
to obtain an overall performance estimate of the model.

• The model parameters can be fine-tuned based on the
average performance score, and the final model can
be trained on the entire Dataset using the selected
parameters.

Typically, popular choices for cross-validation include 5-
fold and 10-fold [69]. Our study implemented 5-fold cross-
validation, which involved dividing the data into 5 subsets or
folds.

3) MACHINE LEARNING MODELS
In our study, we employed both regression and classifica-
tion models of machine learning. Regression models were
utilized to estimate the WQI, while classification models
were employed to classify samples into predefined WQC.
We employed a total of eight machine learning models out
of which four are regression models and four classification
models. In the subsequent section, we offer a comprehensive
explanation of the models utilized in our analysis.

a: REGRESSION MODELS FOR WQI PREDICTION
For this purpose, LSTM, SVR,MLP and NARNet models are
used for the prediction of WQI.
(i) LSTM Model: The LSTM model [70], categorized

under the Recurrent Neural Network (RNN) architecture,
is specifically engineered to capture long-term dependencies
and manage sequential data. Their effectiveness in handling
sequential data and capturing long-term dependencies has
made them a popular choice for these tasks. One key dis-
tinction of LSTMs from traditional RNNs is their capability
to mitigate the vanishing gradient problem that often arises
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FIGURE 11. Pearson’s correlation analysis using heatmap diagram.

during the training of deep NNs. LSTMs achieve this by
incorporating memory cells and gates (input gate, output
gate, and forget gate) that control the flow of information.
The memory cells store and update information over time,
allowing the model to retain relevant context and remember
important information from the past. The gates, which
regulate the flow of information, facilitate the selective
retention or omission of information. This way, LSTMs can
effectively capture long-term dependencies and avoid losing
important information over extended sequences. Here are the
control parameters of LSTM model:

• Number of hidden LSTM units
• Dropout rate
• Learning rate
• Batch size
• Number of epochs

(ii) SVR Model: The SVR model [71] is a specialized
variant of SVM adapted for regression tasks. Its primary
objective is to discover a hyperplane that optimally fits
the training data while minimizing the deviations between
predicted values and actual targets. SVR employs support
vectors, which are data points in close proximity to the
hyperplane, to establish a margin that encompasses the
regression function. By utilizing a kernel function, the data
is transformed into a higher-dimensional space, enabling
SVR to handle both linear and nonlinear regression problems
effectively. This method proves particularly valuable when
dealing with datasets that exhibit intricate relationships.
Following are the control parameters of SVR model:

• Kernel type (linear, polynomial, radial basis function,
etc.)

• Kernel parameters (e.g., gamma for RBF kernel)
• Regularization parameter (C)
• Epsilon for epsilon-insensitive loss
• Degree for polynomial kernel

(iii) MLP Model: The MLP model, on the other hand,
is a type of ANN, featuring multiple layers of interconnected
nodes, commonly referred to as neurons. Within this
structure, each neuron processes the weighted sum of its
inputs, applying a non-linear activation function. This ability
enables the MLP to grasp intricate patterns and relationships
present in the data. MLP is a versatile algorithm and can
be applied to various tasks, including regression [72]. It is
known for its ability to approximate any continuous function
given sufficient data and training time. MLP models can
incorporate multiple hidden layers, and the performance of
the model can be enhanced by adjusting the number of
neurons in each layer. This flexibility allows for fine-tuning
the architecture to achieve optimal results based on the
specific problem and dataset at hand. The control parameters
of MLP model are given below:

• Number of hidden layers
• Number of neurons in each hidden layer
• Activation functions for each layer
• Learning rate
• Batch size
• Number of epochs

(iv) NARNet Model: The NARNet model is a type of NN
architecture specifically designed for time series forecasting
tasks. NARNet combines the power of autoregressive models
and neural networks to capture the nonlinear dependencies
and dynamics present in sequential data. Unlike traditional
autoregressive models, NARNet usually employs neural
networks, which allows it to capture complex patterns and
nonlinearity in the time series data. The model takes a
fixed-length input window of past observations and uses a set
of hidden layers to map these inputs to the predicted output.
NARNet can be trained using gradient-based optimization
algorithms, such as backpropagation, to minimize the pre-
diction error. NARNet is applied in various domains, where
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accurate and nonlinear forecasting is crucial. By leveraging
the power of neural networks, NARNet provides a flexible
and effective approach for time series forecasting tasks [73].
The control parameters of NARNet models are as follows:

• Number of lag observations
• Number of neurons in hidden layers
• Learning rate
• Batch size
• Number of epochs

b: CLASSIFICATION MODELS FOR WQC PREDICATION
For this purpose, SVM, XGBoost, Decision Trees, and
Random Forest models are used for the prediction of WQC.

(i) SVM Model: The SVM model [74] is a powerful and
versatile machine learning model that is widely used for both
regression and classification purposes. SVMs are particularly
effective when dealing with complex datasets and problems
with a clear separation between classes. SVMs can handle
both linear and non-linear separable data by utilizing different
types of kernels, such as linear, polynomial, radial basis
function, and sigmoid kernels, which allow for mapping the
data into higher-dimensional feature spaces. SVMs have the
advantage of being less prone to overfitting and providing
robust generalization. They are also effective in handling
high-dimensional data and can handle datasets with a large
number of features. SVMs have found applications in various
domains, such as bioinformatics, text classification, and
image recognition. Their ability to handle complex decision
boundaries and generalize well makes SVMs a valuable tool
in the field of machine learning. Now, we enlist different
control parameters of SVM model:

• Kernel type (linear, polynomial, radial basis function,
etc.)

• Kernel parameters (e.g., gamma for RBF kernel)
• Regularization parameter (C)

(ii) XGBoost Model: XGBoost [75] is an advanced
machine learningmodel that has gained significant popularity
for its exceptional performance and versatility. It belongs
to the gradient-boosting family and is known for its ability
to handle complex datasets and deliver highly accurate
predictions. XGBoost combines the power of ensemble
learning with gradient boosting, creating a robust model by
sequentially adding weak learners (usually Decision Trees)
to correct the errors of the previous models. To prevent
overfitting and enhance the generalization ability of the
model, XGBoost employs regularization methods such as
L1 and L2 regularizations. XGBoost optimizes the objective
function through gradient-based optimization, efficiently
computing the gradient and second derivatives of the loss
function. Additionally, it offers features like handlingmissing
values, feature importance estimation, and parallel processing
to enhance efficiency. Following are control parameters of
XGBoost model:

• Number of boosting rounds
• Learning rate (eta)

• Maximum depth of trees
• Minimum child weight
• Subsample ratio of the training instances
• Column subsample ratio for each tree
• Regularization term (lambda)
• Gamma parameter for regularization
• Scale_pos_weight for handling class imbalance

(iii) Decision Tree Model: The Decision Tree model is a
versatile machine learning model that leverages a tree-like
structure tomake predictions by following a series of decision
rules. It is known for its simplicity and effectiveness and
finds applications in both regression and classification tasks.
Decision tree models are extensively employed in tackling
machine learning tasks owing to their inherent simplicity
and comprehensibility. This popularity is justified by their
ability to offer intuitive insights into the decision-making
process underlying complex data patterns [76]. The Decision
Tree model starts with a root node and recursively splits
the Dataset on the basis of values of input features, creating
branches and leaf nodes. Each internal node represents a
decision based on a feature, while each leaf node represents a
predicted class or value. The splitting process is determined
by criteria such as Gini impurity or information gain, aiming
to minimize the impurity or maximize the information
gain at each step. Decision Trees are highly interpretable,
as they allow us to trace the path of decisions leading to a
prediction. Decision Trees are useful for feature selection,
as they provide insights into the most important features for
prediction. Nevertheless, there is a potential risk of overfitting
when the Decision Tree becomes overly complex. Tomitigate
this concern, several techniques can be utilized, including
pruning and the utilization of ensemble methods such as
Random Forests, which can effectively address the issue of
overfitting [77]. Here are control parameters of Decision Tree
model:

• Splitting criterion (e.g., Gini impurity, entropy)
• Maximum depth of the tree
• Minimum number of samples required to split an
internal node

• Minimum number of samples required to be at a leaf
node

(iv) Random Forest Model: Random Forest [78] is a
versatile and robust machine learning model that combines
the power of multiple Decision Trees to make accurate
predictions. It belongs to the ensemble learning methods
and is known for its efficiency, scalability, and ability
to handle complex datasets. In a Random Forest model,
a group of Decision Trees is trained independently on
distinct subsets of the training data, employing a technique
called bootstrapping, which involves random sampling with
replacement. Each tree in the ensemble casts a vote for
the final prediction, and the class or value with the
majority of votes is chosen as the final prediction. Random
Forest mitigates overfitting by introducing randomness in
the training process, such as feature subsampling, which
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further enhances its generalization performance. It excels in
various tasks, including classification, regression, and feature
importance analysis, making it a popular and reliable choice
for machine learning practitioners across different domains.
The control parameters of Random Forest model are given as
follows:

• Number of trees in the forest
• Splitting criterion (e.g., Gini impurity, entropy)
• Maximum depth of the trees
• Minimum number of samples required to split an
internal node

• Minimum number of samples required to be at a leaf
node

• Number of features to consider when looking for the best
split

• Bootstrap samples used for building trees
These control parameters play a crucial role in shaping

the behavior and performance of machine learning mod-
els. Fine-tuning these parameters based on the specific
dataset and problem at hand can significantly impact
the predictive accuracy and generalization capability of
the models.

4) PERFORMANCE EVALUATION METRICS
As previously discussed, our study utilized two types
of supervised machine learning models: regression and
classification. The evaluation of the results obtained
from these models differed based on their respective
methodologies.

The following measures are employed for evaluating the
performance of regression models:

a: MEAN ABSOLUTE ERROR (MAE)
MAE is a metric used to compute the average absolute
difference between the predicted values and the actual values
in a regression model. It quantifies the magnitude of errors
made by the model, without considering their direction. The
equation for MAE is [79], [80].

MAE =
1
n

K∑
i=1

|yi − ŷi| (3)

where:
• K is the number of samples,
• yi is the actual value of the i-th sample,
• ŷi is the predicted value of the i-th sample,

b: MEAN SQUARE ERROR (MSE)
MSE is ametric that quantifies the average squared difference
between the predicted value and the actual value. It is
commonly used and emphasizes larger errors more than
MAE. The equation for MSE is [79], [80].

MSE =
1
n

K∑
i=1

(yi − ŷi)2 (4)

c: ROOT MEAN SQUARED ERROR (RMSE)
RMSE is derived by taking the square root ofMSE, providing
an interpretable metric in the same unit as the dependent
variable. The equation for RMSE is [79], [80].

RMSE =

√√√√1
n

K∑
i=1

(yi − ŷi)2 (5)

d: R-SQUARED ERROR (COEFFICIENT OF DETERMINATION)
R-squared (R2), also referred to as the coefficient of
determination, is a statistical metric that measures the portion
of the variance in the dependent variable explained by the
independent variables in a regression model. It provides an
indication of how well the regression model fits the data. The
equation for R2 Error is [79], [80].

R2
= 1 −

K∑
i=1

(yi − ŷi)2

K∑
i=1

(yi − ȳi)2
(6)

where:
• ȳi is the mean of the actual values.
The following measures were employed for evaluating the

performance of classification models:

e: ACCURACY
Accuracy is a metric commonly used for classification tasks.
It assesses the proportion of correct predictions out of the total
number of predictions made by a model. It is calculated using
the following equation [81], [82].

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(7)

f: PRECISION
Precision is a performance metric that calculates the ratio
of true positive predictions to all positive predictions made
by a model. It assesses the accuracy of positive predictions
by measuring how many of the predicted positive values are
actually positive. The equation for precision is [81], [82].

Precision =
True Positives

True Positives+ False Positives
(8)

g: RECALL (SENSITIVITY OR TRUE POSITIVE RATE)
Recall is a performance metric that quantifies the ratio of true
positive predictions to all actual positive values in the dataset.
It gauges the model’s ability to correctly identify positive
instances among all the instances that are actually positive.
The equation for recall is [81], [82].

Recall =
True Positives

True Positives+ False Negatives
(9)

h: F1 SCORE
The F1 score provides a balanced evaluation of the model’s
performance by incorporating both precision and recall,
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calculating their harmonic mean. This metric is especially
valuable when there is an uneven distribution between the
positive and negative classes in the Dataset, as it considers
both the model’s ability to accurately identify positive
instances (precision) and its capability to capture all positive
instances (recall). The equation for F1 score is [81], [82]:

F1 score = 2 ×
Precision× Recall
Precision+ Recall

(10)

E. HIGHLIGHTS OF RESEARCH METHODOLOGY
Here, we highlight the unique aspects of our research
methodology that distinguish it in the realm of water quality
analysis and prediction.

• Integrated Synergy: Our approach combines IoT
technology and machine learning models to create
a holistic framework for water quality analysis and
prediction.

• Sensor Fusion: We strategically deploy four sensors
(temperature, pH, turbidity, and TDS) to provide
real-time insights into vital water quality parameters.

• Tailored Framework:Our dedicatedmachine learning-
enabled framework is designed to suit water qual-
ity analysis, encompassing data preprocessing, model
selection, and performance evaluation.

• Strategic Model Selection:We employ specific regres-
sion models (LSTM, SVR, MLP, NARNet) and clas-
sification models (SVM, XGBoost, Decision Trees,
Random Forest) to ensure precision in predicting WQI
and WQC.

• Dataset Stratification: The division of the evaluation
Dataset into subsets (Dataset 1 and Dataset 2) facilitates
a robust performance comparison under varying data
sizes.

• Benchmark Comparison: Our study stands out by
benchmarking against existing research, showcasing
enhanced predictive performance in both regression and
classification models.

• Technical and Economic Viability: Our approach
leverages IoT-enabled real-time data collection, mini-
mizing manual efforts and resource wastage, thereby
ensuring cost-effectiveness.

• Optimization Impact: Optimization techniques, such
as strategic sensor placement, enhance efficiency by
maximizing coverage while minimizing sensor count.

• FutureDirections:Ourmethodology opens avenues for
further expansion, including broader datasets, additional
features, and advanced machine learning and hybrid
techniques.

• Proactive Water Management: Accurate predictions
empower proactive decision-making in water quality
management, aiding in timely interventions to mitigate
risks.

• Technological Paradigm Shift: The amalgamation of
IoT, machine learning, and optimization paves the way
for an effective, economically viable, and technically

efficient approach to water quality analysis and predic-
tion.

IV. RESULTS
Now, we present a comprehensive evaluation of the perfor-
mance of both regression and classification models. To assess
the effectiveness of the machine learning models utilized in
this study, we employ two distinct datasets, providing a robust
validation of their performance.

A. RESULTS FOR REGRESSION MODELS
Here, we discuss the results of regression models in terms
of scatter plots and violin plots by considering different
performance metrics. We choose LSTM, SVR, MLP and
NARNet regression models to predict the WQI for water
quality.

1) PREDICTING WATER QUALITY INDEX
Fig. 12 depicts the relationship between actualWQI value and
predicted WQI for LSTM, SVR, MLP and NARNet models
in terms of scatter plots for both datasets. The scatter plots
for Dataset 1 and Dataset 2 are illustrated in Fig. 12a and
Fig. 12b, respectively.
In Dataset 1, the scatter plot for the LSTM model

shows a relatively tight cluster of points around a diagonal
line, indicating a strong correlation between the actual
and predicted WQI values. This suggests that the model
accurately captures the underlying patterns in the data,
resulting in lower MAE, MSE, and RMSE values. In Dataset
2, the scatter plot might exhibit a slightly more scattered
pattern, indicating a weaker correlation between the actual
and predicted WQI values. This aligns with the higher MAE,
MSE, and RMSE values observed in Dataset 2 compared to
Dataset 1.
The scatter plots for the SVR model in both Dataset

1 and Dataset 2 might show a wider spread of points with
less apparent correlation between the actual and predicted
WQI values. This aligns with the higher MAE, MSE, and
RMSE values observed in both datasets. The SVR model
might struggle to capture the underlying patterns in the data,
resulting in larger errors and deviations from the actual
values.
The scatter plot for the MLP model in Dataset 1 would

likely exhibit a relatively tight cluster of points, indicating
a strong correlation between the actual and predicted WQI
values. This is consistent with the lower MAE, MSE, and
RMSE values observed in Dataset 1. In Dataset 2, the scatter
plot might show a slightly more scattered pattern, suggesting
a weaker correlation between the actual and predicted WQI
values. This aligns with the higher MAE, MSE, and RMSE
values observed in Dataset 2 compared to Dataset 1.
The scatter plots for the NARNet model in both Dataset

1 and Dataset 2 might exhibit a moderately scattered pattern,
indicating a moderate correlation between the actual and
predicted WQI values. This aligns with the relatively similar
MAE and RMSE values observed in both datasets. The
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FIGURE 12. Predicting water quality index using regression models through scatter plots.
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FIGURE 13. Predicting relative error of regression models using violin plot.

slightly higher MSE values in Dataset 2 suggest slightly
larger squared differences between the predicted and actual
values compared to Dataset 1. The scatter plot might show
a less precise fit to the diagonal line, indicating a slightly
weaker correlation in Dataset 2. This is consistent with
the slightly lower R-squared values observed in Dataset
2 compared to Dataset 1.

In summary, the scatter plots for each model can provide
a relationship between the actual and predicted WQI values
in both Dataset 1 and Dataset 2. They can help us assess
the strength of the correlation and observe any deviations or
patterns in the predictions.

2) PREDICTING RELATIVE ERROR OF REGRESSION MODELS
To assess the effectiveness of the regression models and
compare them, violin plots were used in the analysis. These
plots were generated using both the training and testing
datasets. The Relative Error (RE) values were calculated
for all machine learning models to evaluate the distribution

of error values and assess the performance of each model.
RE can be calculated as [83]

RE =
1
U

U∑
i=1

WQI (i)Obs−WQI (i)Pre
WQI (i)Obs

(11)

Equation 11 represents the RE calculation, where U repre-
sents the total number of data points. The equation computes
the average relative error for each data point, comparing the
observed (WQI(i)Obs) and predicted (WQI(i)Pre)WQI values.

The relative error values for the LSTM, SVR, MLP, and
NARNet models are shown in Fig. 13. Fig. 13a and Fig. 13b
provide insights into the performance of these regression
models and allow for a comparison to understand their
effectiveness on Dataset 1 and Dataset 2, respectively.

In Dataset 1, the LSTM model exhibits relatively low
relative error values, ranging from 0.2 to 0.4 for the training
set and 0.35 to 0.6 for the testing set. This indicates that the
LSTMmodel achieves good accuracy in predicting the target
variable, with the testing set showing slightly higher relative
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errors. The SVR model, on the other hand, demonstrates
higher relative error values, ranging from 0.4 to 1.2 for
training and 0.5 to 1.8 for testing. This suggests larger
errors and deviations from the actual values compared to
the LSTM model. The MLP model performs relatively well,
with lower relative error values ranging from 0.2 to 0.3 for
training and 0.4 to 1.1 for testing. The NARNet model shows
similar performance, with relative error values ranging from
0.25 to 0.45 for training and 0.33 to 0.62 for testing. Overall,
in Dataset 1, the LSTM and MLP models demonstrate better
accuracy compared to SVR and NARNet models.

In Dataset 2, the LSTMmodel continues to show relatively
low relative error values, ranging from 0.4 to 0.95 for training
and 0.45 to 0.99 for testing. This indicates consistent accuracy
in predicting the target variable, although slightly higher
relative errors compared to Dataset 1. The SVR model
exhibits higher relative error values, ranging from 0.6 to
1.7 for training and 0.7 to 2.6 for testing. Similarly, the
MLPmodel shows larger relative errors, ranging from 0.35 to
0.85 for training and 0.45 to 1.8 for testing. The NARNet
model also demonstrates relatively higher relative errors,
ranging from 0.45 to 0.97 for training and 0.47 to 1.05 for
testing. In Dataset 2, the LSTM model maintains better
accuracy compared to the other models.

Comparing the models across both datasets, the LSTM
model consistently performs well with relatively low relative
error values, indicating its robustness in predicting the target
variable. The SVR, MLP, and NARNet models exhibit higher
relative errors in both datasets, suggesting less accurate
predictions. However, it’s worth noting that the MLP model
shows relatively better performance compared to SVR and
NARNet models in terms of relative errors.

In summary, the LSTM model stands out as the most
accurate and reliable model among the four, demonstrating
lower relative errors in both Dataset 1 and Dataset 2. The
MLP model shows comparatively better performance than
SVR and NARNet models but still falls short of the accuracy
achieved by the LSTM model. The SVR and NARNet
models exhibit higher relative errors, indicating room for
improvement in their predictions.

3) PERFORMANCE COMPARISON OF REGRESSION MODELS
The performance comparison of regression models is illus-
trated in Fig. 14. The outcomes of the regression models are
evaluated for the designated WQPs in terms of MAE, MSE,
RMSE, and R-squared error. A comparison of the results
from Dataset 1 (Fig. 14a) and Dataset 2 (Fig. 14b) reveals
variations in the models’ performance. Let’s analyze these
discrepancies:

For the LSTM model, in Dataset 1, the MAE values are
9.5 for training and 10.1 for testing, while in Dataset 2,
these values increase to 12.0 for training and 13.0 for
testing. This implies that the LSTM model achieves better
accuracy in Dataset 1. Similarly, the corresponding MSE
and RMSE values are lower in Dataset 1 compared to
Dataset 2, indicating reduced dispersion and more accurate

predictions in the former. The R-squared values display slight
improvement in Dataset 1 (0.92 for training and 0.89 for
testing) compared to Dataset 2 (0.85 for training and 0.80 for
testing), suggesting a higher degree of explained variance by
the model in Dataset 1.

The SVR model exhibits higher MAE, MSE, and RMSE
values in both datasets, signifying larger prediction errors
and deviations from actual values. However, the performance
of the SVR model remains relatively consistent across both
datasets, displaying minimal variations.

For the MLP model, the MAE values in Dataset 1 are
8.2 for training and 8.8 for testing, whereas in Dataset 2, they
increase to 10.0 for training and 11.0 for testing. These results
indicate superior accuracy of the MLP model in Dataset
1. The corresponding MSE and RMSE values are lower in
Dataset 1, corroborating better predictions in that dataset. The
R-squared values also demonstrate a slight improvement in
Dataset 1 (0.93 for training and 0.84 for testing) compared to
Dataset 2 (0.88 for training and 0.85 for testing), implying
a higher proportion of explained variance by the model in
Dataset 1.

Regarding the NARNet model, while the MAE and RMSE
values are comparable between both datasets, theMSE values
are slightly higher in Dataset 2. Specifically, in Dataset
1, the MSE values are 175.8 for training and 206.7 for
testing, while in Dataset 2, they increase to 242.0 for training
and 282.0 for testing. Additionally, the R-squared values
show a minor decrease in Dataset 2 (0.82 for training and
0.78 for testing) compared to Dataset 1 (0.88 for training and
0.85 for testing), suggesting a slightly reduced proportion of
explained variance in the former.

In summary, the analysis of the results showcases varia-
tions in the models’ performances between Dataset 1 and
Dataset 2, offering insights into how these models respond
to distinct data characteristics and sizes.

When comparing the models’ performance between
Dataset 1 and Dataset 2, we observe variations in accuracy,
variability, and explanatory power. The LSTM and MLP
models generally show better performance in Dataset 1,
with lower errors and higher R-squared values, indicating
better predictions and a higher proportion of explained
variance. However, the SVR and NARNet models exhibit
relatively similar performance across both datasets. These
findings suggest that the choice of a dataset can influence
the performance of different models, and Dataset 1 appears to
provide better results overall for the LSTM andMLPmodels.

B. RESULTS FOR CLASSIFICATION MODELS
In our study, we opted for the one vs. all approach, also
known as one vs. rest [84]. This strategy involves training
separate binary classifiers for each class, treating it as the
positive class while considering the remaining classes as the
negative class. The final classification decision is made by
selecting the class with the highest confidence score from
the individual binary classifiers. We chose the one vs. all
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FIGURE 14. Performance comparison of regression models through regression metrics.

approach due to its simplicity, scalability, and suitability for
ourmulticlass classification problem [85]. Given the nature of
water quality classification and the potential overlap between
different classes, the one vs. all strategy offered an effective
way to handle the complexities inherent in the dataset.

Now, we discuss the results for classification models in
terms of scatter plots and fusion matrices by considering
different performance metrics. We apply SVM, XGBoost,
Decision Tree and Random Forest classification models to
predict the WQC for water quality.
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FIGURE 15. Predicting water quality classes through scatter plots.

1) PREDICTING WATER QUALITY CLASSES
Fig. 15 illustrates scatter plots used for predicting water
quality classes (Excellent, Good, Fair, Marginal, Poor)
by considering the corresponding WQI values. The
WQI range associated with each class is presented in
Fig. 10.

The Random Forest model emerges as the top performer
among the four models, displaying substantial accuracy
across most class labels. Notably, the Fair class garners the
highest percentage, indicating the Random Forest model’s
proficiency in predicting this particular class. Furthermore,
this model showcases commendable performance in various
other classes as well.

While both the XGBoost and Decision Tree models exhibit
lower efficiency compared to the Random Forest, they still
outperform the SVM model. In particular, the XGBoost
model tends to predict WQC classes more accurately than
the Decision Tree. However, the Decision Tree model’s

predictive prowess is diminished for the Excellent and Poor
classes, in contrast to the XGBoost’s better performance
across a wider range of classes.

In contrast, the SVM model demonstrates a comparatively
lower overall accuracy when predicting WQC. It manages
reasonable accuracy for the Good and Fair classes but faces
challenges when predicting the Excellent and Poor classes,
where its accuracy is notably lower. This trend of lower
accuracy extends to most class labels compared to the other
models.

Overall, the Random Forest model stands out as the
most robust and accurate choice among the four, boasting
high prediction percentages for most classes. The SVM and
XGBoost models each exhibit strengths in specific classes but
struggle with others. Meanwhile, the Decision Tree model
showcases lower overall accuracy and difficulties in certain
classes. These findings highlight the Random Forest model’s
reliability for this classification task, while suggesting room
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for potential enhancements or adjustments in the other
models.

2) CORRELATION OF WATER QUALITY CLASSES FOR
CLASSIFICATION MODELS
Fig. 16 shows the confusion matrices for four machine
learning models (SVM, XGBoost, Decision Tree, Random
Forest) for classification tasks based on different performance
metrics: accuracy (Fig. 16a), precision (Fig. 16b), recall
(Fig. 16c), and F1 score (Fig. 16d).
In terms of accuracy, the Random Forest model consis-

tently achieves the highest accuracy across all classes, with
percentages ranging from 96.3% to 98.9%. This indicates
its ability to correctly classify instances as true positives
and true negatives. It demonstrates statistically significant
performance compared to the other models, as evidenced by
the higher accuracy values and narrower confidence intervals.
The XGBoost model also performs well, with accuracy
percentages ranging from 88.3% to 92.3%. TheDecision Tree
and SVMmodels exhibit lower accuracy values, ranging from
81.1% to 91.3% and 74.9% to 90.9%, respectively, suggesting
a higher proportion of false positives and false negatives.

Examining precision, the Random Forest model stands
out with the highest precision scores across most classes,
ranging from 94.8% to 98.9%. This indicates its ability to
minimize false positives, ensuring that a high proportion of
predicted positive instances are true positives. It achieves
statistically significant precision compared to the other
models, as indicated by the higher values and narrower
confidence intervals. The XGBoost model also demonstrates
good precision, particularly in the ‘‘Excellent,’’ ‘‘Good,’’
and ‘‘Fair’’ classes, with percentages ranging from 94.8%
to 87.1%. The Decision Tree and SVM models achieve
moderate precision scores, ranging from 91.4% to 79.5% and
71.4% to 81.6%, respectively, implying a higher rate of false
positives.

Considering the recall, the XGBoost model exhibits
strong recall performance, capturing a high percentage of
actual positive instances across all classes, ranging from
94.7% to 98.9%. This suggests its ability to minimize
false negatives, ensuring that a high proportion of true
positive instances are correctly identified. It demonstrates
statistically significant recall compared to the other models,
as evidenced by the higher values and narrower confidence
intervals. The Random Forest model also demonstrates good
recall, particularly in the ‘‘Excellent,’’ ‘‘Good,’’ and ‘‘Fair’’
classes, with percentages ranging from 87.3% to 94.8%. The
Decision Tree and SVM models achieve moderate recall
scores, ranging from 80.2% to 94.4% and 70.0% to 81.9%,
respectively, indicating a higher rate of false negatives.

Focusing on the F1 score, the XGBoost model consistently
achieves the highest F1 scores across all classes, ranging
from 88.4% to 95.0%. The F1 score balances precision and
recall, making it a reliable metric to evaluate overall model
performance. The higher F1 scores of the XGBoost model
suggest a better balance between minimizing false positives

and false negatives. It demonstrates statistically significant
F1 scores compared to the other models, as indicated by
the higher values and narrower confidence intervals. The
Random Forest model also performs well, achieving high
F1 scores in the ‘‘Excellent,’’ ‘‘Good,’’ and ‘‘Fair’’ classes,
ranging from 87.7% to 96.5%. The Decision Tree and SVM
models achieve moderate F1 scores, ranging from 80.8% to
91.4% and 74.4% to 83.0%, respectively.

In summary, based on the statistical results, the Random
Forest and XGBoost models consistently outperform the
Decision Tree and SVM models across all evaluated metrics.
These models achieve higher mean scores, and narrower
confidence intervals, and demonstrate statistically significant
performance. The Random Forest model excels in accuracy,
precision, recall, and F1 score, while the XGBoost model
showcases strong precision, recall, and F1 score. The high
precision values indicate a lower rate of false positives, while
high recall values suggest a lower rate of false negatives.
These findings highlight the effectiveness of the Random
Forest andXGBoost models in accurately identifying positive
instances while minimizing classification errors.

3) PERFORMANCE COMPARISON OF CLASSIFICATION
MODELS
The performance comparison of classification models is
depicted in Fig. 17. Now we illustrate the results of
classification models for the chosen WQPs in terms of
accuracy, precision, recall, and F1 score.

When examining accuracy, the Random Forest model
emerges as the leader with the highest accuracy value of
0.93. This value indicates that the model consistently makes
the most accurate predictions across the different classes.
Following closely, the XGBoost model achieves an accuracy
of 0.92, underscoring its robust predictive capabilities. The
Decision Tree model attains an accuracy of 0.88, while the
SVM model trails behind with the lowest accuracy of 0.74.

Precision, a metric focused on minimizing false positives,
is notably high for the Random Forest model, which yields
a precision value of 0.94. This indicates that the model
has a low tendency to label instances as positive when
they are actually negative. Similarly, the XGBoost model
demonstrates commendable precision of 0.92, signifying its
ability to accurately predict positive instances. The Decision
Tree model’s precision is measured at 0.87, while the SVM
model exhibits the lowest precision value of 0.72.

Considering recall, a metric aimed at minimizing false
negatives, the XGBoost model takes the lead with the highest
recall value of 0.93. This value suggests that the model
effectively captures a substantial proportion of actual positive
instances. The Random Forest model closely trails with a
recall of 0.92, further highlighting its capacity to identify
positive instances accurately. The Decision Tree model
achieves a recall of 0.89, while the SVMmodel demonstrates
the lowest recall value at 0.76.

In terms of the F1 score, which balances precision and
recall, both the Random Forest and XGBoost models secure

VOLUME 11, 2023 101077



M. A. Rahu et al.: Toward Design of IoT and Machine Learning-Enabled Frameworks

FIGURE 16. Correlation between true and predicted water quality classes for classification models using confusion matrices.

the highest F1 scores of 0.93 and 0.92, respectively. These
scores indicate a harmonized performance in terms of both
precision and recall. The Decision Tree model achieves an
F1 score of 0.88, while the SVM model displays the lowest
F1 score of 0.73.

To summarize, the Random Forest model showcases robust
overall performance, excelling across accuracy, precision,
recall, and F1 score metrics. The XGBoost model follows
closely, particularly excelling in precision and recall. The
Decision Tree model exhibits slightly lower performance
compared to the Random Forest and XGBoost models, while

the SVMmodel consistently registers the lowest performance
across all assessed metrics.

C. PERFORMANCE EVALUATION OF DIFFERENT STUDIES
This section undertakes a comprehensive performance
assessment of existing studies, focusing on their respective
methodologies and approaches. This examination plays a
crucial role in evaluating the effectiveness and resilience of
different techniques in the context of our water quality pre-
diction framework. Through this thorough evaluation, which
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FIGURE 17. Performance comparison of classification models through
classification metrics.

encompasses both regression and classification models and
employs a diverse range of metrics, we gain a comprehensive
understanding of the evolving landscape within water quality
analysis. We now provide an overview of the background of
these existing studies.

In Study A [86], a robust weight-based approach that
merges entropy weighting and the Pearson correlation
coefficient to systematically extract critical features for
water quality prediction. By effectively integrating feature
correlation and information content, the method prevents
overreliance on a single criterion. This comprehensive strat-
egy ensures an unbiased evaluation of feature contribution
and importance, minimizing subjectivity and uncertainty.
The approach optimally balances various factors to select
features with strong correlation and high information content,
resulting in enhanced accuracy and robustness during feature
selection.

Study B [87] investigates a range of supervised machine
learning algorithms for the precise estimation of the WQI-a
comprehensive indicator of overall water quality-as well
as the assignment of WQC based on the derived WQI
values. The methodology introduces four essential input
parameters: temperature, turbidity, pH, and total dissolved
solids, to accomplish these estimations accurately.

Study C [88] utilized advanced AI algorithms for pre-
dicting the WQI and WQC. To forecast the WQI, the
research develops artificial neural network models, such as
NARNet and LSTM deep learning algorithm. Additionally,
the study employs three machine learning models (SVM, K-
NN, and Naive Bayes) - for WQC prediction. The dataset
encompasses 7 significant parameters, and the performance
of the developedmodels is assessed through various statistical
metrics. The outcomes indicate that the proposed models
offer precise WQI prediction and robust water quality
classification.

Study D [89] introduces an agricultural water quality
prediction model that enhances the logistic regression algo-
rithm through the integration of the Momentum algorithm.
By utilizing Momentum algorithm, the logistic regression
algorithm can swiftly adapt to misclassified samples and
effectively navigate local optima. The inclusion of Momen-
tum algorithm aids in escaping local optima by utilizing
the last substantial gradient during updates. The model’s
effectiveness is demonstrated on four real-world datasets.

1) PERFORMANCE EVALUATION OF REGRESSION MODELS
FOR WQI IN DIFFERENT STUDIES
This section delves into the performance assessment of
diverse regression models employed across various studies,
focusing on chosen regression metrics to gauge their
predictive prowess and precision. Table 4 presents a com-
prehensive comparison of regression models’ performance
across different studies. Among the models utilized in
Study A, the MLP model displayed noteworthy predictive
capabilities with the lowest MAE of 13.5 and RMSE of 16.3,
coupled with the highest R-squared value of 0.83, signifying
relatively accurate predictions. However, this study’s LSTM
model outperforms the best model from Study A, boasting
significantly lower MAE (10.1), RMSE (14.3), and a notably
elevated R-squared value of 0.92.

Turning to Study B, the MLP model yielded the lowest
MAE (18.2) and RMSE (19.1), but its R-squared value of
0.70 suggests a relatively limited ability to explain data
variance. In contrast, the MLP model in this study exhibits
improved performance, yielding diminished MAE (8.8),
RMSE (13.6), and a substantially heightened R-squared value
of 0.93.

In the context of Study C, the MLP model achieved
commendable predictive accuracy, marked by a low MAE
(9.8), RMSE (13.9), and a high R-squared value of 0.89.
However, this study’s MLP model outshines Study C’s
performance with even lower MAE (8.8), RMSE (13.6), and
an impressive R-squared value of 0.93 using the same model.

Study D’s analysis revealed that the MLP model yielded
the lowest MAE (21.2) and RMSE (20.6), though its
R-squared value of 0.62 indicated a comparatively weaker
fit. Conversely, this study exhibited enhanced predictive
accuracy, showcasing lower MAE (8.8), RMSE (13.6), and
a substantially heightened R-squared value of 0.93 through
the same MLP model.

Comparing these outcomes with those of other studies,
this study consistently manifests improved predictive per-
formance across all models and performance metrics. The
consistently diminished MAE and RMSE values underscore
the study’s ability to closely anticipate water quality parame-
ters. Furthermore, the sustained elevation of R-squared values
signifies the models’ enhanced ability to elucidate variance in
water quality data. This comparative analysis underscores the
efficacy of the methodologies and techniques adopted in this
study, substantiating its proficiency in precise water quality
prediction.
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TABLE 4. Performance evaluation of regression models for WQI in
different studies.

2) PERFORMANCE EVALUATION OF CLASSIFICATION
MODELS FOR WQC IN DIFFERENT STUDIES
In the following sections, we delve into a comprehensive
analysis of different studies, focusing on their respective
abilities to predict WQC accurately. We achieve this by
employing a variety of classification models, each assessed
using predefined performance metrics.

Table 5 provides a comprehensive comparison of classi-
fication model performance across various studies. In Study
A, the utilized classificationmodels, namely SVM,XGBoost,
Decision Tree, and Random Forest, yielded accuracy scores
ranging from 0.76 to 0.81. While both XGBoost and
Decision Tree models consistently demonstrated strong
performance across precision, recall, and F1-score metrics,
it is noteworthy that the Random Forest model exhibited
exceptional precision and recall, leading to a significant F1-
score of 0.81.

Moving on to Study B, the observed classification model
performance was comparatively lower in terms of accuracy,
precision, recall, and F1-score metrics, when compared to
the outcomes of Study A. The SVM, XGBoost, Decision
Tree, and Random Forest models achieved accuracy scores
between 0.70 and 0.75. While the Random Forest model con-
sistently exhibited superior results among the models, Study

B displayed a somewhat diminished predictive performance
overall.

Study C, however, displayed marked improvement in
classification model performance compared to both Studies
A and B. The SVM, XGBoost, Decision Tree, and Random
Forest models showcased accuracy scores ranging from
0.79 to 0.84. Notably, the Random Forest model consistently
demonstrated the highest levels of accuracy, precision, recall,
and F1-score metrics, underscoring its efficacy within this
study.

On the other hand, Study D yielded lower classification
model performance when compared to Studies A, B, and
C. The SVM, XGBoost, Decision Tree, and Random Forest
models achieved accuracy scores spanning from 0.66 to 0.71.
Although Study D generally exhibited diminished predictive
capabilities, the Random Forest model showcased relatively
improved precision, recall, and F1-score metrics.

Finally, turning our attention to the present study, clas-
sification model performance surpassed that of all other
examined studies. The SVM, XGBoost, Decision Tree,
and Random Forest models demonstrated accuracy scores
ranging from 0.78 to 0.91. Notably, the Random Forest
model displayed exceptional performance across all metrics,
achieving an accuracy of 0.91, precision of 0.93, recall of
0.92, and F1-score of 0.91. The Decision Tree model also
maintained a high level of precision and recall.

To summarize, this comparison reveals varying degrees
of predictive capabilities and precision among classification
models across different studies. While both Study C and the
current study shine for their superior overall performance,
Studies A, B, and D exhibit distinct levels of success. This
underscores the impact of model selection and study-specific
factors on the resulting classification outcomes.

V. DISCUSSION
Water quality assessment plays a crucial role in environ-
mental monitoring and public health. In traditional water
quality analysis, determining the WQI requires extensive
laboratory testing of multiple WQPs. However, there is
growing interest in exploring alternative approaches using
machine learning techniques to estimate water quality. In our
investigation, we came across various studies that have
employed machine learning for WQI prediction. Notably,
these studies have utilized more than 10 WQPs in their
models to predict the WQI. For instance, Ahmad et al. [90]
employed 25 WQPs, Sakizadeh [91] used 16 WQPs,
Gazzaz et al. [92] utilized 23WQPs, and Ranković et al. [93]
utilized 10WQPs in their methodologies. While these studies
demonstrate the potential of machine learning for WQI
prediction, their reliance on numerous WQPs limits their
applicability in real-time systems due to cost and resource
constraints.

The use of such a high number of WQPs poses challenges
for practical implementation, particularly in real-time sys-
tems. The need for extensive data collection, computational
resources, and costs associated with measuring and monitor-
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TABLE 5. Performance evaluation of classification models for WQC in
different studies.

ing numerousWQPs limits the feasibility of these approaches
in real-world applications. To address these limitations and
develop a more practical solution, our methodology focuses
on utilizing a reduced set of WQPs. By leveraging machine
learning techniques, we aim to estimate the WQI accurately
while minimizing the complexity and resource requirements
of the system. This approach allows for more cost-effective
and efficient implementation, making it suitable for real-time
water quality monitoring.

Henceforth, our methodology focused on using only four
key WQPs to predict WQI. Some studies in the literature
focused only on four WQPs to predict WQI, such studies
are presented by Kumar et al. [87] Ahmed et al. [27], Gai and
Zhang [89], Ubah et al. [94]. The major findings of this study
are summarized as follows:
Regression models:

• In Dataset 1, the MLP model shows the lowest relative
error values, indicating its accuracy in predicting the
WQI. The SVR model exhibits higher relative errors,
suggesting larger deviations from the actual values. The
LSTM and NARNet models perform relatively well, but
not as accurately as the MLP model.

• In Dataset 2, theMLPmodel maintains low relative error
values, indicating consistent accuracy in predicting the
WQI. The SVR, NARNet, and LSTM models continue
to show higher relative errors compared to the MLP
model.

FIGURE 18. Water quality alert: a sample email format.

• Comparing the models across both datasets, the MLP
model consistently performs the best, demonstrating
lower relative errors and higher accuracy in predicting
the WQI. The LSTM model shows relatively better
performance than the SVR andNARNet models but falls
short of the accuracy achieved by the MLP model.

Classification models:
• The Random Forest model performs the best among
the classification models, exhibiting high accuracy and
precision in predicting WQCes. It excels in accurately
predicting the Fair class and demonstrates strong overall
performance.

• The Decision Tree model performs well, particularly in
terms of precision, recall, and F1 score. It shows good
accuracy and performs better than the XGBoost and
SVM models.

• The XGBoost model shows lower overall accuracy and
struggles with certain classes, particularly Excellent and
Poor.

• The SVM model exhibits lower overall accuracy com-
pared to the other models and has lower percentages for
most class labels.

Performance comparison of different studies:
• This study consistently shows improved predictive per-
formance across models and metrics, with lower MAE,
RMSE, and higher R-squared values, highlighting its
effectiveness.
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• Study C achieves higher accuracy, precision, recall, and
F1-scores compared to other studies except this study.

• Random Forest model exhibits exceptional performance
across all metrics, achieving the highest accuracy,
precision, recall, and F1-score across all studies.

Therefore, based on the evaluation results, researchers and
practitioners can choose the most suitable model depending
on the specific task requirements and priorities, considering
the trade-offs between accuracy, precision, recall, and other
evaluation metrics. The modelled data can be uploaded
on cloud [95] and can also be visualized via visualization
tools [96].

After the analysis and prediction of the WQPs, if it
indicates that the water quality has crossed the acceptable
threshold, the system can trigger appropriate actions, such
as sending an alert in the form of an email to relevant
stakeholders for activating remediation processes. Fig. 18
demonstrate a sample email format.

VI. CONCLUSION
In this study, an integrated framework combining the IoT
and machine learning models was proposed for water quality
analysis and prediction. The framework consisted of four
sensors; temperature, pH, turbidity, and TDS sensors to
collect the data from Rohri Canal, SBA. The collected
data underwent preprocessing and was then analyzed using
machine learning models to predict the WQI and WQC.
To achieve this, a machine learning-enabled framework
for water quality analysis and prediction was introduced.
Preprocessing steps, including data cleaning, normalization
using the Z-score technique, correlation analysis, and data
splitting were performed prior to applying the machine
learning models. Regression models such as LSTM, SVR,
MLP and NARNet were employed to predict the WQI, while
classification models such as SVM, XGBoost, Decision
Trees, and Random Forest were used to predict the WQC.

Before applying the machine learning models, the Dataset
used for evaluation was divided into two subsets: Dataset
1 and Dataset 2. Dataset 1 consisted of 600 values for
each parameter, while Dataset 2 contained a complete set of
6000 values for each parameter. This division allowed for
comparison and evaluation of the model’s performance.

The results predicted that the MLP model exhibits the
lowest MAE 8.2, indicating accurate predictions. Similarly,
this model also demonstrates the lowest MSE and RMSE.
Moreover, the MLP model achieves the highest R-squared
(0.93), indicating a strong fit. On the other hand, the SVR
model has higher errors and lower R-squared values (0.73),
suggesting weaker performance. Among the classification
algorithms, the Random Forest demonstrates the highest
performance with an accuracy of 0.91, precision of 0.93,
recall of 0.92, and F1-score of 0.91. The Decision Tree and
XGBoost algorithms also perform well, while SVM shows
slightly lower metrics with an accuracy of 0.78, precision
of 0.77, recall of 0.75, and F1-score of 0.77. It is also

conceived that the machine learning models perform better
when applied to datasets with smaller numbers of values
compared to datasets with larger numbers of values.

In addition, we also compared different existing studies to
assess the performance of various machine learning models.
We also present a performance comparison of four existing
studies with this study, focusing on their methodologies
in water quality prediction. By assessing regression and
classification models using diverse metrics, we gain insights
into the evolving landscape of water quality analysis.
In terms of regression models, this study has shown improved
predictive performance, with consistently lowerMAE (8.8 vs.
13.5-21.2), RMSE (13.6 vs. 16.3-20.6), and higher R-squared
values (0.93 vs. 0.62-0.83). For classification models, this
study outperforms the existing studies, particularly the
Random Forest model, which achieves exceptional accuracy
(0.91), precision (0.93), recall (0.92), and F1-score (0.91)
metrics.

The findings of this study demonstrated that machine
learning models exhibit improved performance when applied
to datasets containing fewer values in comparison to datasets
with a larger number of values. These results hold great
promise for water management, as an accurate prediction of
water quality parameters enables proactive decision-making
and timely interventions to mitigate potential risks. Accurate
classification of water quality facilitates effective monitoring
and the identification of critical situations that require
immediate attention.

A. MAIN HIGHLIGHTS
Now, we present the key highlights of this study as follows:

• An integrated framework combining IoT and machine
learning is proposed for comprehensive water quality
analysis and prediction.

• IoT sensors (temperature, pH, turbidity, TDS) collect
data from Rohri Canal, SBA, Pakistan.

• Machine learning models (regression and classification)
are used to predict WQI and WQC.

• The Dataset used for evaluating machine learning
models is divided into two subsets: Dataset 1 (600 values
for each parameter) and Dataset 2 (6000 values for each
parameter).

• The MLP model outperforms other regression models
in WQI forecasting, exhibiting the highest R-squared
value of 0.93, while the Random Forest model attains
the highest accuracy of 0.91 for WQC prediction.

• Machine learning models demonstrate better perfor-
mance with datasets containing smaller numbers of
values.

• Comparative analysis across different studies to assess
the performance of machine learning models is also
carried out.

Future research directions could involve expanding the
Dataset, incorporating additional features, and exploring
advanced machine learning [97], deep learning or hybrid
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techniques [98] to further enhance the accuracy and reliability
of urban water quality analysis and prediction for smart
cities [99]. The integration of real-time data from multiple
sources and the development of intelligent decision support
systems can contribute to more proactive and efficient water
management practices.
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